A method and an apparatus to obtain a surface mapping of a ballistic piece of evidence (bpoe) under examination, such as a bullet or a spent cartridge case, that can be used thereafter as a 3D signature for identifying purpose during ballistic test comparison. The method comprises providing a measurement unit adapted to acquire a relief map of the surface of the bpoe and acquiring with the measurement unit the relief map of the surface to thereby obtain the mapping of the surface of the bpoe. Preferably, the measurement unit of the present invention comprises a confocal sensor such as confocal microscope. Also, the present invention includes acquiring the relief map of the bullet surface or of the cartridge case surface by acquiring and assembling a mosaic of regional reliefs that are partly overlapping with their surroundings regional reliefs.
|
1. A method of mapping a surface of a ballistic piece of evidence (bpoe), wherein said surface of the bpoe comprises a plurality of regions, the method comprising:
acquiring a plurality of z(x,y) regional reliefs each comprising a measured surface with corresponding depth values z, where (x,y) are surface coordinates of the measured surface, each z(x,y) regional relief corresponding to a three-dimensional measurement of one of said plurality of regions, said acquiring comprising obtaining multiple two-dimensional light intensity images of said measured surface at different heights to provide said depth values z;
removing from said z(x, y) regional reliefs distortions due to a curved surface of the bpoe;
assembling said plurality of regional reliefs into a mosaic for obtaining a relief map of said surface, thereby obtaining the 3-dimensional mapping of said surface of the bpoe;
providing a user with said relief map of said surface; and
also providing said user with a two-dimensional light intensity image as complementary information to said relief map of said surface, said two-dimensional light intensity image having been acquired with a same set of x,y coordinates as said plurality of regional reliefs.
2. The method as claimed in
3. The method as claimed in
4. The method as claimed in
5. The method as claimed in
6. The method as claimed in
7. The method as claimed in
8. The method as claimed in
9. The method as claimed in
10. The method as claimed in
11. The method as claimed in
12. The method as claimed in
13. The method as claimed in
14. The method as claimed in
15. The method as claimed in
16. The method as claimed in
17. The method as claimed in
|
This application is a continuation-in-part of U.S. Ser. No. 10/836,315 filed May 3, 2004 now abandoned.
The invention relates to a system and a method for the analysis and comparison of ballistic pieces of evidence such as fired bullets and spent cartridge cases. More specially, it relates to a computerized system and method for ballistic piece of evidence (BPOE) analysis based on a 3D imaging of the BPOE surface.
In the field of forensic science, investigations of crimes involving firearms use ballistic comparison test to determine if a bullet or a spent cartridge case found on the crime scene has been fired by a firearm in question. Ballistic comparison tests rely on the fact that when a bullet is fired by a firearm, striations are created on the bullet surface and these striations have enough unique features to represent a signature of the firearm. With regards to spent cartridge cases when a firearm is fired unique identifiable features (marks) are impressed or striated onto various areas of the cartridge case. These unique marks are transferred from the firearm to the cartridge case each time the firearm is discharged; these marks also represent the signature of the firearm. Therefore by comparing the striations or impressed characteristics of two bullets or two cartridge cases, it is possible to conclude if they have been fired by the same firearm.
Most existing automatic ballistic comparison systems use 2D imaging techniques to obtain images of the striations or impressed marks on the ballistic piece of evidence (i.e. the bullet or the cartridge case) under test. They then compare these images to other images from a database of known firearms. The firearm that was used to fire the ballistic piece of evidence (BPOE) under test can be identified when a match is obtained between the images of the BPOE under test and the images of the database corresponding to a BPOE fired by the same firearm.
However, ballistic matching techniques based on 2D-imaging present many drawbacks. In particular, it is found that the technique lack robustness: the images resulting from a 2D imaging are very dependent on the exact way the BPOE is illuminated and imaged as well as on the surface conditions of the BPOE, therefore affecting the performance of the technique.
Recently, Bachrach et al. in their U.S. Pat. No. 6,505,140 B1 have proposed to use a confocal technique, also referred to as a 3D-imaging technique, to better study and identify the features of a bullet surface. A confocal sensor enables one to measure the striation structure and this leads to a more reliable way than a 2D-imaging technique to characterize the striations on a bullet surface. However, the striation characteristics are resolved along particular direction of a bullet striation, to obtain what is called a depth profile of the bullet striation. Therefore, although a 3D-imaging technique is used, no real 3D bullet signature is established and used for further ballistic comparison.
Accordingly, an object of the present invention is to provide a method and an apparatus to obtain a surface mapping of a BPOE under examination that can be used thereafter as a 3D signature for identifying purposes during ballistic test comparison.
More specifically, in an embodiment, the present invention provides a method of mapping a surface of a BPOE. The method comprises acquiring a plurality of regional reliefs, each regional relief corresponding to a region of the plurality of regions, and assembling the plurality of regional reliefs into a mosaic for obtaining a relief map of the surface to thereby obtain a mapping of the surface of the BPOE.
Preferably, the present invention provides a method for acquiring the relief map of the surface of the BPOE by acquiring and assembling a mosaic of overlapping regional reliefs. The method comprises selecting at least one region that is partly overlapping at least another region for thereby acquiring at least two overlapping reliefs, each having an overlapping area; and aligning the at least two overlapping reliefs such that the overlapping areas are substantially overlapping.
Advantageously, the overlapping area of an overlapping relief represents approximately 50% of the surface of the overlapping relief, when the BPOE that is under examination is a bullet.
Advantageously, the overlapping area of an overlapping relief represents approximately 50% of the surface of the overlapping relief, when the BPOE that is under examination is a cartridge case.
Preferably, a confocal sensor is provided to perform the mapping of the surface of the BPOE.
In another preferred embodiment, the present invention provides an apparatus for mapping a surface of a BPOE. The apparatus comprises a holder for holding the BPOE and a measurement unit for measuring a light intensity from the BPOE as a function of a measurement position, wherein the measurement position is a relative position between the BPOE and the measurement unit. The apparatus also comprises a displacement unit for providing a series of different measurement positions and a controller unit to control the displacement unit for mapping the surface of the BPOE.
Preferably, the measurement unit comprises a confocal sensor such as a confocal microscope.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description and accompanying drawings wherein:
We will describe a system for mapping a surface of a BPOE 9. The system can be equally used to map a bullet 12 or to map a spent cartridge case 112.
System for mapping a bullet surface: In a first embodiment of the present invention, a computerized system 10 equipped with a confocal microscope is used to obtain a surface mapping of a bullet. This embodiment is illustrated in
In this first embodiment, the bullet holder can rotate the bullet 12 about the rotation axis 13 shown in
In this first embodiment, the rotation of the bullet 12 is controlled via the controller 24 which is itself linked to the computer 22. An encoder 27 measures the rotation angle of the bullet 12 and relays this information to the computer for further analysis.
The relative position between the bullet 12 and the sensor 16 is changed by the micro-positioners 19 and 20. One micro-positioner 20 permits the variation of the height of the sensor 16 whereas the other micro-positioner 19 enables to vary the relative distance and tilt between the sensor 16 and the bullet 12. All micro-positioners 19, 20 are controlled by the computer 22 so that a series of measured intensities as a function of a series of distances may be obtained in a controlled manner, and that several such series may be obtained for several different regions of the bullet 12.
In this first embodiment, the confocal microscope 16 comprises an analog to digital converter 21 which relays to the computer 22 the digitalized microscope measurements. The computer 22 is used to control and adjust the parameters of the sensor 16 such as for example the focal distance of the microscope, its field of view, etc. In this first embodiment, the computerized system 10 also comprises a display unit 28 to visualize the measurements and the experiments parameters, and is also linked to a database 29 in which the measurements will be stored. The database 29 also gives access to measurements of other bullets for ballistic comparison studies. An analysis program 37 is used for processing the experimental data of the bullet 12 under examination and a comparison program 38 is used to compare the present bullet 12 relief map to other relief maps found in the database 29. In a preferred embodiment, the methods of the present invention may be embodied in computer 22.
System for mapping a cartridge case surface: In a second embodiment, a system 110 similar to system 10 just described, is used to obtain a surface mapping of a spent cartridge case 112. This second embodiment is illustrated in
In this second embodiment, the cartridge case holder 111 can displace the cartridge case 112 about the X and Y axis shown in
In this second embodiment, the rest of the system 110 is the same as for the system 10, and therefore will not be further described.
A surface mapping method: We will now describe in detail a method 50 of mapping a surface of a BPOE 9. The method applies equally well to a bullet 12 or to a cartridge case 112.
The main steps of a surface mapping method 50 of a BPOE according to an embodiment of the present invention are listed in
A BPOE 9 under examination is provided at step 52 and a measurement unit adapted to acquire a relief map of a surface of the BPOE is provided at step 54. Then, at step 56, the measurement unit acquires the relief map to thereby map the surface of the BPOE 9. In one embodiment, this surface is a peripheral band of a bullet 12 corresponding to a surface region of the bullet 12 expected to contain significant striations 23 produced when the firearm is fired. In another embodiment, this surface corresponds to a surface region of the cartridge case 112 expected to contain significant impressed marks 23 produced when the firearm is fired. Often, but not exclusively, this surface region is located using a 2D-imaging technique, this permits examination of the bullet 12 or the cartridge case 112 prior to the 3D-imaging measurement, in order to identify what surface region of the BPOE 9 contains the striations or impressed marks 23 that should be analyzed with the present invention. In an embodiment, the previously described computerized systems 10 and 112 comprise the measurement unit used in step 54. Thus according to the method 50, a BPOE 9 under examination is installed in the bullet holder 11 of the computerized system 10 (when the BPOE is a bullet) or in the cartridge case holder 111 of the computerized system 110 (when the BPOE is a cartridge case). The interface program 37 embedded in the computer 22 is used to program the sensor 16 measurement parameters, and to control the sensor displacements via the micro-positioners 19, 20. When the BPOE 9 is a bullet 12, the computer 22 also controls the holder rotating motor 14. The computer thus sends a signal to the rotating motor 14 to rotate the bullet 12 until the surface, that has been chosen to be mapped, is in the field of view of the sensor 16, and the encoder 27 sends back a signal to inform the computer of the value of the measurement angle. The computer 22 also sends signals to the micro-positioners 19, 20 to adjust the height of the sensor 16 relatively the bullet 12 via the micro-positioner 20, and a relative distance, d (not shown), between the bullet surface and the sensor 16 via the micro-positioner 19. When the BPOE 9 is a cartridge case 112, the computer 22 controls the transversal displacement unit 113 that permits the displacement of the cartridge case head in the field of view of the sensor 16. The computer sends a signal to transversal displacement unit 113 to displace the cartridge case 112 until the surface, that has been chosen to be mapped, is in the field of view of the sensor 16, and the encoder 27 sends back a signal to inform the computer of the value of the measurement angle. The computer 22 also sends signals to the micro-positioners 19, 20 to adjust the height of the sensor 16 relative to the cartridge case 112 via the micro-positioner 20, and a relative distance, d (not shown), between the cartridge case surface and the sensor 16 via the micro-positioner 19.
Turning now to
Now referring to
When step 70 is completed for the selected region, the regional relief z(x,y) 80 corresponding to the selected region is determined in step 63 using the well-known analysis principles of the confocal method. The result of this analysis is a regional relief map z(x,y) 80, where z is the depth value at the coordinates (x,y) of the selected region, and this result can be simply stored in the computer 22 for further analysis.
Then, steps 61, 70, and 63 are repeated until the regional reliefs of all the regions of the plurality of regions have been determined, therefore obtaining a complete mosaic of regional reliefs (step 67).
Turning now to
Turning now to
It is worth mentioning that the relief maps may suffer of distortions due, for example, to the curved surface of the bullet. The present invention provides an algorithm correcting these distortions effects in order to eliminate such distortion in the final assembling step. Also other distortion effects due to optical effects or due to misalignment measurement errors are also corrected via the algorithm provided by the present invention.
It will be understood that numerous modifications methods and apparatus described herein will appear to those skilled in the art. Accordingly, the above description and accompanying drawings should be taken as illustrative of the invention and not in a limiting sense. It will further be understood that it is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure that come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features herein before set forth, and as follows from the scope of the appended claims.
Nadeau, Eric, Roy, Alain, Roberge, Danny, Pages, Myriam, Léger, Martin
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5390108, | May 24 1991 | FORENSIC TECHNOLOGY WAI INC | Computer automated bullet analysis apparatus |
5841894, | Oct 16 1995 | Dainippon Screen Mfg. Co., Ltd. | Three-dimensional detecting method and three-dimensional detecting apparatus |
6505140, | Jan 18 2000 | BLUEHALO LABS, LLC | Computerized system and method for bullet ballistic analysis |
CA2207454, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 30 2004 | NADEAU, ERIC | FORENSIC TECHNOLOGY WAI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015403 | /0694 | |
Jul 30 2004 | PAGES, MYRIAM | FORENSIC TECHNOLOGY WAI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015403 | /0694 | |
Jul 30 2004 | ROBERGE, DANNY | FORENSIC TECHNOLOGY WAI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015403 | /0694 | |
Jul 30 2004 | ROY, ALAIN | FORENSIC TECHNOLOGY WAI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015403 | /0694 | |
Jul 30 2004 | LEGER, MARTIN | FORENSIC TECHNOLOGY WAI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015403 | /0694 | |
Aug 09 2004 | Forensic Technology WAI, Inc. | (assignment on the face of the patent) | / | |||
Mar 09 2015 | FORENSIC TECHNOLOGY WAI, INC | ULTRA ELECTRONICS FORENSIC TECHNOLOGY INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035146 | /0793 | |
Sep 01 2023 | ULTRA ELECTRONICS FORENSIC TECHNOLOGY INC | BARINGS FINANCE LLC | PATENT SECURITY AGREEMENT | 065239 | /0368 |
Date | Maintenance Fee Events |
Jan 09 2014 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Dec 28 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Dec 28 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 07 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 14 2013 | 4 years fee payment window open |
Mar 14 2014 | 6 months grace period start (w surcharge) |
Sep 14 2014 | patent expiry (for year 4) |
Sep 14 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 14 2017 | 8 years fee payment window open |
Mar 14 2018 | 6 months grace period start (w surcharge) |
Sep 14 2018 | patent expiry (for year 8) |
Sep 14 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 14 2021 | 12 years fee payment window open |
Mar 14 2022 | 6 months grace period start (w surcharge) |
Sep 14 2022 | patent expiry (for year 12) |
Sep 14 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |