A transmitter includes a polar modulator that creates phase and amplitude signals which in turn drive a power amplifier. To compensate for AM to PM conversion of the amplitude signal into the amplified signal, a compensation signal is generated from the amplitude signal and combined with the phase signal such that when amplified, the compensation signal cancels the AM to PM conversion. The compensation signal may have an offset term, a linear term, a quadratic term, and a cubic term. A second embodiment comprises a technique by which AM to AM conversion may concurrently be addressed using a second compensation signal.
|
32. A method of controlling a transmitter, comprising:
converting a signal to a phase signal and an amplitude signal;
generating a compensation signal from the amplitude signal, wherein the compensation signal is generated with a piecewise function associated with a plurality of different power levels, such that each piece of the piecewise function is based on a corresponding set of at least three coefficients, which are based on a function that substantially matches an inverse of the phase signal over a corresponding one of the plurality of different power levels;
creating a combined signal from the compensation signal with the phase signal;
converting the combined signal to a frequency signal;
transitioning between two pieces of the piecewise function to cause a frequency jump of the frequency signal to at least partially compensate for a phase shift in an amplifier resulting from transitioning between two of the plurality of different power levels corresponding to the two pieces of the piecewise function; and
amplifying a signal derived from the frequency signal such that the compensation signal cancels distortion of an output signal caused by the amplitude signal.
12. A method of controlling a transmitter, comprising:
generating a phase signal and an amplitude signal;
determining a power level of a power amplifier;
generating a compensation signal with a piecewise function from the amplitude signal, wherein the piecewise function is associated with a plurality of different power levels within an overall operating range of the power amplifier, such that each piece of the piecewise function is based on a corresponding set of at least three coefficients, which are based on a function that substantially matches an inverse of the phase signal over a corresponding one of the plurality of different power levels;
combining the compensation signal with the phase signal to create a combined signal;
converting the combined signal to a frequency signal;
transitioning between two pieces of the piecewise function to cause a frequency jump of the frequency signal to at least partially compensate for a phase shift in the power amplifier resulting from transitioning between two of the plurality of different power levels corresponding to the two pieces of the piecewise function; and
amplifying a signal derived from the combined signal with the power amplifier such that an amplified compensation signal and a non-linearity induced phase shift from the power amplifier due to the amplitude signal cancel one another.
1. A transmitter comprising:
a polar converter adapted to convert a signal to a phase signal and an amplitude signal;
a compensator adapted to receive the amplitude signal and distort the amplitude signal such that a compensation signal is generated;
a combiner adapted to combine the compensation signal with the phase signal and produce a combined signal;
a converter adapted to convert the combined signal to a frequency signal; and
an amplifier adapted to receive the amplitude signal and a signal based on the frequency signal and generate an output signal, wherein distortion of the output signal caused by the amplitude signal is canceled by the compensation signal; and
said compensation signal generated with a piecewise function associated with a plurality of different power levels within an overall operating range of the amplifier, such that each piece of the piecewise function is based on a corresponding set of at least three coefficients, which are based on a function that substantially matches an inverse of the phase signal over a corresponding one of the plurality of different power levels, and transitioning between two pieces of the piecewise function causes a frequency jump of the frequency signal to at least partially compensate for a phase shift in the power amplifier resulting from transitioning between two of the plurality of different power levels corresponding to the two pieces of the piecewise function.
31. A transmitter comprising:
a polar converter adapted to convert a signal to a phase signal and an amplitude signal;
a compensator adapted to receive the amplitude signal and distort the amplitude signal such that a compensation signal is generated, said compensator implementing a piecewise compensation function associated with a plurality of different power levels within an overall operating range of an amplifier, such that each piece of the piecewise compensation function is based on a corresponding set of at least three coefficients, which are based on a function that substantially matches an inverse of the phase signal over a corresponding one of the plurality of different power levels, and transitioning between two pieces of the piecewise compensation function causes a frequency jump of a frequency signal to at least partially compensate for a phase shift in the amplifier resulting from transitioning between two of the plurality of different power levels corresponding to the two pieces of the piecewise compensation function;
a combiner adapted to combine the compensation signal with the phase signal to create a combined signal;
a phase to frequency converter adapted to convert the combined signal to the frequency signal; and
the amplifier adapted to receive a signal derived from the frequency signal and generate an output signal, wherein distortion of the output signal caused by the amplitude signal is canceled by the compensation signal.
33. A method of controlling a transmitter, comprising:
generating a phase signal and an amplitude signal;
generating a first compensation signal with a piecewise function associated with a plurality of different power levels within an overall operating range of a power amplifier, such that each piece of the piecewise function is based on a corresponding set of at least three coefficients, which are based on a function that substantially matches an inverse of the phase signal over a corresponding one of the plurality of different power levels;
generating a second compensation signal with a piecewise function comprising at least one term having a coefficient set for each of a plurality of different power levels, wherein the at least one term is not greater than a cubic term;
combining the first compensation signal with the phase signal to create a first combined signal;
combining the second compensation signal with the amplitude signal to create a power supply input signal;
transitioning between two pieces of the piecewise function to cause a frequency jump of a frequency signal to at least partially compensate for a phase shift in the power amplifier resulting from transitioning between two of the plurality of different power levels corresponding to the two pieces of the piecewise function; and
amplifying a signal derived from the first combined signal with the power amplifier such that an amplified first compensation signal combines with a non-linear induced distortion from the power supply input signal such that substantially only a desired frequency signal is presented at an output of the power amplifier.
23. A transmitter comprising:
a power amplifier comprising an output, a frequency input, and a power supply input wherein signals presented to said power supply input produce a distortion signal at said output;
a polar modulator adapted to produce a phase signal and an amplitude signal;
an amplitude processing path adapted to receive said amplitude signal and present said amplitude signal to said power supply input;
a phase processing path comprising a compensator, a combiner and a phase to frequency converter; and
said compensator adapted to receive said amplitude signal and generate a compensation signal with a piecewise function associated with a plurality of different power levels within an overall operating range of the power amplifier, such that each piece of the piecewise function is based on a corresponding set of at least three coefficients, which are based on a function that substantially matches an inverse of the phase signal over a corresponding one of the plurality of different power levels, and transitioning between two pieces of the piecewise function causes a frequency jump of a frequency signal to at least partially compensate for a phase shift in the power amplifier resulting from transitioning between two of the plurality of different power levels corresponding to the two pieces of the piecewise function;
said combiner combining said phase signal and said compensation signal to generate a combined signal and passing the combined signal to the phase to frequency converter;
said phase to frequency converter converting said combined signal to the frequency signal; and
said compensation signal acting to cancel the distortion signal at the output.
34. A transmitter comprising:
a polar converter adapted to convert a signal to a phase signal and an amplitude signal;
a first compensator adapted to receive the amplitude signal and distort the amplitude signal such that a first compensation signal is generated with a piecewise function associated with a plurality of different power levels within an overall operating range of an amplifier, such that each piece of the piecewise function is based on a corresponding set of at least three coefficients, which are based on a function that substantially matches an inverse of the phase signal over a corresponding one of the plurality of different power levels, and transitioning between two pieces of the piecewise function causes a frequency jump of a frequency signal to at least partially compensate for a phase shift in the amplifier resulting from transitioning between two of the plurality of different power levels corresponding to the two pieces of the piecewise function;
a first combiner adapted to combine the first compensation signal with the phase signal to create a combined signal;
a second compensator adapted to receive the amplitude signal and distort the amplitude signal such that a second compensation signal is generated with a piecewise function comprising at least one term having a coefficient set for each of a plurality of different power levels, wherein the at least one term is not greater than a cubic term;
a second combiner adapted to combine the second compensation signal with the amplitude signal to create a power supply input signal; and
the amplifier adapted to receive the power supply input signal and a signal derived from the combined signal and generate an output signal, wherein distortion of the output signal caused by the amplitude signal is canceled by the first compensation signal and the second compensation signal.
3. The transmitter of
4. The transmitter of
7. The transmitter of
8. The transmitter of
9. The transmitter of
10. The transmitter of
11. The transmitter of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
24. The transmitter of
25. The transmitter of
26. The transmitter of
27. The transmitter of
28. The transmitter of
29. The transmitter of
30. The transmitter of
|
The present application is related to concurrently filed, commonly assigned, commonly invented U.S. patent application Ser. No. 10/147,579, entitled “AM TO AM CORRECTION SYSTEM FOR POLAR MODULATOR.”
The present invention relates to controlling a power amplifier, and more particularly to controlling the power amplifier in a manner to correct the output Error Vector Magnitude (EVM) and spectrum of the power amplifier.
Transmitters form one half of most communication circuits. As such, they assume a position of prominence in design concerns. With the proliferation of mobile terminals, transmitter design has progressed in leaps and bounds as designers try to minimize components and reduce size, battery consumption, and the like. Likewise, modulation schemes are continuously updated to reflect new approaches to maximize information transfers in limited bandwidths. Changes in standards or standards based on newly available spectrum may also cause designers to approach modulating transmitters with different techniques.
Many different standards and modulation schemes exist, but one of the most prevalently used in the world of mobile terminals is the Global System for Mobile Communications (GSM). GSM comes in many flavors, not the least of which is General Packet Radio Service (GPRS). GPRS is a new non-voice value-added service that allows information to be sent and received across a mobile telephone network. It supplements today's Circuit Switched Data and Short Message Service. GSM allows many different types of mobile terminals, such as cellular phones, pagers, wireless modem adapted laptops, and the like, to communicate wirelessly through the Public Land Mobile Network (PLMN) to the Public Switched Telephone Network (PSTN).
One relatively recent change has been the advent of the Enhanced Data for GSM Evolution (EDGE) scheme in GSM systems. This system contains amplitude modulation components, and, as a result, the power amplifier must be linear, never operating in saturation if classical modulation techniques are employed. Such a system lacks the efficiency of one that operates the power amplifier in saturation.
If a polar modulation system is used instead of a classical modulation system, then the power amplifier may operate in saturation and efficiency would be greatly improved. In addition, if the polar signals are generated by a digital method, such a system does not require the use of a high current drain quadrature modulator. Quadrature modulators are undesirable from a design standpoint in that they draw large amounts of current, and hence, drain batteries comparatively fast.
Analog components cause design problems for polar modulators in that the phase and amplitude signals must be aligned so that they arrive at the power amplifier at the desired time. Because of path variations with variable time delay analog components, this time aligning is difficult to achieve. Any solution to controlling the power amplifier should be able to eliminate or reduce reliance on a quadrature modulator and provide digital components such that time alignment is comparatively easy to do.
Unfortunately, further complicating matters, the amplitude signal that controls the power amplifier will cause unwanted phase components to be created in the output of the power amplifier due to the non-linearities of the power amplifier. This is sometimes called AM to PM conversion, and it degrades the spectral purity of the system and the Error Vector Magnitude. Thus, a need also exists to be able to counteract or eliminate the unwanted AM to PM conversion signal from the transmitted phase signal.
An additional concern is that the power amplifier may have a non-linear gain with varying output power. This may create what is called AM to AM conversion. The AM to AM conversion may have both phase and amplitude distortion components, and to create a better control system, these should be reduced or eliminated as well.
The present invention addresses the problems of the AM to PM conversion by introducing a correction term into the phase path to counteract the non-linearity of the power amplifier. In particular, the present invention uses a polar modulator to generate a phase signal and an amplitude signal. The amplitude signal is split with one part being processed conventionally to control the power amplifier. The other part of the amplitude signal is used to create a correction term that is formed by a sum of polynomials. In particular, the amplitude signal may be acted upon to create a linear term, a quadratic term and/or cubic term, and then summed with an offset term. The summed result is added to the phase signal. The phase signal is then converted to a frequency signal for processing by a phase locked loop.
In an exemplary embodiment, a number of coefficients needed to create the sum of polynomials are stored in a look up table. Further, the look up table has different coefficients based on different power output levels. The terms may be created with physical elements.
In another embodiment, the present invention corrects for both AM to PM conversion and AM to AM conversion using similar methodologies. However, the AM to AM conversion is addressed by introducing a compensation term in the amplitude signal prior to being used to control the power amplifier's input supply voltage.
Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
While the present invention is particularly well-suited for use in a mobile terminal, and particularly a mobile terminal that is operating in an Enhanced Data for GSM Evolution (EDGE) scheme in a GSM system, it should be appreciated that the present invention may be used in other transmitters, either wireless or wirebased, as needed or desired.
The present invention is preferably incorporated in a mobile terminal 10, such as a mobile telephone, personal digital assistant, or the like. The basic architecture of a mobile terminal 10 is represented in
The baseband processor 20 processes the digitized, received signal to extract the information or data bits conveyed in the received signal. This processing typically comprises demodulation, decoding, and error correction operations. As such, the baseband processor 20 is generally implemented in one or more digital signal processors (DSPs).
On the transmit side, the baseband processor 20 receives digitized data from the control system 22, which it encodes for transmission. The encoded data is output to the radio frequency transmitter section 14, where it is used by a modulator 36 to modulate a carrier signal that is at a desired transmit frequency. The modulator 36 may have an optional memory unit 38 associated therewith. Power amplifier 40 amplifies the modulated carrier signal to a level appropriate for transmission from the antenna 16.
As described in further detail below, the power amplifier 40 provides gain for the signal to be transmitted under control of the power control circuitry 42, which is preferably controlled by the control system 22. Memory 24 may contain software that allows many of these functions to be run. Alternatively, these may be a function of sequential logic structures as is well understood.
A user may interact with the mobile terminal 10 via the interface 28, which may include interface circuitry 44 associated with a microphone 46, a speaker 48, a keypad 50, and a display 52. The interface circuitry 44 typically includes analog-to-digital converters, digital-to-analog converters, amplifiers, and the like. Additionally, it may include a voice encoder/decoder, in which case it may communicate directly with the baseband processor 20.
The microphone 46 will typically convert audio input, such as the user's voice, into an electrical signal, which is then digitized and passed directly or indirectly to the baseband processor 20. Audio information encoded in the received signal is recovered by the baseband processor 20, and converted into an analog signal suitable for driving speaker 48 by the interface circuitry 44. The keypad 50 and display 52 enable the user to interact with the mobile terminal 10, input numbers to be dialed and address book information, or the like, as well as monitor call progress information.
While the present invention is well-suited for incorporation into a mobile terminal, such as the mobile terminal 10 just described, the present invention is also well-suited for use in wireless transmitters associated with wireless LANs and the like. As such, the present invention is not limited to a particular apparatus.
In the past, as illustrated in
The present invention corrects the AM to PM conversion within the output by preliminarily distorting the phase signal such that when it is converted to a frequency signal and amplified by the power amplifier 40, the predistortion element cancels the AM to PM conversion distortion element introduced by the amplitude signal (r). This is illustrated in a simplified format in
More specifically, the present invention may be situated in the radio frequency transmitter section 14, as better illustrated in
The serial interface 60 receives Non-Return to Zero (NRZ) serial data from the baseband processor 20 at the bit rate of the system. NRZ data may be a 1B1B code with one line bit for each associated binary bit. In an exemplary embodiment, the modulation scheme for the modulator 36 uses an EDGE modulation scheme, and thus, the bit rate is 812.5 kbps. This data is passed to the mapping module 62, where the data is grouped into symbols of three consecutive data bits, Grey coded, and rotated by 3π/8 on each symbol as per European Telecommunications Standards Institute (ETSI) specifications. The resulting symbol is mapped to one of sixteen points in an I, Q constellation.
Both the I and the Q components for each point are then filtered by the first and second filters 64, 66 respectively. In an exemplary embodiment, the first and second filters 64, 66 are EDGE finite impulse response (FIR) filters. This, as dictated by the ETSI specifications, shapes the response between symbol times.
After filtering, both the I and Q components are sent to the polar converter 54. The polar converter 54 uses a classical CORDIC (coordinate rotation digital computer) algorithm or like rectangular to polar conversion technique. Thus, the polar converter 54 generates phase (φ) and amplitude (r) equivalent signals. Further information about CORDIC algorithms may be found in Proceedings of the 1998 ACM/SIGDA Sixth International Symposium On Field Programmable Gate Arrays by Ray Andraka, February 22-24, pp. 191-200 and “The CORDIC Trigonometric Computing Technique” by Jack E. Volder IRE Trans on Elect. Computers, p. 330, 1959, both of which are hereby incorporated by reference in their entirety.
The amplitude signal (r) is split and directed to the compensator 56. The compensator 56 introduces a compensation term to the phase signal that, after further processing, counteracts the distortion introduced by the AM to PM conversion in the power amplifier 40.
The compensator 56 acts to create a sum of polynomials along the lines of the following equation:
In this particular case, N=3 and the equation expands to the following:
φ′(r)=C0+C1r(t)+C2(r(t))2+C3(r(t))3
φ′(r) is termed herein the compensation signal. It is readily apparent that φ′(r) has an offset term, a linear term, a quadratic term, and a cubic term selectable by the hardware implementation.
In an exemplary embodiment of the present invention, the coefficients Ci are associated with the control system 22, and particularly in non-volatile memory 24 associated therewith. Alternatively, the coefficients may be stored in memory 38 if such is present. In an exemplary embodiment, the coefficients may be stored as a look up table. It is further possible that the coefficients are stored as a function of sequential steps performed by hardware. The coefficients are determined through a best fit analysis of a function that substantially matches the unamplified inverse of φ(r). In a more preferred embodiment, a piecewise function is created with each piece being determined by a given power level. This is done to improve the fit between the functions. For example, if only one set of coefficients were used, φ′(r) might not fit well at the ends or perhaps in the middle of the relevant range of values. By implementing a piecewise function, a good fit between the equations may be achieved throughout the curve of relevant values. In an exemplary embodiment, a set of coefficients is created for each 2 dBm power step. This corresponds to the power steps defined in the ETSI standards. To calculate the coefficients, a program such as MATHCAD may be used to derive a match to an empirical power amplifier curve. The coefficients may be tested through an ADS simulation or the like.
The output of the compensator 56 is subtracted from the phase signal (φ) by the adder 58 to create a combined signal. The adder 58 is also termed herein a combiner. The output of the adder 58 (the combined signal) is directed to a phase to frequency converter 68 where the output is converted to a frequency signal (f). More detail on the phase to frequency converter 68 is provided below with reference to
At this point, the r and f signals separate and proceed by different paths, an amplitude signal processing path and a frequency signal processing path, to the power amplifier 40. With respect to the amplitude signal processing path, the amplitude signal is converted to an analog signal by D/A converter 76. While not shown, a ramping function may be combined with the amplitude signal prior to digital-to-analog conversion. The output of the D/A converter 76 is used to set the collector voltage on the power amplifier 40 through a collector regulator 78. As the amplitude signal changes, the voltage at the power amplifier 40 collector changes, and the output power will vary as V2/Rout (Rout is not shown, but is effectively the load on the power amplifier 40). This is sometimes known as “plate modulation”.
The frequency signal is directed to a digital filter 80, a digital predistortion filter 82, and a phase locked loop (PLL) 84, as is described in commonly invented, commonly owned U.S. patent application Ser. No. 10/139,560, filed May 06, 2002, entitled DIRECT DIGITAL POLAR MODULATOR, which is hereby incorporated by reference in its entirety. The PLL 84 generates an output at the desired radio frequency. In an exemplary embodiment, the frequency signal is applied to a single port on a fractional N divider within the PLL 84.
In general, the PLL 84 comprises a reference source that is fed to a phase comparator. The phase comparator compares the edges of the reference source to the output of the fractional N divider and produces a correction signal. The correction signal is low pass filtered and input to a voltage controlled oscillator (VCO). The VCO outputs a frequency modulated signal at the RF carrier, which in turn is fed back to the fractional N divider. The divisor of the fractional N divider is modulated by the frequency signal. Further information on fractional N PLLs, how to modulate a signal by varying the fractional N divider, and the like may be found in U.S. Pat. Nos. 6,359,950; 6,236,703; 6,211,747; 5,079,522; 5,055,802; and 4,609,881 which are hereby incorporated by reference in their entireties.
The phase to frequency converter 68 is explicated with reference to
in a digital sense. The delay and the subtraction approximates the derivative as (phase(N)−phase(N−1))/T, where T is the period for the clock 86. Other phase to frequency conversions could also be used if needed or desired.
It is interesting to note that this derivative function causes the offset term of the sum of polynomials to be a zero value. However, this does cause an impulse function at the point where the constant is introduced. That is, when the constant changes from one constant to another, such as at the boundary of a piece of the piecewise function, there is effectively a square wave transition. At that point, there would be an instantaneous frequency change. This may create a desired phase offset at the output of the power amplifier 40. This is particularly useful in a General Packet Radio Service (GPRS) system to avoid phase discontinuities when power levels are switched.
In a somewhat related embodiment, illustrated in
In this particular case, N=3 and the equation expands to the following:
A′(r)=C0+C1r(t)+C2(r(t))2+C3(r(t))3
A′(r) is termed herein a compensation signal and r(t) is the amplitude of the modulation from the polar modulator 36. It is readily apparent that A′(r) has an offset term, a linear term, a squared term, and a cubic term. In an exemplary embodiment, the offset term C0 and the coefficient for the linear term C1 are zero. An offset term would act the same as increasing or decreasing the output power level. As the collector regulator 78 already addresses this, it is not necessary to repeat the control here. Likewise, a linear term would only change the fundamental amplitude and not change the shape of the curve, so a linear term for this compensation signal makes little sense.
When the exemplary embodiment A′(r) is combined with r(t) in the adder 96, the combined signal is:
r′(t)=r(t)+C2(r(t))2+C3(r(t))3
which converts easily to the following:
r′(t)=r(t)*[1+C2(r(t))+C3(r(t))2]
Thus, even though the adder 96 is an adder, the effect is to multiply the term r(t) by a correction factor that deviates from unity by A′(r). This signal then passes through the power amplifier 40 with AM to AM distortion. This distortion, as previously noted, is A(r). The goal is thus to make the term [1+C2(r(t))+C3(r(t))2] the inverse of the AM to AM distortion such that A(r)* [1+C2(r(t))+C3(r(t))2]=1. When this condition is true, the AM to AM distortion has been canceled.
Alternatively, if the adder 96 were instead a multiplier, then the correction terms could have a linear term and an offset term. From a design standpoint, this removes a multiplier from the compensator 94 and inserts a multiplier in place of the adder 96. The concept of canceling the AM to AM conversion with its inverse remains the same.
In an exemplary embodiment of the present invention, the coefficients Ci are associated with control system 22, and particularly in non-volatile memory 24 associated therewith. Alternatively, the coefficients may be stored in memory 38 if such is present. In an exemplary embodiment, the coefficients may be stored in a look up table or the like. It is further possible that the coefficients are created as a function of hardware. The coefficients are determined through a best fit analysis of a function that matches the expected AM to AM distortion A(r). In a more preferred embodiment, a piecewise function is created with each piece being determined by a given power level. This is done to improve the fit between the functions. For example, if only one set of coefficients were used, A′(r) might not fit well at the ends or perhaps in the middle of the relevant range of values. By implementing a piecewise function, a good fit between the equations may be achieved throughout the curve of relevant values. In an exemplary embodiment, a set of coefficients is created for each 2 dBm power step. This corresponds to the power steps defined in the ETSI standards.
To calculate the coefficients, a program such as MATHCAD may be used to derive a match to an empirical power amplifier curve. The coefficients may be tested through an ADS simulation or the like.
In yet another embodiment, illustrated in
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3900823, | |||
4389618, | Apr 15 1981 | The United States of America as represented by the Secretary of the Navy | Adaptive feed-forward system |
4609881, | May 17 1983 | IFR Limited | Frequency synthesizers |
4837786, | Aug 07 1986 | Comstream Corporation | Technique for mitigating rain fading in a satellite communications system using quadrature phase shift keying |
4968908, | Mar 06 1989 | The United States of America as represented by the Secretary of Commerce; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF COMMERCE | Method and apparatus for wide band phase modulation |
5055802, | Apr 30 1990 | QUARTERHILL INC ; WI-LAN INC | Multiaccumulator sigma-delta fractional-N synthesis |
5079522, | Oct 20 1989 | IFR Limited | Variable frequency signal generator |
5313411, | Feb 26 1992 | NEC Corporation | Adaptive receiver capable of achieving both of matched filtering function and carrier recovery function |
5430416, | Feb 23 1994 | Apple Inc | Power amplifier having nested amplitude modulation controller and phase modulation controller |
5444415, | Mar 01 1993 | Texas Instruments Incorporated | Modulation and demodulation of plural channels using analog and digital components |
5524286, | Dec 14 1993 | ALCATEL ITALIA S P A | Baseband predistortion system for the adaptive linearization of power amplifiers |
5598436, | Jun 29 1993 | U S PHILIPS CORPORATION | Digital transmission system with predistortion |
5608353, | Mar 29 1995 | RF Micro Devices, INC | HBT power amplifier |
5617450, | Oct 26 1993 | Fujitsu Limited | Digital subscriber loop interface unit |
5629648, | Mar 29 1995 | RF Micro Devices, Inc. | HBT power amplifier |
5822011, | Sep 15 1995 | Thomson Consumer Electronics, Inc | Apparatus for detecting noise in a color video signal |
5900778, | May 08 1997 | Adaptive parametric signal predistorter for compensation of time varying linear and nonlinear amplifier distortion | |
5952895, | Feb 23 1998 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Direct digital synthesis of precise, stable angle modulated RF signal |
6008703, | Jan 31 1997 | MASSACHUSETTS INST OF TECHNOLOGY | Digital compensation for wideband modulation of a phase locked loop frequency synthesizer |
6101224, | Oct 07 1998 | CLUSTER, LLC; Optis Wireless Technology, LLC | Method and apparatus for generating a linearly modulated signal using polar modulation |
6115684, | Jul 30 1996 | ADVANCED TELECOMMUNICATIONS RESEARCH INSTITUTE INTERNATIONAL | Method of transforming periodic signal using smoothed spectrogram, method of transforming sound using phasing component and method of analyzing signal using optimum interpolation function |
6130579, | Mar 29 1999 | Qorvo US, Inc | Feed-forward biasing for RF amplifiers |
6191656, | Jul 23 1999 | Qorvo US, Inc | High efficiency, unilateral dual stage RF amplifier |
6211747, | May 29 1998 | QUARTERHILL INC ; WI-LAN INC | Wideband modulated fractional-N frequency synthesizer |
6229395, | Oct 01 1999 | Qorvo US, Inc | Differential transconductance amplifier |
6236687, | Feb 26 1999 | Northrop Grumman Systems Corporation | Decision directed phase locked loop (DD-PLL) for use with short block codes in digital communication systems |
6236703, | Mar 31 1998 | WASHINGTON SUB, INC ; ALPHA INDUSTRIES, INC ; Skyworks Solutions, Inc | Fractional-N divider using a delta-sigma modulator |
6236837, | Jul 30 1998 | MOTOROLA SOLUTIONS, INC | Polynomial Predistortion linearizing device, method, phone and base station |
6240278, | Jul 30 1998 | MOTOROLA SOLUTIONS, INC | Scalar cost function based predistortion linearizing device, method, phone and basestation |
6246286, | Oct 26 1999 | FINGERPRINT CARDS AB | Adaptive linearization of power amplifiers |
6271727, | Aug 06 1999 | Qorvo US, Inc | High isolation RF power amplifier with self-bias attenuator |
6275685, | Dec 10 1998 | Microsoft Technology Licensing, LLC | Linear amplifier arrangement |
6285239, | Mar 29 1999 | Qorvo US, Inc | Feed-forward biasing for RF amplifiers |
6295442, | Dec 07 1998 | CLUSTER, LLC; Optis Wireless Technology, LLC | Amplitude modulation to phase modulation cancellation method in an RF amplifier |
6307364, | Aug 27 1999 | Qorvo US, Inc | Power sensor for RF power amplifier |
6329809, | Aug 27 1999 | Qorvo US, Inc | RF power amplifier output power sensor |
6335767, | Jun 26 1998 | GATESAIR, INC | Broadcast transmission system with distributed correction |
6356150, | Jan 21 2000 | Qorvo US, Inc | Portable integrated switching power amplifier |
6359950, | Sep 03 1998 | Siemens Aktiengesellschaft | Digital PLL (phase-locked loop) frequency synthesizer |
6366177, | Feb 02 2000 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | High-efficiency power modulators |
6377784, | Feb 09 1999 | Intel Corporation | High-efficiency modulation RF amplifier |
6392487, | Aug 02 2000 | Qorvo US, Inc | Variable gain amplifier |
6462617, | Jun 08 2001 | Lucent Technologies Inc. | Method and apparatus for calculating the predistortion function from a power amplifier model |
6504885, | Jun 12 1998 | Cadence Design Systems, Inc. | System and method for modeling mixed signal RF circuits in a digital signal environment |
6522121, | Mar 20 2001 | BARCLAYS BANK PLC, AS COLLATERAL AGENT | Broadband design of a probe analysis system |
6581082, | Feb 22 2000 | Rockwell Collins; Rockwell Collins, Inc | Reduced gate count differentiator |
6642786, | Aug 15 2002 | Electronics and Telecommunications Research Institute | Piecewise polynomial predistortion method and apparatus for compensating nonlinear distortion of high power amplifier |
6693468, | Jun 12 2001 | Qorvo US, Inc | Fractional-N synthesizer with improved noise performance |
6700929, | Jul 31 2000 | QUALCOMM TECHNOLOGIES INTERNATIONAL, LTD | Method and apparatus for multipath parameter estimation in spread-spectrum communications systems |
6701134, | Nov 05 2002 | Qorvo US, Inc | Increased dynamic range for power amplifiers used with polar modulation |
6701138, | Jun 11 2001 | Qorvo US, Inc | Power amplifier control |
6720831, | Apr 26 2002 | Qorvo US, Inc | Power amplifier protection circuit |
6724252, | Feb 21 2002 | Qorvo US, Inc | Switched gain amplifier circuit |
6724265, | Jun 14 2002 | Qorvo US, Inc | Compensation for oscillator tuning gain variations in frequency synthesizers |
6724831, | Jan 07 1999 | Fujitsu Limited | Pre-distortion apparatus and method thereof |
6728324, | Jul 31 2000 | QUALCOMM TECHNOLOGIES INTERNATIONAL, LTD | Method and apparatus for multipath signal compensation in spread-spectrum communications systems |
6731145, | Aug 09 2002 | Qorvo US, Inc | Phase-locked loop having loop gain and frequency response calibration |
6735419, | Jan 18 2001 | Google Technology Holdings LLC | High efficiency wideband linear wireless power amplifier |
6748204, | Oct 17 2000 | Qorvo US, Inc | Mixer noise reduction technique |
6782244, | Mar 16 2001 | Qorvo US, Inc | Segmented power amplifier and method of control |
6798843, | Jul 13 1999 | MAXLINEAR ASIA SINGAPORE PTE LTD | Wideband digital predistortion linearizer for nonlinear amplifiers |
6801086, | Apr 03 2002 | CommScope Technologies LLC | Adaptive digital pre-distortion using amplifier model that incorporates frequency-dependent non-linearities |
6807406, | Oct 17 2000 | Qorvo US, Inc | Variable gain mixer circuit |
6816718, | Feb 07 2002 | Qorvo US, Inc | DC offset correction using dummy amplifier |
6819914, | Feb 07 2002 | Qorvo US, Inc | Differential mixer injection with optional step gain control |
6819941, | Oct 11 2001 | Qorvo US, Inc | Single output stage power amplification for multimode applications |
6831506, | Sep 17 2003 | Qorvo US, Inc | Reconfigurable filter architecture |
6834084, | May 06 2002 | HUAWEI TECHNOLOGIES CO , LTD | Direct digital polar modulator |
6836517, | Dec 28 1999 | Fujitsu Limited | Distortion compensating apparatus |
6901039, | Apr 15 1999 | MITSUMI ELECTRIC CO , LTD | Writable optical drive with dynamically variable linear velocity to prevent buffer under-run |
6901514, | Jun 01 1999 | GOOGLE LLC | Secure oblivious watermarking using key-dependent mapping functions |
6903604, | Jun 07 2001 | RPX Corporation | Method and apparatus for modeling and estimating the characteristics of a power amplifier |
6914943, | Mar 31 1999 | Kabushiki Kaisha Toshiba | Signal modulation circuit and signal modulation method |
6975688, | Sep 07 2000 | Unwired Planet, LLC | Off-line MCPA calibration |
7010276, | Apr 11 2001 | Intel Corporation | Communications signal amplifiers having independent power control and amplitude modulation |
7010280, | Nov 19 1998 | CADENCE DESIGN SYSTEMS INC | Linear RF power amplifier and transmitter |
7012969, | Dec 28 1999 | Fujitsu Limited | Distortion compensating apparatus |
7054385, | Oct 22 2001 | Apple Inc | Reduction of average-to-minimum power ratio in communications signals |
7109791, | Jul 09 2004 | Qorvo US, Inc | Tailored collector voltage to minimize variation in AM to PM distortion in a power amplifier |
7113036, | Apr 15 2004 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and apparatus for adaptive digital predistortion using nonlinear and feedback gain parameters |
7113551, | Jul 25 2002 | TAMIRAS PER PTE LTD , LLC | Transmitter with limited spectral regrowth and method therefor |
7158494, | Oct 22 2001 | Panasonic Corporation | Multi-mode communications transmitter |
7349490, | Apr 16 2003 | TAHOE RESEARCH, LTD | Additive digital predistortion system employing parallel path coordinate conversion |
7457586, | Mar 15 2005 | Qorvo US, Inc | Method of in-device phase measurement and correlation to programmable factors |
7529523, | Aug 23 2004 | Qorvo US, Inc | N-th order curve fit for power calibration in a mobile terminal |
7542520, | Dec 02 1999 | Qualcomm Incorporated | Apparatus and method for implementing a low complexity digital modulator |
20010022532, | |||
20020021764, | |||
20020041210, | |||
20020044014, | |||
20020060606, | |||
20020093378, | |||
20020113905, | |||
20020160821, | |||
20020167923, | |||
20030020538, | |||
20030087617, | |||
20030133518, | |||
20030161487, | |||
20030179830, | |||
20030197558, | |||
20030197559, | |||
20030215025, | |||
20030215026, | |||
20030227342, | |||
20040072597, | |||
20040121741, | |||
20040131129, | |||
20040183511, | |||
20040198414, | |||
20040208157, | |||
20050002470, | |||
20050018765, | |||
20050195919, | |||
20060071711, | |||
20060203899, | |||
20060280502, | |||
20070110199, | |||
20070190952, | |||
20080219332, | |||
20080310617, | |||
20090252255, | |||
H2143, | |||
RE37407, | Apr 19 2000 | Intel Corporation | Polar envelope correction mechanism for enhancing linearity of RF/microwave power amplifier |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 16 2002 | RF Micro Devices, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Oct 12 2013 | 4 years fee payment window open |
Apr 12 2014 | 6 months grace period start (w surcharge) |
Oct 12 2014 | patent expiry (for year 4) |
Oct 12 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 12 2017 | 8 years fee payment window open |
Apr 12 2018 | 6 months grace period start (w surcharge) |
Oct 12 2018 | patent expiry (for year 8) |
Oct 12 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 12 2021 | 12 years fee payment window open |
Apr 12 2022 | 6 months grace period start (w surcharge) |
Oct 12 2022 | patent expiry (for year 12) |
Oct 12 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |