A data communication apparatus which causes the eavesdropper to take a significantly increased time to analyze a cipher text and provides high concealability is provided. A multi-level code generation section 111a generates, based on predetermined key information 11, a multi-level code sequence 12 in which a signal level changes so as to be approximately random numbers. A multi-level processing section 111b combines the multi-level code sequence 12 and information data 10, and generates a multi-level signal 13 having a plurality of levels corresponding to the combination of the multi-level code sequence 12 and the information data 10. A modulator section 112 treats the multi-level signal a predetermined modulating processing and generates a modulated signal. The multi-level code generation section 111a generates the multi-level code sequence 12 in accordance with a changed random number sequence which results from changing a bit series of a binary random number sequence generated based on the predetermined key information.
|
12. A data transmitting method for encrypting information data by using predetermined key information and performing secret communication with a receiving apparatus, the data transmitting method comprising:
a multi-level code generating step of generating, based on the predetermined key information, a multi-level code sequence in which a signal level changes so as to approximate random numbers;
a multi-level processing step of combining the multi-level code sequence and the information data, and generating a multi-level signal having a plurality of levels corresponding to a combination of the multi-level code sequence and the information data; and
a modulating step of generating a modulated signal by treating the multi-level signal with predetermined modulating processing,
wherein the multi-level code generation step generates a bit stream based on the predetermined key information, the bit stream being a binary pseudo-random number,
wherein the multi-level code generating step obtains a modified bit stream by regularly or irregularly selecting, deleting, or inversing a bit of the bit stream by using a predetermined method, and
wherein the multi-level code generating step generates the multi-level code sequence based on the modified bit stream.
1. A data transmitting apparatus for encrypting information data by using predetermined key information and performing secret communication with a receiving apparatus, the data transmitting apparatus comprising:
a multi-level code generation section for generating, based on the predetermined key information, a multi-level code sequence in which a signal level changes so as to approximate random numbers;
a multi-level processing section for combining the multi-level code sequence and the information data, and generating a multi-level signal having a plurality of levels corresponding to a combination of the multi-level code sequence and the information data; and
a modulator section for treating the multi-level signal with predetermined modulation processing and generating a modulated signal,
wherein the multi-level code generation section generates a bit stream based on the predetermined key information, the bit stream being a binary pseudo-random number,
wherein the multi-level code generation section obtains a modified bit stream by regularly or irregularly selecting, deleting, or inversing a bit of the bit stream by using a predetermined method, and
wherein the multi-level code generation section generates the multi-level code sequence based on the modified bit stream.
13. A data receiving method for receiving information data encrypted by using predetermined key information and performing secret communication with a transmitting apparatus, the data receiving method comprising:
a multi-level code generating step of generating, based on the predetermined key information, a multi-level code sequence in which a signal level changes so as to approximate random numbers;
a demodulating step of demodulating, in a predetermined demodulation method, a modulated signal received from the transmitting apparatus so as to be outputted as a multi-level signal having a plurality of levels corresponding to a combination of the information data and the multi-level code sequence; and
an identification step of identifying, based on the multi-level code sequence, the information data from the multi-level signal,
wherein the multi-level code generating step generates a bit stream based on the predetermined key information, the bit stream being a binary pseudo-random number,
wherein the multi-level code generating step obtains a modified bit stream by regularly or irregularly selecting, deleting, or inversing a bit of the bit stream by using a predetermined method, and
wherein the multi-level code generating step generates the multi-level code sequence based on the modified bit stream.
11. A data receiving apparatus for receiving information data encrypted by using predetermined key information and performing secret communication with a transmitting apparatus, the data receiving apparatus comprising:
a multi-level code generation section for generating, based on the predetermined key information, a multi-level code sequence in which a signal level changes so as to approximate random numbers;
a demodulator section for demodulating, in a predetermined demodulation method, a modulated signal received from the transmitting apparatus so as to be outputted as a multi-level signal having a plurality of levels corresponding to a combination of the information data and the multi-level code sequence; and
an identification section for identifying, based on the multi-level code sequence, the information data from the multi-level signal,
wherein the multi-level code generation section generates a bit stream based on the predetermined key information, the bit stream being a binary pseudo-random number,
wherein the multi-level code generation section obtains a modified bit stream by regularly or irregularly selecting, deleting, or inversing a bit of the bit stream by using a predetermined method, and
wherein the multi-level code generation section generates the multi-level code sequence based on the modified bit stream.
2. The data transmitting apparatus according to
a random number sequence generation section for generating the bit stream based on the predetermined key information;
a bit selection section for selecting an intended bit series from the bit stream generated by the random number sequence generation section and outputting the selected bit series as the modified bit stream; and
a multi-level conversion section for converting the modified bit stream into the multi-level code sequence.
3. The data transmitting apparatus according to
wherein the multi-level code generation section further includes a random number generation section for generating a pseudo-random number sequence, and
wherein the bit selection section changes, based on the pseudo-random number sequence generated by the random number generation section, the intended bit series selected from the bit series generated by the random number sequence generation section.
4. The data transmitting apparatus according to
a random number sequence generation section for generating the bit stream based on the predetermined key information; and
a multi-level conversion section for setting a remaining bit series, after subtracting a previously fixed predetermined bit series from the bit stream generated by the random number sequence generation section, as the modified bit stream, and for converting the modified bit stream into the multi-level code sequence.
5. The data transmitting apparatus according to
the multi-level code generation section includes:
a random number sequence generation section for generating the bit stream based on the predetermined key information; and
a multi-level conversion section for converting the bit stream generated by the random number sequence generation section into the multi-level code sequence, and
wherein the multi-level conversion section treats, by acting asynchronously to the random number sequence generation section, the bit stream generated by the random number sequence generation section as the modified bit stream.
6. The data transmitting apparatus according to
the multi-level code generation section includes:
a random number sequence generation section for generating the bit stream based on the predetermined key information;
a bit shuffling section for outputting a bit series of the bit stream generated by the random number sequence generation section, after changing an order of the bit stream, as the modified bit stream; and
a multi-level conversion section for converting the modified bit stream into the multi-level code sequence.
7. The data transmitting apparatus according to
the multi-level code generation section further includes a random number generation section for generating a pseudo-random number sequence, and
the bit shuffling section determines a regulation for shuffling the bit stream generated by the random number sequence generation section, in accordance with the pseudo-random number sequence generated by the random number generation section.
8. The data transmitting apparatus according to
the multi-level code generation section includes:
a random number sequence generation section for generating the bit stream based on the predetermined key information;
a memory section for storing the bit stream generated by the random number sequence generation section; and
a multi-level conversion section for converting the bit stream read from the memory section into the multi-level code sequence, and
the multi-level conversion section treats, by changing a read address of the memory section, the bit stream generated by the random number sequence generation section as the modified bit stream.
9. The data transmitting apparatus according to
10. The data transmitting apparatus according to
|
1. Field of the Invention
The present invention relates to apparatuses for performing secret communication in order to prevent illegal eavesdropping and interception by a third party. More particularly, the present invention relates to apparatuses for performing data communication through selecting and setting a specific encoding/decoding (modulating/demodulating) method between a legitimate transmitter and a legitimate receiver.
2. Description of the Background Art
Conventionally, in order to perform secret communication between specific parties, there has been adopted a structure for realizing secret communication by sharing original information (key information) for encoding/decoding between transmitting and receiving ends and by performing, based on the original information, an operation/inverse operation on information data (plaintext) to be transmitted, in a mathematical manner.
The data transmitting apparatus 90001 and the data receiving apparatus 90002 previously share, with each other, first key information 91 and second key information 96 which have a common content. Here, information data 90 and the first key information 91 are inputted to the encoding section 911, and the second key information 96 is inputted to the decoding section 915, whereby the information data 98 is outputted from the decoding section 915. Further, for the sake of describing eavesdropping by a third party,
In the data transmitting apparatus 90001, the encoding section 911 encodes (encrypts) the information data 90 in accordance with the first key information 91. The modulator section 912 converts the information data encrypted by the encoding section 911 into a modulated signal 94 in a predetermined modulation method and transmits the modulated signal 94 to the transmission line 913. In the data receiving apparatus 90002, the demodulator section 914 demodulates, in a predetermined demodulation method, the modulated signal 94 which is transmitted via the transmission line 913. The decoding section 915, based on the second key information 96, decodes (decrypts) a signal demodulated by the demodulator section 914, thereby outputting information data 98.
Next, an action of the eavesdropper's data receiving apparatus 90003, in the case of the eavesdropping of the modulated signal 94 transmitted between the data transmitting apparatus 90001 and the data receiving apparatus 90002, will be described. In the eavesdropper's data receiving apparatus 90003, the eavesdropper's demodulator section 916 demodulates, in the predetermined demodulation method, the modulated signal 94 which is transmitted via the transmission line 913. The eavesdropper's decoding section 917 attempts, based on the third key information 99, decoding of a signal demodulated by the eavesdropper's demodulator section 916. Here, since the eavesdropper's decoding section 917 attempts, based on the third key information 99 which is different from the first key information 91, the decoding of the signal demodulated by the eavesdropper's demodulator section 916, the original information data 90 cannot be reproduced accurately. That is, since the eavesdropper's decoding section 917 does not share correct key information with the data transmitting apparatus 90001, the original information data 90 cannot be reproduced appropriately.
A mathematical encryption (or also referred to as a computational encryption or a software encryption) technique based on such mathematical operation maybe applicable to an access system described in Japanese Laid-Open Patent Publication No. 9-205420 (hereinafter referred to as patent document 1), for example. Patent document 1 discloses an access system having a PON (Passive Optical Network) constitution in which an optical signal transmitted from an optical transmitter is divided by an optical coupler, and distributed to optical receivers at a plurality of optical subscribers' houses. In the above-described access system, such optical signals that are not desired and aimed at another subscribers are inputted to each of the optical receivers. Therefore, each of the optical receivers encrypts the information data aimed at each of the subscribers by using key information which is different by the subscribers, thereby preventing a leakage/eavesdropping of the information data between the subscribers and realizing safe data communication.
The mathematical encryption technique is described in “Cryptography and Network Security: Principles and Practice” translated by Keiichiro Ishibashi et al., Pearson Education, 2001 (hereinafter referred to as non-patent document 1) and “Applied Cryptography” translated by Mayumi Adachi et al., Softbank publishing, 2003(hereinafter referred to as non-patent document 2).
However, in the case of the conventional data communication apparatus based on the mathematical encryption technique, it is theoretically possible for the eavesdropper to decrypt, even if the eavesdropper does not share the key information, a cipher text (a modulated signal or encrypted information data) by means of an all possible attack executing operations which use all possible combinations of key information, or by means of a special analysis algorithm. Particularly, improvement in processing speed of a computer has been remarkable in recent years, and thus there has been a problem in that if a new computer based on a novel principle such as a quantum computer is realized in the future, it is possible to eavesdrop on the cipher text easily within finite lengths of time.
Therefore, an object of the present invention is to provide a data communication apparatus which causes the eavesdropper to take a significantly increased time to analyze the cipher text and provides high concealability.
The present invention is directed to the data transmitting apparatus for encrypting information data by using a predetermined key information and performing secret communication with a receiving apparatus. To attain the above-described objects, the data transmitting apparatus of the present invention comprises: a multi-level code generation section for generating, based on the predetermined key information, a multi-level code sequence in which a signal level changes so as to be approximately random numbers; a multi-level processing section for combining the multi-level code sequence and the information data and generating a multi-level signal having a plurality of levels corresponding to a combination of the multi-level code sequence and the information data ; and a modulator section for treating the multi-level signal with predetermined modulation processing and generating a modulated signal. The multi-level code generation section generates the multi-level code sequence in accordance with a changed random number sequence which results from changing a bit series of a binary random number sequence generated based on the predetermined key information.
Preferably, the multi-level code generation section includes: a random number sequence generation section for generating the binary random number sequence, which is a pseudo-random number sequence, based on the predetermined key information; a bit selection section for selecting an intended bit series from the binary random number sequence generated by the random number sequence generation section and outputting the selected bit series as the changed random number sequence; and a multi-level conversion section for converting the changed random number sequence into the multi-level code sequence.
Preferably, the multi-level code generation section further includes a random number generation section for generating a pseudo-random number sequence. In this case, the bit selection section changes, based on the pseudo-random number sequence generated by the random number generation section, the bit series selected from the binary random number sequence generated by the random number sequence generation section.
Further, the multi-level code generation section may include: a random number sequence generation section for generating the binary random number sequence, which is a pseudo-random number sequence, based on the predetermined key information; and a multi-level conversion section for setting a remaining bit series, after subtracting a previously fixed predetermined bit series from the binary random number sequence generated by the random number sequence generation section, as the changed random number sequence, and for converting the changed random number sequence into the multi-level code sequence.
Further, the multi-level code generation section may include: a random number sequence generation section for generating the binary random number sequence, which is a pseudo-random number sequence, based on the predetermined key information; and a multi-level conversion section for converting the binary random number sequence generated by the random number sequence generation section into the multi-level code sequence. In this case, the multi-level conversion section treats, by acting asynchronously to the random number sequence generation section, the binary random number sequence generated by the random number sequence generation section as the changed random number sequence.
Further, the multi-level code generation section may include: a random number sequence generation section for generating the binary random number sequence, which is a pseudo-random number sequence, based on the predetermined key information; a bit shuffling section for outputting a bit series of the binary random number sequence, which is generated by the random number sequence generation section, after changing an order of the binary random number sequence, as the changed random number sequence; and a multi-level conversion section for converting the changed random number sequence into the multi-level code sequence.
Preferably, the multi-level code generation section further includes a random number generation section for generating a pseudo-random number sequence. In this case, the bit shuffling section determines a regulation for shuffling the binary random number sequence generated by the random number sequence generation section, in accordance with the pseudo-random number sequence generated by the random number generation section.
Further, the multi-level code generation section may include: a random number sequence generation section for generating the binary random number sequence, which is a pseudo-random number sequence, based on the predetermined key information; a memory section for storing the binary random number sequence generated by the random number sequence generation section; and a multi-level conversion section for converting the binary random number sequence read from the memory section into the multi-level code sequence. In this case, the multi-level conversion section treats, by changing a read address of the memory section, the binary random number sequence generated by the random number sequence generation section as the changed random number sequence.
Preferably, the random number sequence generation section is constituted of a linear feedback shift register including a plurality of shift registers and an exclusive OR element. Further, the multi-level conversion section includes a plurality of latches and a D/A conversion section which converts a bit series outputted from the plurality of latches into the multi-level code sequence.
Further the present invention is directed to a data receiving apparatus for receiving information data encrypted by using predetermined key information and performing secret communication with a transmitting apparatus. To attain the above-described object, the data receiving apparatus of the present invention comprises: a multi-level code generation section for generating, based on the predetermined key information, a multi-level code sequence in which a signal level changes so as to be approximately random numbers; a demodulator section for demodulating, in a predetermined demodulation method, a modulated signal received from the transmitting apparatus so as to be outputted as a multi-level signal having a plurality of levels corresponding to a combination of the information data and the multi-level code sequence; and an identification section for identifying, based on the multi-level code sequence, the information data from the multi-level signal. The multi-level code generation section generates the multi-level code sequence in accordance with a changed random number sequence which results from changing a bit series of a binary random number sequence generated based on the predetermined key information.
Further, processing procedures performed by the above-described data transmitting apparatus can be considered as a data transmitting method for encrypting information data by using predetermined key information and performing secret communication with a receiving apparatus. That is, the data transmitting method comprises: a multi-level code generating step of generating, based on the predetermined key information, a multi-level code sequence in which a signal level changes so as to be approximately random numbers; a multi-level processing step of combining the multi-level code sequence and the information data and generating a multi-level signal having a plurality of levels corresponding to a combination of the multi-level code sequence and the information data; and a modulating step of generating a modulated signal by treating the multi-level signal with predetermined modulating processing, wherein the multi-level code generation step generates the multi-level code sequence in accordance with a changed random number sequence which results from changing a bit series of a binary random number sequence generated based on the predetermined key information.
Further, processing procedures performed by the above-described data receiving apparatus can be considered as a data receiving method for receiving information data encrypted by using predetermined key information and performing secret communication with a transmitting apparatus. That is, the data receiving method comprises: a multi-level code generating step of generating, based on the predetermined key information, a multi-level code sequence in which a signal level changes so as to be approximately random numbers; a demodulating step of demodulating, in a predetermined demodulation method, a modulated signal received from the transmitting apparatus so as to be outputted as a multi-level signal having a plurality of levels corresponding to a combination of the information data and the multi-level code sequence; and an identification step of identifying, based on the multi-level code sequence, the information data from the multi-level signal, wherein the multi-level code generation section generates the multi-level code sequence in accordance with a changed random number sequence which results from changing a bit series of a binary random number sequence generated based on the predetermined key information.
According to the data transmitting apparatus of the present invention, when the information data to be transmitted is encoded as a multi-level signal, an interval between signal levels of the multi-level signal is set appropriately with respect to a noise level included in a receiving signal, whereby quality of the receiving signal at the time of eavesdropping by a third party is crucially deteriorated, and decryption/decoding of the multi-level signal by the third party is caused to be difficult. Further, even if the cipher text is obtained by the third party, a multi-level key is generated such that the key information is not estimated easily, whereby it is possible to provide easily a further safe data communication apparatus. Further, the data receiving apparatus includes a multi-level code generation section which is similar to that of the data transmitting apparatus, thereby easily obtaining the information data from the modulated signal received from the data transmitting apparatus.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
The first multi-level code generation section 111a generates, based on predetermined first key information 11, a multi-level code sequence 12 (
Here, as shown in
The modulator section 112 modulates the multi-level signal 13 in a predetermined modulation method and transmits the same as a modulated signal 14 to the transmission line 110. The demodulator section 211 demodulates the modulated signal 14 transmitted via the transmission line 110, and reproduces a multi-level signal 15. The second multi-level code generation section 212a previously shares second key information 16 which has the same content as the first key information 11, and based on the second key information 16, generates a multi-level code sequence 17 which corresponds to the multi-level code sequence 12. The multi-level identification section 212b identifies the multi-level signal 15 (binary determination) by using the multi-level code sequence 17 as a threshold, and reproduces information data 18. Here, the modulated signal 14, which is of the predetermined modulation method and is transmitted/received by the modulator section 112 and the demodulator section 211 via the transmission line 110, is a signal obtained by modulating an electromagnetic wave (electromagnetic field) or an optical wave using the multi-level signal 13.
Note that the multi-level processing section 111b may generate the multi-level signal 13 by using any methods, in addition to a method of generating the multi-level signal 13 by adding the information data 10 and the multi-level code sequence 12 as above described. For example, the multi-level processing section 111b may generate, based on the information data 10, the multi-level signal 13, by modulating an amplitude of the levels of the multi-level code sequence 12. Alternatively, the multi-level processing section 111b may generate the multi-level signal 13 by reading out consecutively, from a memory having levels of the multi-level signal 13 stored therein, the levels of the multi-level signal 13, which are corresponding to the combination of the information data 10 and the multi-level code sequence 12.
Further, in
Next, an action of eavesdropping by a third party will be described. It is assumed that the third party, who is an eavesdropper, decodes the modulated signal 14 by using a constitution corresponding to the data receiving apparatus 10201 held by a legitimate receiving party or a further sophisticated data receiving apparatus (i.e. eavesdropper's data receiving apparatus). The eavesdropper's data receiving apparatus reproduces the multi-level signal 15 by demodulating the modulated signal 14. However, the eavesdropper's data receiving apparatus does not share the key information with the data transmitting apparatus 10101, and thus, unlike the data receiving apparatus 10201, the eavesdropper's data receiving apparatus cannot generate the multi-level code sequence 17 based on the key information. Therefore, the eavesdropper's data receiving apparatus cannot perform binary determination of the multi-level signal 15 by using the multi-level code sequence 17 as a reference.
As an action of the eavesdropping which may be possible under these circumstances, there is a method of identifying the multi-level signal 15 by specifying the levels of the multi-level signal 15 using a threshold corresponding to all the levels of the multi-level signal 15 as the reference. That is, the eavesdropper's data receiving apparatus, performs simultaneous determination of the multi-level signal 15 by preparing the threshold corresponding to all possible intervals between the signal levels which the multi-level signal 15 may take, and attempts extraction of correct key information or information data by analyzing a result of the simultaneous determination. For example, the eavesdropper's data receiving apparatus sets all the levels c0/c1/c2/c3/c4/c5/c6 of the multi-level code sequence 12 shown in
However, in an actual transmission system, a noise occurs due to various factors, and the noise is overlapped on the modulated signal 14, whereby the levels of the multi-level signal 15 fluctuates temporally/instantaneously as shown in
Therefore, in the case where a condition of the noise level contained in the signal to be determined is fixed, the SN ratio of the signal to be determined by the eavesdropper's data receiving apparatus is relatively smaller than that by the legitimate data receiving apparatus, and thus a transmitting feature (an error rate) of the eavesdropper's data receiving apparatus deteriorates. That is, the data communication apparatus of the present invention causes a decoding attack by the third party using all the thresholds to induce an identification error, thereby causing the eavesdropping to be difficult. Particularly, in the case where the step width of the multi-level signal 15 is set equal to or smaller than a noise amplitude (spread of a noise intensity distribution), the data communication apparatus substantially disables the multi-level determination by the third party, thereby realizing an ideal eavesdropping prevention.
As the noise to be overlapped on the signal to be determined (the multi-level signal 15 or the modulated signal 14), a thermal noise (Gaussian noise) generated by a space field or an electronic device, etc. may be used, in the case where an electromagnetic wave such as a wireless signal is used as the modulated signal 14, and a photon number distribution (quantum noise) which is generated when a photon is generated or detected, may be used in addition to the thermal noise, in the case where the optical wave is used. More particularly, signal processing such as recording and replication is not applicable to a signal including the quantum noise, and thus the step width of the multi-level signal 15 is set by using the quantum noise level as a reference, thereby disabling the eavesdropping by the third party and securing an absolute safety of the data communication.
As above described, according to the first embodiment of the present invention, when the information data 10 to be transmitted is encoded as the multi-level signal 13, the interval between the signal levels of the multi-level signal 13 is set appropriately with respect to the noise level included in the receiving signal, whereby quality of the receiving signal at the time of the eavesdropping by the third party is crucially deteriorated, and it is possible to provide a further safe data communication apparatus which causes decryption/decoding of the multi-level signal by the third party to be difficult.
The first data inversion section 113 does not fix a correspondence relation between “0/1” and “Low/High” included in the information data 10 shown in
As above described, according to the second embodiment of the present invention, the information data 10 to be transmitted is inversed approximately at random, whereby complexity of the multi-level signal 13 as a cipher is increased. Accordingly, it is possible to provide a further safe data communication apparatus which causes decryption/decoding of the multi-level signal by a third party to be difficult.
In
As above described, according to the third embodiment of the present invention, when the information data 10 to be transmitted is encoded as the multi-level signal 13, the SN ratio of the multi-level signal 13 is controlled appropriately, whereby quality of a receiving signal at the time of eavesdropping by a third party is crucially deteriorated, and it is possible to provide a safe data communication apparatus which causes decryption/decoding of the multi-level signal by the third party to be difficult.
With reference to
Generally, assuming that an optical intensity modulated signal, whose light source is a laser diode (LD), is a modulated signal 14 to be outputted from a modulator section 112, a fluctuation width (noise level) of the modulated signal 14 changes depending on the levels of the multi-level signal 13 inputted to the LD. This results from the fact that the LD emits light based on a principle of stimulated emission which uses a natural emission light as a master light, and the noise level is defined based on a relative ratio of a stimulated emission light level to a natural emission light level. Here, the higher an excitation rate (corresponding to a bias current to be injected into the LD) is, the larger a ratio of the stimulated emission light level becomes, and consequently the noise level becomes small. On the other hand, the lower the excitation rate is, the larger a ratio of the natural emission light level becomes, and consequently the noise level becomes large. Therefore, the multi-level encoding section 111 enlarges the step widths in ranges in which the level of the multi-level signal 13 is small, and reduces the step widths in ranges in which the level of the multi-level signal 13 is large, as shown in
Further, even in the case where an optically modulated signal is used as the modulated signal 14, under the condition where the noise caused by the above-described natural emission light or a thermal noise to be used for an optical receiver is sufficiently small, the SN ratio of a receiving signal is determined mainly based on a shot noise. Under such condition, the larger the level of the multi-level signal 13 is, the larger the noise level included in the multi-level signal 15 becomes. Therefore, contrary to a case of
As above described, according to the fourth embodiment of the present invention, when the information data 10 to be transmitted is encoded as multi-level signal 13, the interval between the signal levels of the multi-level signal 13 is set such that the SN ratio of the adjoining signal levels of the signal to be determined becomes approximately uniform. Accordingly, quality of a receiving signal at the time of eavesdropping by a third party is crucially deteriorated, whereby it is possible to provide a safe data communication apparatus which causes decryption/decoding of the multi-level signal by the third party to be further difficult.
The first random number sequence generation section 171 generates a predetermined pseudo-random number sequence by using first key information 11 as an initial value. The first multi-level conversion section 172 extracts a p-bit series (p is a given integer) from the pseudo-random number sequence generated by the first random number sequence generation section 171, and converts the same into a multi-level code sequence 12 having levels corresponding to the extracted bit series. In a similar manner, the second random number sequence generation section 271 generates, by using second key information 16 as an initial value, a pseudo-random number sequence which corresponds to the pseudo-random number sequence outputted from the first random number sequence generation. The second multi-level conversion section 272 extracts the p-bit series (p is a given integer) from the pseudo-random number sequence, and converts the same into a multi-level code sequence 17 having levels corresponding to the extracted bit series.
In
The first multi-level conversion section 172 is, for example, constituted of six latches 172a to 172f and a D/A (digital/analog) conversion section 172g. The first multi-level conversion section 172 extracts a p=6-bit series from the binary random number sequence, which is outputted, at the six latches 172a to 172f, from the first random number sequence generation section 171, by using the input of the read signal S22 as the trigger, and converts at the D/A conversion section 172g, the extracted bit series into the multi-level code sequence 12. Note that,
d6×25+d5×24+d4×23+d3×22+d2×21+d1 (equation 1)
Note that in
As above described, according to the fifth embodiment of the present invention, the first multi-level code generation section 111a and the second multi-level code generation section 212a respectively have simple constitutions, and are capable of generating the multi-level code sequences 12, 17. Accordingly, the data communication apparatus according to the fifth embodiment of the present invention can achieve the same effect as the data communication apparatuses according to the first to fourth embodiments.
The first random number sequence generation section 171 generates a predetermined pseudo-random number sequence, by using first key information 11 as an initial value. The first bit selection section 174 extracts a p-bit series (p is a given integer) from the pseudo-random number sequence generated by the first random number sequence generation section 171, selects, from the extracted bit series, and outputs a q-bit series (q is a given integer not larger than p). The first multi-level conversion section 172 converts the q-bit series outputted from the first bit selection section 174 into a multi-level code sequence 12 having levels corresponding to the bit series. That is, the first multi-level code generation section 111a generates the multi-level code sequence 12 based on a changed random number sequence which results from changing the bit series of the binary random number sequence generated based on the first key information 11.
In a similar manner, the second random number sequence generation section 271 generates a pseudo-random number sequence which corresponds to the pseudo-random number sequence outputted from the first random number sequence generation section 171, by using second key information 16 as an initial value. The second bit selection section 274 extracts a p-bit series (p is a given integer) from the pseudo-random number sequence generated by the second random number sequence generation section 271, and selects, from the extracted bit series, and outputs a q-bit series (q is a given integer not larger than p). The second multi-level conversion section 272 converts the q-bit series outputted from the second bit selection section 274 into a multi-level code sequence 17 having levels corresponding to the bit series. That is, the second multi-level code generation section 212a generates the multi-level code sequence 12 based on the changed random number sequence which results from changing the bit series of the binary random number sequence generated based on the second key information 16.
First, the eavesdropping by the third party will be described. It is assumed that the third party who is the eavesdropper receives and decrypts a modulated signal 14 using a constitution corresponding to a data receiving apparatus held by a legitimate receiving party or a further sophisticated data receiving apparatus. As a basic method of the eavesdropping like this, there is a “know-plain-text attack” which attempts direct obtainment of a cipher key (the multi-level code sequence 12) by previously setting information data 10, which is to be transmitted by a transmitter, to a known data (e.g. all “0”, or all “1”, etc.) in any manner and obtaining a cipher text (a multi-level signal 13 or a modulated signal 14) generated as a result. With respect to such attack, the data communication apparatus of the present invention can prevent an accurate obtainment of the cipher key by the third party, as above described, by using, for example, a quantum noise which is generated when a optical signal is detected.
Nonetheless, in the case where the quantum noise is not sufficiently large, it is likely that the cipher key is obtained by the third party and that the cipher text is decrypted easily, as a result. The eavesdropping by the third party like this will be described, with reference to
The first random number sequence generation section 171 sets 6 bits (a0 to a5), which constitutes the first key information 11, to the respectively corresponding shift registers 171a to 171f by using an input of an initial value setting signal S21 as a trigger, and generates a binary random number sequence by using the clock signal S20 as reference timing. The first multi-level conversion section 172 extracts, by using an input of a read signal S22 as a trigger, the binary random number sequence for each p bits (p=6 in
Here, it is generally known that with regard to a pseudo-random number series generated by the linear feedback shift register as shown in
Contrastingly, in the case of the first multi-level code generation section 111a (the second multi-level code generation section 212a) according to the sixth embodiment of the present invention, the first bit selection section 174 subtracts a predetermined 1 bit from p=6-bit binary random number sequence, which is extracted from the first random number sequence generation section 171 in the parallel manner, as shown in
An action of the first multi-level code generation section 111a for the above-described case will be described in detail, with reference to
Note that the first multi-level code generation section 111a (the second multi-level code generation section 212a) according to the sixth embodiment of the present invention may have a constitution as shown in
Further, more preferably, the first multi-level code generation section 111a (the second multi-level code generation section 212a) according to the sixth embodiment of the present invention may have a constitution as shown in
Further, the first multi-level code generation section 111a (the second multi-level code generation section 212a) according to the sixth embodiment of the present invention may have a constitution as shown in
Accordingly, the output signals (e.g. D1 to D6) from the shift registers 171a to 171b which constitutes the first random number sequence generation section 171 cannot be accurately identified by the latches 172a to 172b which constitutes the first multi-level conversion section 172, and for example, as shown in
With the constitution as above described, even under the circumstances where the quantum fluctuation is not sufficiently large, and a cipher text can be easily obtained by the third party, it is possible to intentionally prevent consecutive obtainment of 2k-bit pseudo-random numbers and cause decryption/decoding of pseudo-random number sequence by the BM method or the like to be difficult.
As above described, according to the sixth embodiment of the present invention, when the information data 10 to be transmitted is encoded as the multi-level signal 13, an interval between signal levels of the multi-level signal 13 is set appropriately with respect to a noise level included in a receiving signal, whereby quality of the receiving signal at the time of the eavesdropping by the third party is crucially deteriorated, and it is possible to cause decryption/decoding of the multi-level signal by the third party to be difficult. Further, even in the case where the cipher text is obtained by the third party, it is possible to provide a further safe data communication apparatus by generating a multi-level key such that key information thereof cannot be estimated easily.
The first random number sequence generation section 171 generates a predetermined pseudo-random number sequence, by using first key information as an initial value. The first bit shuffling section 176 extracts a p-bit series (p is a given integer) from the pseudo-random number sequence generated by the first random number sequence generation section 171, and outputs the extracted bit series after shuffling an order thereof. The first multi-level conversion section 172 converts a q-bit series (p=q in this example) outputted by the first bit shuffling section 176 into a multi-level code sequence 12 having levels corresponding the bit series. In a similar manner, the second random number sequence generation section 271 generates a predetermined pseudo-random number sequence by using second key information 16 as an initial value. The second bit shuffling section 276 extracts a p-bit series (p is a given integer) from the pseudo-random number sequence generated by the second random number sequence generation section 271, and outputs the extracted bit series after shuffling an order thereof. The second multi-level conversion section 272 converts a q-bit series (p=q in this example) outputted by the second bit shuffling section 276 into a multi-level code sequence 17 having levels corresponding the bit series.
First, an eavesdropping by a third party will be described. It is assumed that, in a similar manner to the above-described sixth embodiment, the third party who is an eavesdropper uses a constitution corresponding to a data receiving apparatus held by a legitimate receiving party or a further sophisticated data receiving apparatus, and decrypts a received modulated signal 14 by means of a “known-plain-text attack” or the like. That is, as shown in
Contrastingly, in the case of the first multi-level code generation section 111a (the second multi-level code generation section 212a) according to the seventh embodiment of the present invention, the bit shuffling section 176 once inputs, as shown in
The third party who is the eavesdropper does not share key information 11, 16 as described with reference to
Further, more preferably, the first multi-level code generation section 111a does not fix but changes, as needed, a procedure of bit shuffling by the first bit shuffling section 119. Specifically, as shown in
Further, the first multi-level code generation section 111a (the second multi-level code generation section 212a) according to the seventh embodiment of the present invention may have a constitution as shown in
The second timing signal generation section 173b generates and outputs a write address S24 together with a clock signal S20 and an initial value setting signal S21 both of which are provided to the first random number sequence generation section 171. The third timing signal generation section 173c generates, by using the clock signal S20 as reference timing, a read address S25 together with a read signal S22 which is provided to the first multi-level conversion section 172. The address conversion section 178 converts the read address S25, in accordance with a value of pseudo-random numbers outputted from the third random number generation section 175c, and then outputs the converted read address S25 as a second read address S26. The memory section 177 writes (records) a p=6-bit binary random number sequence, which is extracted from the first random number sequence generation section 171 in a parallel manner, into an address designated by the write address S24, and in addition, reads a p=6-bit binary random number sequence from an address designated by the second read address S26, and then outputs the read address to the first multi-level conversion section 172. The first multi-level conversion section 172 converts the inputted binary random number sequence into the multi-level code sequence 12.
With the constitution as above described, even under circumstances where a quantum fluctuation is not sufficiently large, and where the cipher text can be easily obtained by the third party, it is possible to intentionally prevent consecutive obtainment of 2k-bit pseudo-random numbers and cause decryption/decoding of the multi-level signal by the third party to be difficult.
As above-described, according to the seventh embodiment of the present invention, when the information data 10 to be transmitted is encoded as the multi-level signal 13, an interval between signal levels of the multi-level signal 13 is set appropriately with respect to a noise level included in a receiving signal, whereby quality of the receiving signal at the time of the eavesdropping by the third party is crucially deteriorated, and it is possible to cause decryption/decoding of the multi-level signal by the third party to be difficult. Further, even in the case where the cipher text is obtained by the third party, it is possible to provide a further safe data communication apparatus by generating a multi-level key such that key information thereof cannot be estimated easily.
The data communication apparatus according to the prevent invention is useful for a safe secret communication apparatus or the like which is not susceptible to eavesdropping/interception.
While the invention has been described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is understood that numerous other modifications and variations can be devised without departing from the scope of the invention.
Furusawa, Satoshi, Sada, Tomokazu, Ikushima, Tsuyoshi, Fuse, Masaru
Patent | Priority | Assignee | Title |
8594148, | Feb 12 2010 | Fuji Xerox Co., Ltd. | Pseudo random signal generating apparatus, communications system, and image forming system |
8769240, | Apr 29 2011 | Hynix Semiconductor Inc.; Hynix Semiconductor Inc | Integrated circuit and semiconductor memory device using the same |
9413582, | Mar 25 2014 | ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTIT | Method and apparatus for transmitting and receiving |
Patent | Priority | Assignee | Title |
5218619, | Dec 17 1990 | Ericsson GE Mobile Communications Holding, Inc. | CDMA subtractive demodulation |
6125378, | Jan 13 1999 | Method and apparatus for generating families of code signals using multiscale shuffling | |
20050210244, | |||
GB2242105, | |||
JP6104793, | |||
JP9205420, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 09 2007 | Panasonic Corporation | (assignment on the face of the patent) | / | |||
Mar 09 2007 | FUSE, MASARU | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019152 | /0797 | |
Mar 09 2007 | FURUSAWA, SATOSHI | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019152 | /0797 | |
Mar 09 2007 | IKUSHIMA, TSUYOSHI | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019152 | /0797 | |
Mar 09 2007 | SADA, TOMOKAZU | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019152 | /0797 | |
Oct 01 2008 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Panasonic Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 021897 | /0534 |
Date | Maintenance Fee Events |
Apr 06 2011 | ASPN: Payor Number Assigned. |
Feb 19 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 07 2018 | REM: Maintenance Fee Reminder Mailed. |
Oct 29 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 21 2013 | 4 years fee payment window open |
Mar 21 2014 | 6 months grace period start (w surcharge) |
Sep 21 2014 | patent expiry (for year 4) |
Sep 21 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 21 2017 | 8 years fee payment window open |
Mar 21 2018 | 6 months grace period start (w surcharge) |
Sep 21 2018 | patent expiry (for year 8) |
Sep 21 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 21 2021 | 12 years fee payment window open |
Mar 21 2022 | 6 months grace period start (w surcharge) |
Sep 21 2022 | patent expiry (for year 12) |
Sep 21 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |