A cut-free magnetic tape structure including an elongated tape-type soft magnetic substrate. The substrate has an upper releasable face and a lower adhesive face. A sprayed or painted coating is sprayed or painted on the releasable face. An adhesive layer is overlaid on the adhesive face. At least one of the two faces of the substrate is embossed with embossed textures. The embossed textures are one by one adjacently arranged on the face in an extending direction of the tape structure. The elongated tape can be wound into a roll for easy carriage. A user can apply an external force or shear force to the substrate along at least one embossed texture to tear apart the tape or tear off a segment of the embossed magnetic tape.
|
1. A cut-free magnetic tape structure comprising an elongated tape-type soft magnetic substrate, the substrate having a releasable face and an adhesive face, a sprayed or painted coating being sprayed or painted on the releasable face, an adhesive layer being overlaid on the adhesive face, at least one of the two faces of the substrate being embossed with embossed textures, the embossed textures being one by one adjacently arranged on the face in an extending direction of the tape structure; the substrate being wound into a roll.
2. The cut-free magnetic tape structure as claimed in
3. The cut-free magnetic tape structure as claimed in
4. The cut-free magnetic tape structure as claimed in
5. The cut-free magnetic tape structure as claimed in
6. The cut-free magnetic tape structure as claimed in
7. The cut-free magnetic tape structure as claimed in
8. The cut-free magnetic tape structure as claimed in
9. The cut-free magnetic tape structure as claimed in
10. The cut-free magnetic tape structure as claimed in
11. The cut-free magnetic tape structure as claimed in
12. The cut-free magnetic tape structure as claimed in
13. The cut-free magnetic tape structure as claimed in
14. The cut-free magnetic tape structure as claimed in
15. The cut-free magnetic tape structure as claimed in
16. The cut-free magnetic tape structure as claimed in
17. The cut-free magnetic tape structure as claimed in
18. The cut-free magnetic tape structure as claimed in
19. The cut-free magnetic tape structure as claimed in
20. The cut-free magnetic tape structure as claimed in
21. The cut-free magnetic tape structure as claimed in
22. The cut-free magnetic tape structure as claimed in
23. The cut-free magnetic tape structure as claimed in
24. The cut-free magnetic tape structure as claimed in
25. The cut-free magnetic tape structure as claimed in
26. The cut-free magnetic tape structure as claimed in
27. The cut-free magnetic tape structure as claimed in
28. The cut-free magnetic tape structure as claimed in
29. The cut-free magnetic tape structure as claimed in
30. The cut-free magnetic tape structure as claimed in
|
The present invention is related to a cut-free magnetic tape structure. A soft magnetic substrate of the tape structure is formed with multiple embossed textures. The embossed textures are one by one adjacently arranged on the substrate in an extending direction of the tape structure. A user can manually tear apart the tape or tear off a segment of the tape in a forming direction of any embossed texture without using any tool.
Soft magnets have been widely used recently. Ferric oxide powder or other magnetizable powder is added into a complex sheet material or block material which is a mixture of rubber and plastic or resin. The material is at least once magnetized. Pulse current passes through a magnetic conductive disc with different magnetized divisions to induce different magnetic poles on the surface of the substrate material. Accordingly, a flexible and soft magnet is formed. Such soft magnets can attract each other or attract an iron-made object (attracted object). The soft magnet serves as the material of decorative magnetic block (sheet), magnetic clip, etc. Recently, thin soft magnetic sheets have been developed to widen the application range of soft magnets.
In general, the soft magnet must be previously magnetized and cut in manufacturing procedure before used.
The conventional soft magnet is cut and divided into custom-made products. Thin sheet magnet is cut by means of a cutting tool. This is inconvenient in use. Moreover, in the case of long-distance cutting operation of the soft magnet, a locating platform is necessary for precise measurement and cutting operation. In a modularized production line of soft magnet, the measurement and cutting operation complicate the production procedure and increase the manufacturing cost. As a result, the production capacity is lowered.
A conventional single-face tape is wound into a roll. When used, one end of the tape is pulled out and cut into a segment. The segment of the tape can be attached to an article as a protective cover. The thin sheet magnet can be combined with such tape to achieve more convenience. Taiwanese Utility Model Patent No. 500126 discloses an improved double-face tape. The main body of the tape is made of soft plastic material such as PVC or EVA. An adhesive layer is painted on bottom face of the tape main body. A high-adhesion double-face adhesive film is integrally combined with top face of the tape main body, whereby both faces of the tape main body are adhesive. A double-face oily releasable paper is attached to the back face of the adhesive film. The tape main body is wound into a roll.
It is tried by the applicant to combine the thin sheet magnetic substrate with the texture of the conventional tape to form a magnetic tape structure which can be easily torn off. A sprayed or painted coating is sprayed or painted on a first face of the magnetic substrate. An adhesive layer is overlaid on a second face of the magnetic substrate. Therefore, the magnetic tape has both adhesion and magnetic attraction.
It is therefore a primary object of the present invention to provide a cut-free magnetic tape structure including an elongated tape-type soft magnetic substrate. The substrate has a releasable face and an adhesive face. A sprayed or painted coating is sprayed or painted on the releasable face. An adhesive layer is overlaid on the adhesive face. At least one of the two faces of the substrate is embossed with embossed textures. The embossed textures are one by one adjacently spreadingly arranged on the face. The elongated tape can be wound into a roll for easy carriage. A user can apply an external force or shear force to the substrate in the forming direction of at least one embossed texture to easily tear apart the tape or tear off a segment of the embossed magnetic tape.
The present invention can be best understood through the following description and accompanying drawings wherein:
Please refer to
In a preferred embodiment, the tape-type soft magnetic substrate 11 is made from a mixture of plastic, rubber or resin material and magnetizable material. The mixture is formed into a thin sheet or blank substrate 11A (as shown in
Referring to
The above embodiments are only used to illustrate the present invention, not intended to limit the scope thereof. Many modifications of the above embodiments can be made without departing from the spirit of the present invention.
Wu, Hung-Chih, Fan Chiang, Chen-Liang
Patent | Priority | Assignee | Title |
11319464, | Nov 20 2019 | Polymeric tape with tear cuts | |
8852702, | May 18 2011 | FUJIFILM Business Innovation Corp | Label |
Patent | Priority | Assignee | Title |
3908065, | |||
20060172103, | |||
20070218234, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Mar 03 2014 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Feb 26 2018 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Mar 07 2022 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Sep 07 2013 | 4 years fee payment window open |
Mar 07 2014 | 6 months grace period start (w surcharge) |
Sep 07 2014 | patent expiry (for year 4) |
Sep 07 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 07 2017 | 8 years fee payment window open |
Mar 07 2018 | 6 months grace period start (w surcharge) |
Sep 07 2018 | patent expiry (for year 8) |
Sep 07 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 07 2021 | 12 years fee payment window open |
Mar 07 2022 | 6 months grace period start (w surcharge) |
Sep 07 2022 | patent expiry (for year 12) |
Sep 07 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |