There is disclosed example embodiments of flash memory including reference generators using big flash memory cells to generate flash array wordline voltages, wherein the reference voltage values can be trimmed by changing the threshold voltage of the flash cells. In addition, the inventive subject matter provides for using the matching characteristics of two source followers in closed loop and open loop to achieve fast stabilization times. Further, the temperature characteristics of the wordline voltages track the temperature characteristics of the array flash cells. Still further, the disclosed reference generators use cascoding reference generators to provide more reliability and accuracy.
|
5. An apparatus comprising a reference voltage generator formed at least in part using big flash memory cells to generate flash array wordline voltages, wherein the generator uses the matching characteristics of two source followers in closed loop and open loop to achieve fast stabilization times.
1. An apparatus comprising:
an array of flash memory cells;
at least one reference voltage generator formed at least in part using big flash memory cells to generate flash array wordline voltages; and
wherein the generator uses the matching characteristics of two source followers in closed loop and open loop to achieve fast stabilization times.
2. The apparatus according to
3. The apparatus according to
4. The apparatus according to
6. The apparatus according to
7. The apparatus according to
8. The apparatus according to
|
This invention relates generally to solid state memory devices, and more particularly to flash memory devices.
Flash memory stores information in an array of memory cells made from floating-gate transistors. In traditional single-level cell (SLC) flash memory devices, each cell stores only one bit of information. Multi-level cell (MLC) flash memory devices can store more than one bit per cell by choosing between multiple levels of electrical charge to apply to the floating gates of its cells. The flash cell is programmed by applying a voltage to a gate of a cell using a wordline that is coupled to the gate. Voltage reference generators are used to produce the applied voltage.
In the following detailed description of example embodiments of the invention, reference is made to specific example embodiments of the invention by way of drawings and illustrations. These examples are described in sufficient detail to enable those skilled in the art to practice the invention, and serve to illustrate how the invention may be applied to various purposes or embodiments. Other embodiments of the invention exist and are within the scope of the invention, and logical, mechanical, electrical, and other changes may be made without departing from the subject or scope of the present invention. Features or limitations of various embodiments of the invention described herein, however essential to the example embodiments in which they are incorporated, do not limit other embodiments of the invention or the invention as a whole, and any reference to the invention, its elements, operation, and application do not limit the invention as a whole but serve only to define these example embodiments. The following detailed description does not, therefore, limit the scope of the invention, which is defined only by the appended claims.
According to one example embodiment 100 of the inventive subject matter illustrated in
One example embodiment of a reference generator 110 is illustrated in
The high-precision reference generator 110, according to the inventive subject matter, requires two reference current generators, one for the BFC limbs and the second for the source-follower stages. Both reference current generators can make use of the same scheme. In the present example embodiment, the reference current is generated using BFC cells and their gates are driven using a on-chip reference voltage. The Vt of the BFC cells may be set to the same value as the reference voltage magnitude. In
The devices M1, M3 and R0 form a high-swing cascode current mirror for the BFC limbs. This example configuration requires less voltage head room, Vt+2 ΔV, compared to 2 Vt+2 ΔV for a conventional cascoded current mirror and provides a more precise current mirror and voltage reference. Devices M9 and M10 form a conventional cascode current mirror and this is used for the source followers as there are no head room issues.
The resistor chain, R1 through R6, is used to generate cascode gate voltages that prevent systematic offset within the system and improve reliability and precision by reducing impact ionization. The cascode devices MCAS3, MCAS4, and MCAS are used to generate a high impedance to the drain of the transistors that mirror the current. The overall effect is to make the drain to source voltage across the transistors that set the current less than 4 volts. This is a desired voltage to limit impact ionization and improve systematic offset across temperature.
The reference voltages from the three reference generators 110 along with the supply voltage VPUMP are fed into a 4:1 MUX. The switching pattern of switches, a pull-down and pull-up, generates the step waveform. The output of the MUX drives the WL path of the flash array.
In addition, according to another example embodiment, in order to save active power sample-and-hold (“S/H”), features may be implemented on some of the critical nodes. In this embodiment, the reference-generator 100 will still function as expected in hold mode. The Csh nodes are the most critical node that can be sampled and held as shown in
Thus, according to the inventive subject matter described herein, there is provided example embodiments of reference generators using big flash memory cells to generate flash array wordline voltages, wherein the reference voltage values can be trimmed by changing the threshold voltage of the flash cells. In addition, the inventive subject matter provides for using the matching characteristics of two source followers in closed loop and open loop to achieve fast stabilization times. Further, the temperature characteristics of the WL voltages track the temperature characteristics of the array flash cells. Still further, the disclosed reference generators use cascading reference generators to provide more reliability and accuracy.
According to one example embodiment, the reference voltage characteristics track the array cell characteristics. The reference-gate Vt sensing scheme built using the reference scheme described above may also assist with the MLC window budget. According to another example embodiment, the reference voltage generators of the inventive subject matter described herein provide a fundamental block of a sensing scheme wherein the wordline voltages of selected array flash cells are referenced through different levels. Further, the cascoded configuration of the reference generator described herein resists systematic offset and may be more reliable because the configuration may reduce impact ionization which will degrade the performance over time.
Referring now to
Patent | Priority | Assignee | Title |
8674751, | Apr 16 2012 | Taiwan Semiconductor Manufacturing Co., Ltd. | Reference generation in an integrated circuit device |
Patent | Priority | Assignee | Title |
7277355, | Aug 26 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for generating temperature-compensated read and verify operations in flash memories |
7313019, | Dec 21 2004 | INTEL NDTM US LLC | Step voltage generation |
7515474, | Sep 30 2005 | INTEL NDTM US LLC | Step voltage generator |
20050068832, | |||
20070183207, | |||
20080285339, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 30 2008 | Intel Corporation | (assignment on the face of the patent) | / | |||
Aug 01 2008 | BARKLEY, GERALD J | Intel Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021538 | /0956 | |
Dec 29 2021 | Intel Corporation | INTEL NDTM US LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 064928 | /0832 |
Date | Maintenance Fee Events |
Sep 08 2010 | ASPN: Payor Number Assigned. |
Feb 19 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 22 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 29 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 07 2013 | 4 years fee payment window open |
Mar 07 2014 | 6 months grace period start (w surcharge) |
Sep 07 2014 | patent expiry (for year 4) |
Sep 07 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 07 2017 | 8 years fee payment window open |
Mar 07 2018 | 6 months grace period start (w surcharge) |
Sep 07 2018 | patent expiry (for year 8) |
Sep 07 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 07 2021 | 12 years fee payment window open |
Mar 07 2022 | 6 months grace period start (w surcharge) |
Sep 07 2022 | patent expiry (for year 12) |
Sep 07 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |