A pixel element includes a transistor, a pixel electrode and a storage capacitor. The transistor is a switch device of the pixel element. A data signal is applied to the pixel electrode by switching the transistor. The storage capacitor includes the first electrode and the second electrode. Several holes are formed on a surface of the first electrode. Therefore, layers disposed over the first electrode duplicate the shape of the holes, so that the layers have rough surfaces, for increasing the reflectivity.
|
1. A pixel element applied to a display panel, the pixel element, comprising:
a transistor;
a pixel electrode;
a storage capacitor having a first electrode and a second electrode, wherein a plurality of holes are formed on a surface of the first electrode, the second electrode positioned over the first electrode duplicating the shape of the holes so that the second electrode has a rough surface for increasing reflectivity; and
a common line, wherein the first electrode and a channel layer of the transistor are formed by the same poly silicon layer respectively, the common line being used as the second electrode.
10. A display panel including a pixel array structure having a plurality of pixel elements, each pixel element comprising:
a transistor;
a pixel electrode;
a storage capacitor comprising a first electrode and a second electrode, wherein a plurality of holes are formed on a surface of the first electrode, the second electrode positioned over the first electrode duplicating the shape of the holes of the first electrode so that the second electrode has a rough surface for increasing reflectivity; and
a common line, the first electrode and a channel layer of the transistor being formed by the same poly silicon layer respectively, the common line being used as the second electrode.
4. The pixel element of
5. The pixel element of
6. The pixel element of
7. The pixel element of
8. The pixel element of
9. The pixel element of
11. The display panel of
13. The display panel of
14. The display panel of
15. The display panel of
16. The display panel of
17. The display panel of
18. The display panel of
19. The display panel of
|
This application is a continuation application of U.S. patent application Ser. No. 11/505,911, filed Aug. 18, 2006 now U.S. Pat No. 7,671,929 and for which priority is claimed under 35 U.S.C. §120. This application claims priority to Application No.94147729 filed in Taiwan on Dec. 30, 2005 under 35 U.S.C. §119(a). The entire contents of all are hereby incorporated by reference
(1). Field of the Invention
The present invention relates to a structure of unit pixel, and more specifically to the structure of unit pixel that is used in a LTPS (low temperature poly silicon) TFT LCD panel and that has micro transflective ability.
(2). Description of the Prior Art
According to the technology for constructing a display device of today, an LCD (Liquid Crystal Display) device is generally preferred to due to its compact size and quick response in addition to its lower power consumption and low radiation. Therefore, the LCD device is widely used in many electronic devices.
Note that the LCD device itself is not a light emitting instrument, and requires a light source to illuminate the crystal display panel. Generally, the crystal display panel is disposed adjacent to a light emitting path of a backlight module so that the light beams emitted from the backlight reaches the crystal display panel after passing through the diffusing film, the light guide plate and the other optical films. By adjusting or altering the orientation of the liquid crystal molecules in the crystal display panel, the brightness or illumination of the images can be controlled. Such type of LCD device is generally known as transmissive-mode because the light beams can pass through all the films.
When the transmissive-mode LCD device is used outdoor, the image or text is not easily viewable since the environmental light (such as sunlight) may overwhelm the light beams coming from the backlight module .
There is still another type of LCD device, namely, transflective mode. The transflective mode LCD device includes a light reflective structure that substitutes the backlight module and that is capable of reflecting the external light beams back into the crystal display panel. thereby increasing the utilization of the light beams so as to enhance the display ability of the images.
When the transflective mode LCD device is used indoors, one may encounter the problem of insufficient of brightness or light, since the lighting indoor cannot provide sufficient illumination to the crystal display panel, thereby leading to blurring of the images or text.
In order to solve the aforesaid disadvantage, a half transflective mode LCD device has been proposed and the latter includes a crystal display panel including a pixel unit having transmissive and transflective regions simultaneously.
Referring to
Each pixel unit 13 includes a pixel electrode 131 and a TFT 132. The TFT 132 is coupled to the respective scanning and data lines 11, 12 and serves as the switch for the pixel electrode 131.
Note that the pixel electrode 131 can be further divided into a transmissive electrode region 1311 and a transflective electrode region 1312. The transmissive electrode region 1311 is made from a metal material, such as ITO (In Ti Oxide) while the transflective electrode region 1312 is made from a metal material having high reflectivity, such as aluminum.
However, the reflected light beams coming back from the aforesaid transflective electrode region 1312 cannot satisfy the requirement of the user of today LCD device as the development in the LCD technology further progresses. Therefore, for those skilled in the art, it has become an urgent task to explore how to increase the reflectivity ability so as to provide magnificent brightness in the crystal display panel of the half transflective mode LCD device.
An objective of the present invention is to provide a pixel element further utilizing a region of a storage capacitor. Several micro-reflection structures are formed on a surface of the storage capacitor for increasing the reflectivity.
A pixel element of the present invention includes a transistor, a pixel element and a storage capacitor. The transistor mainly includes a channel layer, a source layer, a drain layer and a gate layer. The transistor is a switch device of the pixel element to control whether a data signal to be applied to the pixel electrode or not.
The storage capacitor at least includes two electrodes which can be named as the first electrode and the second electrode for storing electric charge. The second electrode made of material with high reflectivity is positioned over the first electrode. Several holes are formed on the first electrode. Therefore, during the manufacturing process, layers (such as the second electrode) has concaves according to the holes of the first electrode.
In other words, the surface of the storage capacitor is rough because of the holes of the first electrode so that the surface area to reflect light in the storage capacitor is increased.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment which is illustrated in the various figures and drawings.
The present invention will now be specified with reference to its preferred embodiment illustrated in the drawings, in which
In general, a liquid crystal display panel includes a filter substrate, an array substrate and a liquid crystal layer clamped between the filter substrate and the array substrate. A pixel array structure is manufactured by arranging several pixel elements on the array substrate.
Please refer to
As shown in
Each transistor 23 is a three-terminal device including a gate, a source and a drain. The transistor 23 is positioned at an intersection of the scan lines 20 and the data lines 21. The transistor 23 is coupled to the scan lines 20 and the data lines 21 respectively. The scan lines 20 are connected to the gate of the transistor 23. The data lines 21 are connected to the source of the transistor 23. Therefore, each transistor 23 serves as a switch device for one of the pixel elements 22. Through signals of the scan lines 20, the transistor 23 is controlled to be turned on or turned off for determining whether signals of the data lines 21 are applied to the pixel electrode 24 or not.
The pixel electrode 24 is connected to the drain of the transistor 23. The drain of the transistor 23 covers the main area of the pixel element 22. As stated above, through switching the transistor 23, the signals of the data lines 21 are applied to the pixel electrode 24 to control the electric field between the pixel electrode 24 and a common electrode. As a result, the rotation directions of liquid crystal molecules in the liquid crystal layer are changed.
Please refer to
Furthermore, the second electrode 252 is made from material with high reflectivity. For example, the second electrode 252 can be made from aluminum material whose external surface is electrically coated with a layer of titanium. Meanwhile, there is no need to cover the portion of the filter substrate corresponding to the storage capacitor with a black matrix (BM) in the liquid crystal displayer. In other words, the storage capacity is exposed in a light-transmitting opening area.
Several holes 2511 are formed on a surface of the first electrode 251. As a result, the second electrode 252 positioned over the first electrode 251 duplicates the shapes of the hole 2511 so that the second electrode 252 has a rough surface. When the surface of the second electrode 252 is a rough surface with concaves, the second electrode 252 has more surface area to reflect light. Therefore, the reflectivity is increased greatly.
Moreover, the first electrode 251 is a part of the storage capacitor 25. Therefore, when the holes are formed, all parts of the first electrode 251 need to remain electrically connected. In general, the first electrode 251 is manufactured by vapor deposition. First, an electrically conductive material is deposited on the substrate. Then, several holes 2511 are etched on the first electrode 251. In a preferred embodiment, the holes 2511 are arranged on the first electrode 251 in an array.
Also, in the invention, the manufacture of the storage capacitor 25 can be combined with the manufacturing process of the transistor 23 without adding extra steps. For example, when the layers of the transistor 23 are manufactured, the first electrode 251 and the second electrode 252 are deposited at the same time. Therefore, there is no need to add extra manufacturing process. In other words, when the pixel element of the invention is applied to a low temperature poly silicon displayer, no extra manufacturing process is required. The first electrode 251 and the second electrode 252 are manufactured in the original manufacturing order.
Furthermore, when a poly silicon layer is formed on the substrate to be a channel layer of the transistor, another pattern of the poly silicon layer is also defined in a specific region of the pixel element to be the first electrode 251. That is to say, the first electrode 251 and the channel layer of the transistor are formed by the same poly silicon layer respectively.
Similarly, in the depositing and etching manufacturing processes of the layers. the second electrode 252 and the gate of the transistor are formed by the sane metal layer respectively. In an embodiment, the second electrode 252 is formed by a region extending from the scan line.
The capacitor insulation layer 253 positioned between the first electrode 251 and the second electrode 252. is formed by the same insulation layer as a gate insulation layer of the transistor.
A storage capacitor with two electrodes is illustrated in the above embodiment. However, the storage capacitor can further be composed of several electrodes separated by some capacitor insulation layers for increasing the capacitance of the storage capacitor. A storage capacitor with three electrodes according to another embodiment of the invention is illustrated as well.
Please refer to
As shown in
In the present embodiment, the first electrode 251 is a poly silicon layer in the structure of the storage capacitor. A metal layer extending from one data line serves as the third electrode 254. When the source/drain is defined, the second electrode 252 is defined as well. In other words, the third electrode 254 is positioned between the first electrode 251 and the second electrode 252. The first electrode 251 is positioned under the third electrode 254.
Therefore, after several holes 2511 are formed on the surface of the first electrode 251, a dielectric material is deposited continuously on the first electrode 251 to be a capacitor insulation layer 253. Effected by the holes 2511, the capacitor insulation layer 253 is rough and has concaves. When the third electrode 254 is formed over the capacitor insulation layer 253, the third electrode 254 is also effected by the capacitor insulation layer 253. As a result, the third electrode 254 is rough and has concaves as well.
Similarly, when formed over the third electrode 254, the second electrode 252 is effected by the third electrode 254 to have concaves accordingly. Through the deposition of the layers, the second electrode 252 has a rough surface with concaves. The surface area to reflect light is increased. Therefore, the reflectivity is increased.
What is needed to be illustrated especially is that the above influence can be made by forming the holes 2511 only on the first electrode 251. As a result, the surface of the second electrode 252 has structures to reflect light. However, in order to enable the first electrode 251 to have electrical properties with other layers after the holes 2511 are formed, the area to form the holes 2511 is limited. In a preferred embodiment, the area to form the holes 2511 is not more than 25% of the area of the first electrode 251.
Therefore. in a preferred embodiment, several holes 2541 are also formed on the third electrode 254 as shown in
Therefore, the concaves resulted from the holes 2511 of the first electrode 251 and those resulted from the holes 2541 of the third electrode 254 are staggered. The second electrode 252 has concaves in different directions as shown in
In the above embodiment, the first electrode 251 is a poly silicon layer. The third electrode 254 is a metal layer extending from one scan line. As a result, the first electrode 251 is positioned under the third electrode 254.
As to other embodiments, when the first electrode 251 and the third electrode 254 are not made from the same material as the above embodiment, the relative positions of the two electrodes can be different.
When formed over the first electrode 251, the second electrode 252 is also effected by the holes 2511 of the first electrode 251. As a result, the second electrode 252 has a rough surface with concaves. Therefore, the reflectivity is increased.
Similarly, when the first electrode 251 is positioned over the third electrode 254, holes only need to be formed on the first electrode 251. As a result, the second electrode 252 covering over the first electrode 251 has better reflectivity. However, several holes can also be formed on the third electrode 254. Additionally, the holes 2511 of the first electrode 251 and those of the third electrode 254 are staggered similarly so that the second electrode 252 has more concaves. The arrangement of the holes is not described redundantly.
In the above embodiments, a storage capacitor over scan lines (Cst on Gate) is illustrated. Of course, the invention can also be applied to a storage capacitor over common lines (Cst on Common). When the storage capacitor is composed of two electrodes, the first electrode can be a poly silicon layer, and the second electrode can be a common line. In the following embodiment, a storage capacitor with three electrodes is illustrated.
Please refer to
As shown in
Please refer to
In the present embodiment, the storage capacitor 35 includes the first electrode 351, the second electrode 352, capacitor insulation layers 353 between the electrodes, the third electrode 354 and a protecting layer 37 covering over the storage capacitor 35.
In the present embodiment, the first electrode 351 is a poly silicon layer. A metal layer of the common line serves as the third electrode 354. When a gate/drain is manufactured, the second electrode 352 is defined by the same metal layer. In other words, the first electrode 351 is positioned under the third electrode 354. The third electrode 354 is positioned between the first electrode 351 and the second electrode 352.
Also, several holes 3511 are formed on the first electrode 351 so that the third electrode 354 deposited over the first electrode 351 has a rough surface. Several holes 3541 are also formed on the third electrode 354. The holes 3541 of the third electrodes 354 and the holes 3511 of the first electrode 351 are staggered. In the present embodiment, as shown in
Of course, the first electrode 351 can be positioned over the third electrode 354 in other embodiments. In other words, the third electrode 354 is formed by a poly silicon layer first. Then, when the common line is manufactured, the common line is used as the first electrode 351. And both the first electrode 351 and the third electrode 354 are used for storing electric charge. Additionally. the holes can only be formed on the first electrode 351 so that the second electrode 352 deposited over the first electrode 351 has a rough surface.
With the example and explanations above, the features and spirits of the invention are hopefully well described. Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teaching of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Lin, Ching-Huan, Tsai, Ching-Yu
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6262783, | Mar 12 1997 | Sharp Kabushiki Kaisha | Liquid crystal display device with reflective electrodes and method for fabricating the same |
7170572, | Jan 02 2003 | Innolux Corporation | Transflective thin film transistor liquid crystal display panel and manufacturing method thereof |
7209191, | Nov 05 2002 | Innolux Corporation | Transflective liquid crystal display |
7463327, | Jan 19 2005 | Sharp Kabushiki Kaisha | Liquid crystal display |
20050122452, | |||
20050146835, | |||
JP7159776, | |||
TW557394, | |||
TW594334, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 11 2009 | AU Optronics Corp. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 19 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 05 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 06 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 19 2013 | 4 years fee payment window open |
Apr 19 2014 | 6 months grace period start (w surcharge) |
Oct 19 2014 | patent expiry (for year 4) |
Oct 19 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 19 2017 | 8 years fee payment window open |
Apr 19 2018 | 6 months grace period start (w surcharge) |
Oct 19 2018 | patent expiry (for year 8) |
Oct 19 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 19 2021 | 12 years fee payment window open |
Apr 19 2022 | 6 months grace period start (w surcharge) |
Oct 19 2022 | patent expiry (for year 12) |
Oct 19 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |