Methods for modulating and enhancing thermal and mechanical properties and biocompatibilities of coatings on implantable devices are disclosed. implantable devices containing the enhanced thermal and mechanical properties and biocompatibilities are also described. The implantable devices can be used to treat a medical condition such as vulnerable plaque or restenosis.

Patent
   7820732
Priority
Apr 30 2004
Filed
Apr 30 2004
Issued
Oct 26 2010
Expiry
Dec 07 2027
Extension
1316 days
Assg.orig
Entity
Large
13
384
EXPIRED<2yrs
1. A method of modulating thermal, mechanical, and surface properties of a coating and applying the coating on an implantable device, comprising:
(1) Providing a first polymer, wherein said first polymer has a glass transition temperature less than or equal to 37° C. and is selected from a poly(ester amide), poly(glycerol sebacic acid), and a low tg polyaspirin,
(2) Reacting said first polymer with a chemical stiffening agent, wherein the agent is an aromatic diol,
(3) Obtaining a second polymer having a tg higher than the tg of the first polymer,
(4) Forming a coating comprising the second polymer, and
(5) Applying the coating on an implantable device.
2. The method of claim 1 wherein the coating further comprises a bioactive agent.
3. The method of claim 1 wherein the coating further comprises a bioactive agent selected from the group consisting of zotarolimus, paclitaxel, docetaxel, tacrolimus, pimecrolimus, batimastat, mycophenolic acid, clobetasol, dexamethasone, rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, and combinations thereof.

1. Field of the Invention

This invention generally relates to a coating composition for coating implantable devices, such as a stent.

2. Description of the Background

Blood vessel occlusions are commonly treated by mechanically enhancing blood flow in the affected vessels, such as by employing a stent. Stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically stents are capable of being compressed, so that they can be inserted through small lumens via catheters, and then expanded to a larger diameter once they are at the desired location.

Stents are used not only for mechanical intervention, but also as vehicles for providing biological therapy. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. Local delivery of a therapeutic substance is a preferred method of treatment because the substance is concentrated at a specific site and thus smaller total levels of medication can be administered in comparison to systemic dosages that often produce adverse or even toxic side effects for the patient.

One method of medicating a stent involves the use of a polymeric carrier coated onto the surface of the stent. A composition including a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent by immersing the stent in the composition or by spraying the composition onto the stent. The solvent is allowed to evaporate, leaving on the stent surfaces a coating of the polymer and the therapeutic substance impregnated in the polymer.

The glass transition temperature (Tg) of a polymer plays an important role in defining coating characteristic. A coating material with a very low Tg induces unacceptable rheological behavior upon mechanical perturbation such as crimping of the coated stent on a balloon as well as the sheer force exerted on the coated stent by balloon expansion and withdrawal. As used herein, the term “unacceptable rheological behavior” refers to the rheological behavior of the coating which is not suitable for use as a coating on a medical device such as a stent. On the other hand, a coating material with a high Tg introduces brittle fracture in the high strain areas of the coating. FIG. 1 is a scanning electron micrograph of a poly(ester amide) benzyl ester coated small Vision stent (12 mm, available from Guidant Crop.) depicting the typical degree of damage observed post-expansion. Accordingly, the glass transition temperature of the polymer needs to be adjusted so as to provide suitable coating characteristics such that the coating is not too soft or too brittle. The adjustment in the glass transition temperature should be aimed at eliminating or significantly reducing coating damage caused by stent expansion, crimping or damage caused by the balloon.

The biocompatibility of the polymer, moreover, plays an important role in drug delivery stent technology. The coating should not provide for an adverse response so as to negate the affects of the drug on the stented lesion. Should the coating cause, for example, excessive inflammation, the feasibility of using the stent, despite is medicinal effects, is compromised. Accordingly, the coating should be inert or otherwise provide for a positive biological response.

The polymer used for the coating should also provide for control over delivery of a therapeutic agent. The coating should not release the agent too fast or the agent should not remain in the coating for an unacceptable period of time. If the drug is released too quickly, it may not provide an efficacious dose for an adequate duration of time. If the drug is released too slowly, it may not provide for an acceptable treatment regiment.

The various embodiment of the present invention address these and other needs.

A method of modulating thermal, mechanical, and surface properties of a coating on an implantable device comprising a polymer is provided. Also provided are a coating with enhanced thermal, mechanical and surface properties, a medical device comprising the coating and a method of using the medical device for treating a disorder such as restenosis and vulnerable plaque. The medical device can be, for example, a drug-delivery stent.

In one embodiment, where the coating comprises a polymer having a low Tg, the method comprises modifying the backbone, increasing the molecular weight, or narrowing the molecular weight distribution of the polymer to increase the Tg of the polymer. The backbone of the polymer can be modified by attaching, for example, a short chain diacid, an aromatic diol, an aromatic diacid, styrene, to the backbone. Alternatively, the polymer can be modified by replacing the pendant groups on the polymer with less bulky linear groups or more bulky groups that increase the potential rotation barrier of the polymer.

Where the coating comprises a polymer having a high Tg, the method comprises altering the polymer backbone, decreasing the molecular weight, or broadening the molecular weight distribution of the polymer to decrease the Tg of the polymer. The backbone of the polymer can be modified by attaching, for example, flexible blocks such as polyethers to the backbone. Alternatively, the polymer can be modified by replacing the pendant groups on the polymer with more bulky linear groups or less bulky groups that decrease the potential rotation barrier of the polymer.

In another embodiment, the coating comprising a polymer can be modified to include a hydrophilic, non-fouling polymer. Upon the coating development, the hydrophilic, non-fouling polymer segregates to the coating surface, resulting in improved in vivo biocompatibility of the coating.

In a further embodiment, the properties of a coating comprising a first, bulk polymer having a high Tg can be improved by blending the first polymer with a second, minor polymer having a low Tg. Conversely, the properties of a coating comprising a first polymer that is the bulk polymer having a low Tg can be improved by blending the first polymer with a second polymer that is the minor polymer having a high Tg. The coating can comprise about 50%-99.99% the bulk polymer and about 0.01%-50% the minor polymer.

In a further embodiment, the properties of a coating comprising a first polymer which is the bulk polymer that can have either a high or low Tg can be improved by blending the first polymer with a second, minor polymer that is a semi-crystalline polymer having a very low Tg and a melting point (Tm). The coating can comprise about 50%-99.99% the bulk polymer and about 0.01%-50% the minor polymer.

The mechanical properties of a coating on an implantable device can be improved by incorporating into the coating bioabsorbable or non-bioabsorable chopped fibers or high surface/volume ratio particulates to reinforce the coating.

The coatings disclosed herein with enhanced mechanical, thermal, and surface properties can further include a bioactive agent effective for treating a disease such as stenosis or cancer.

FIG. 1 is a SEM (scanning electron micrograph) of poly(ester amide benzyl ester) coated Vision™ stent, showing mechanical failure due to balloon shear.

FIG. 2 is an in vitro percent release rate from PEA Benyl Ester/everolimus coated stents.

FIG. 3 is a SEM for crimped stent coated with PolyAspirin (PX510, Tg 45° C.).

FIG. 4 is a SEM for crimped stent coated with 95% PolyAspirin (PX 510) mixed with 5% PEG (18.5K).

FIG. 5 is a SEM for crimped stent coated with 90% PolyAspirin (PX510) mixed with 10% PEG (18.5K).

FIG. 6 is a SEM for wet expanded stent coated with poly(ester amide) (PEA) (Mn=44K, Tg 16° C.).

FIG. 7 is a SEM for wet expanded stent coated with 90% PEA mixed with 10% polycaprolactone (PCL) (iv=1.14 dL/g, Tm 60° C.).

FIG. 8 is a SEM image of a stent coated with a composition containing a 300 μg mixture of poly(ester amide) (210 μg, Mn=44K, Tg=16° C.) and polycaprolactone (90 μg, inherent viscosity (i.v.) 1.14 dL/g, Tm 60° C.) in a concentration of 2% (w/w) in a solvent mixture of tetrahydrofuran (THF) (68.6%) and DMAC (29.4%) (total 98%) and then dried at about 80° C. for 60 minutes in an oven.

A method of modulating thermal, mechanical, and surface properties of a coating on an implantable device including a polymer is provided. Also provided are a coating with enhanced thermal, mechanical and surface properties, a medical device including the coating and a method of using the medical device for treating a disorder such as restenosis and vulnerable plaque. The medical device can be, for example, a drug-delivery stent. A coating composition can be changed and then applied to a device or the polymer can be applied to the device and then modified.

In one embodiment, if the coating including a polymer having a low Tg, the method comprises modifying the backbone, increasing the molecular weight, or narrowing the molecular weight distribution of the polymer to increase the Tg of the polymer. Low Tg materials have a proclivity to be softer and are more prone to failure during mechanical perturbations, such as crimping and balloon expansion. Additionally, low Tg materials are more permeable to a drug such as everolimus and therefore, exhibit higher drug release rates e.g., poly (ester amide) as shown in FIG. 2). To improve the mechanical properties of a coating formed of a low Tg polymer, the backbone of the polymer can be modified by attaching, for example, a short chain diacid, an aromatic diol, an aromatic diacid, or styrene, to the backbone. Alternatively, the polymer can be modified by replacing more bulky linear pendant groups on the polymer with less bulky linear groups so as to reduce the fractional free volume. In yet other embodiments, side groups that interfere with rotational motion of the polymer can be added to increase Tg. However, bulky side groups that inhibit rotation also increase fractional free volume of the polymer, which may decrease Tg.

If the coating including a polymer having a high Tg, the method comprises altering the polymer backbone, decreasing the molecular weight, or broadening the molecular weight distribution of the polymer to decrease the Tg of the polymer. The backbone of the polymer can be modified by attaching, for example, flexible blocks such as polyethers to the backbone. Alternatively, the polymer can be modified by replacing less bulky linear pendant groups on the polymer with more bulky linear groups so as to increase the fractional free volume to decrease Tg. In yet other embodiments, side groups that generate less interference with rotational motion of the polymer can be added to decrease Tg. However, side groups that generate less interference with rotational motion of the polymer also decrease fractional free volume of the polymer, which may increase Tg.

In another embodiment, the coating including a polymer (e.g., polyester amide) can be modified to include a hydrophilic, non-fouling polymer. Upon the coating development, the hydrophilic, non-fouling polymer segregates to the coating surface, resulting in improved in vivo biocompatibility of the coating.

In a further embodiment, the properties of a first, bulk polymer having a high Tg can be improved by blending the first polymer with a second, minor polymer having a low Tg. Conversely, the properties of a first polymer that is the bulk polymer having a low Tg can be improved by blending the first polymer with a second polymer that is the minor polymer having a high Tg. The coating can have about more than 50%-99.99% the bulk polymer and about 0.01%-less than 50% the minor polymer.

In a further embodiment, the properties of a coating comprising a first polymer which is the bulk polymer that can have either a high or low Tg can be improved by blending the first polymer with a second, minor polymer that is a semi-crystalline polymer having a very low Tg and/or a melting point (Tm). The coating can comprise about 50%-99.99% the bulk polymer and about 0.01%-50% the minor polymer.

In some embodiments, a filling material can be combined with the coating. The filling materials can be, for example, high surface to volume ratio (S/V) chopped fibers from absorbable or non-absorbable polymers, high surface to volume ratio (S/V) inert or bioactive particulates. Generally, useful filling materials have a surface to volume ration in the range between 1% and 50%, for example. The filling material comprises about 0.01%-50%, e.g., about 1%-20%, or about 1%-10% of the total coating composition.

The polymeric coating with modified mechanical or surface properties may optionally include a bioactive agent for controlled delivery of the agent. The composition can be used for coating an implantable device such as a stent.

As used herein, the term “low Tg polymer” refers to a biocompatible polymer having a glass transition temperature below about body temperature (37° C. for human beings). The term “high Tg polymer” refers to a biocompatible polymer having a glass transition temperature above about the body temperature. The term “very low Tg” refers to a Tg about 20° C. below the body temperature, for example, about 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., or 55° C. below the body temperature.

Tg as used herein generally refers to the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to a plastic state at atmospheric pressure. In other words, Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs, and it is discernible in a heat-capacity-versus-temperature graph for a polymer. When an amorphous or semicrystalline polymer is heated, its coefficient of expansion and heat capacity both increase as the temperature rises, indicating increased molecular motion. As the temperature rises, the sample's actual molecular volume remains constant. Therefore, a higher coefficient of expansion points to a free volume increase of the system and increased freedom of movement for the molecules. The increasing heat capacity corresponds to increasing heat dissipation through movement.

Tg of a given polymer can be dependent on the heating rate and can be influenced by the thermal history of the polymer. Furthermore, polymer chemical structure heavily influences Tg by affecting polymer mobility. Tg of a polymer increases along with the increase of the rotational barrier of the polymer. Tg of a polymer decreases along if the fractional free volume of the polymer increases. As discussed above, bulky pendant groups tend to inhibit rotational motion of a polymer but increase fractional free volume of the polymer. Therefore, generally, flexible main-chain components lower Tg and side groups that inhibit or interfere with rotational motion of the polymer raise Tg. Conversely, increasing flexible-side-group length of a polymer increases fractional free volume of the polymer and thus lowers Tg. Generally, increasing main-chain polarity increases Tg.

For example, Tg can be increased by the following architecture changes: (1) increase in chain stiffness resulting from longer, rigid units in the backbone, (2) potential barriers to rotation resulting from more bulky, side groups (e.g., PMMA and PMA), (3) increasing the interactions between neighboring polymer chains by incorporating ionic and H-bonding groups in the side chain (see, for example, polypropylene (PP) (−14° C.) vs. polyacrylonite (PAN) (103° C.), and (4) increasing the asymmetry and thereby increasing the dipole interaction (see, for example, polyisobutylene (PIB) (−73° C.) vs. PP (−14° C.)) (James E. Mark; Physical properties for Polymer Handbook; 1996; Page 147-149). On the other hand, the increase in linear side chains may decrease the Tg by increasing fractional free volume. For example, the poly(n-butyl methacrylate) (PBMA) (29° C.) has a lower Tg than polymethyl Methacrylate (PMMA) (100° C.) (James E. Mark; Physical properties for Polymer Handbook; 1996; Page 147-149).

Additionally, the presence of crosslinks can increase the observed Tg for a given polymer, and the presence of a drug or therapeutic agent can alter the Tg of a polymer due to plasticization effects. The magnitude of these plasticization effects depends on the miscibility and compatibility of the drug and polymer and the loading of drug in the polymer. Increasing the molecular weight and/or narrowing the range of the molecular weight distribution of a polymer can also increase the Tg of the polymer. Conversely, decreasing the molecular weight and/or broadening the range of the molecular weight of a polymer decrease the Tg of the polymer.

It is recognized in the art that hydration of the molecule of a polymer may increase the glass transition temperature of the polymer. The glass transition temperature described herein refers to the glass transition temperature of the hydrated polymer when a coating formed therefrom is implanted within the body of an animal.

In accordance with a further aspect of the invention, the properties of a coating including a polymer having a low glass transition temperature (Tg) can be enhanced by modifying the backbone of the polymer to increase the Tg. To modify the backbone of the polymer, the polymer can be subjected to modification with a chemical agent to increase the regularity of the structure of the polymeric molecule. For example, low Tg polymers having one or more functional groups such as COOH, OH, or an aromatic ring structure in the backbone can be modified with one or more stiffening groups such as short chain diacids, aromatic diols, aromatic diacids, or styrene so as to increase the glass-transition temperature of the polymer. The term “short chain diacids” refers to diacids having C1-C10 carbons. Some representative stiffening groups are given below:

##STR00001##

To illustrate, poly(ester amide) (PEA), which has a low Tg and has a COOH group in its backbone, can be modified with a stiffening group such as styrene, amide linkages, etc. (Scheme 1).

##STR00002##

As another example, polymers having hydroxyl end groups can be modified by short chain diacids or aromatic diacids via an ester bond. Alternatively, polymers having hydroxyl end groups can be converted to other groups such as amino or aldehyde groups for further modification. One such polymer is PEG. Some representative PEG bearing various kinds of end groups are listed below:

##STR00003##
The PEG bearing hydroxyl or amino end groups can be modified with a diacid, forming ester or amide bonds. The PEG bearing aldehyde end groups can be modified with stiffening groups having diamines (Scheme 2).

##STR00004##

Methods of modifying the backbone of a low Tg polymer have been well documented in the art (see, for example, Michael Smith, Organic Synthesis, 2nd Edition, McGraw-Hill, 2001). For example, for backbones of low Tg polymers bearing functional groups such as COOH, SO3H or other acidic or basic groups, poly(ester amide) being an example, stiffening pendant groups such as styrene, or amide linkages can be readily attached to the backbone so as to increase the Tg of the low Tg polymer.

The backbone of the low Tg polymer can also be modified by replacing all or part of the pendant groups with different pendant groups such as less bulky pendant groups. As described above, fractional free volume and rotational barrier properties of a side chain can be counter active forces. In other words, more bulky side groups can increase the fractional free volume which may in effect increase rotational barrier effects of the side group, and inhibition of rotation can increase Tg. The increase of size in linear side chains may decrease the Tg by increasing fractional free volume (James E. Mark; Physical properties for Polymer Handbook; 1996; Page 147-149).

##STR00005##

The Tg of the modified polymer may be increased as the less linear bulky pendant groups would allow the polymer molecules to pack better. For example, the bulky pendant groups of a PEA of the structure of formula I can be replaced with less bulky groups such as H to yield a PEA having the structure of formula II. The PEA of formula II would have an increased Tg as compared to the PEA of formula I.

In accordance with another aspect of the invention, the glass transition temperature of a low Tg polymer can be modified by increasing or decreasing the molecular weight of the polymer.

In one embodiment, the Tg can be increased by increasing the molecular weight beyond the threshold of chain entanglement of the polymer. Chain entanglement refers to the phenomenon that polymer molecules entangle with one another as a result of the length of the molecules. Chain entanglement occurs because polymers are chain molecules that are characterized by a molecular length that is much greater than the other dimensions of the molecule. Since the bonding in the chain direction is covalent, and the bonding between chains is weak, polymers can exhibit highly anisotropic properties. Polymeric material will also exhibit isotropic properties when the chain segments are oriented randomly within the material. If the random orientation occurs down to a molecular length scale, the material becomes amorphous. Most amorphous polymers have chains that are long enough for them to entangle with one another. The molecular weight required for chain entanglement to occur is referred to as the critical molecular weight for a particular polymer. Therefore, increasing the length of a polymer molecule, which increases the molecular weight of the polymer, increases the glass transition temperature of the polymer.

Conversely, to decrease the Tg of a polymer, one can decrease the molecular weight of the polymer.

In a further embodiment of the invention, the glass transition temperature of a low Tg polymer can be increased by narrowing the molecular distribution of the polymer. A narrower distribution of polymer allows the polymer to have better packing and thus a higher glass transition temperature. Conversely, where a lower Tg is desirable, one can select a polymer having a broader range of molecular weight distribution. For example, PolyAspirin in different grades has different molecular weight distribution pattern and has different glass transition temperatures (i.e., PolyAspirin 510, Mw, 20,000, Tg 45° C.; PolyAspirin 261, Mw, 20,000 Tg 35° C.; PolyAspirin 749, Mw, 20,000 Tg 17° C.).

In accordance with a further aspect of the invention, the properties of a polymeric coating including a coating polymer, which can be a hydrophobic polymer or can include a hydrophobic component, can be modified by incorporating into the coating one or more hydrophilic, blood compatible, non-fouling polymers. As mentioned before, the hydrophobic compound can be added before the composition is applied or subsequent to the application of the coating composition. The hydrophilic, non-fouling polymer can enhance the surface biocompatibility of a coating in that, after a coating process such as spray coating, but prior to implantation in a patient, the preferred energy conformation will drive the hydrophobic component of the composition to be enriched in the coating surface, and prior and/or subsequent to implantation in a patient, the hydrophilic, non-fouling polymer will segregate to the coating-air surface, resulting in improved biocompatibility in vivo of the coating.

Blending in the coating a hydrophilic, non-fouling polymer may also achieve multiple effects on the coating. In addition to the enhanced biocompatibility, a low Tg hydrophilic, non-fouling polymer can reduce the effective Tg of a coating comprising a high Tg polymer, thereby improving mechanical properties of the coating. The hydrophilicity of the non-fouling polymer may also increase water uptake of the coating, thus increasing the drug release rate and possibly absorption rate of the coating.

As used herein, the term “hydrophobic” refers to an attribute of a material that defines the degree of water affinity of the molecules of the material. Hydrophobicity and hydrophilicity are relative terms. Generally, hydrophobicity and hydrophilicity of a polymer can be gauged using the Hildebrand solubility parameter δ. The term “Hildebrand solubility parameter” refers to a parameter indicating the cohesive energy density of a substance. The δ parameter is determined as follows:
δ=(ΔE/V)1/2
where δ is the solubility parameter, (cal/cm3)1/2;

If a blend of a hydrophobic and hydrophilic polymer(s) is used, whichever polymer in the blend has lower δ value compared to the δ value of the other polymer in the blend is designated as a hydrophobic polymer, and the polymer with higher δ value is designated as a hydrophilic polymer. If more than two polymers are used in the blend, then each can be ranked in order of its δ value. For the practice of the present invention, the value of δ of a particular polymer is inconsequential for classifying a polymer as hydrophobic or hydrophilic. For example, if the coating polymer is a PEA, a polymer having a δ value higher than that of PEA is designated as hydrophilic.

Various ratios of the coating polymer over the hydrophilic, non-fouling polymer can be selected. For example, the coating can have a ratio of the coating polymer over the hydrophilic, non-fouling polymer in the range between about 0.01/99.99 and about 99.99/0.01, for example, about 0.01/99.99, 0.1/99.9, 1/99, 5/95, 10/90, 25/75, 50/50, 75/25, 90/10, 95/5, 99/1, 99.9/0.1 and 99.99/0.01.

As used herein, the hydrophilic, non-fouling polymer useful in the composition disclosed herein includes both biodegradable and non-biodegradable polymers. Representative hydrophilic, non-fouling polymers include, but not limited to, poly(ethylene glycol) (PEG), poly(ethylene oxide), poly(ethylene glycol-co-propylene oxide) (PEG-PPO), dextran, dextrin, poly(vinyl alcohol), poly(2-hydroxyethyl)methacrylate (HEMA), polyvinylpyrrolidone (PVP), poly(butyleneterephthalate-co-ethylene glycol) (PBT-PEG or POLYACTIVE™), polyalkylene oxalates, pluronic acid, sulfonated polystyrene, block copolymers with a bioabsorbable block and a perfluoro chain, PEG-caprolactone, PEG-D,L-lactide, cellulosics, biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen, heparin and hyaluronic acid, polyvinyl alcohols, and a combination thereof. In some embodiments, the hydrophilic, non-fouling polymer could exclude any one of these polymers. PEA can be combined with any particular one or combinations of these polymers.

Non-fouling is defined as preventing, delaying or reducing the amount of formation of protein build-up caused by the body's reaction to foreign material.

Theoretically, any hydrophilic, non-fouling polymer is useful in the disclosed composition. However, there is a tendency for the hydrophilic polymer component to leach out of the coating matrix. To minimize this tendency, one can choose a hydrophilic, non-fouling polymer having a molecular weight sufficiently high so as to not leach out of the composition. Generally, under physiological conditions, hydrophilic polymers leach out much easier from the coating. Therefore, the proper molecular weight of the polymer for coating the stent can be selected based on the hydrophilicity of the polymer—the more hydrophilic the polymer, the higher the molecular weight that one would need to choose to keep the polymer in the coating matrix.

Nonetheless, increasing the molecular weight of a hydrophilic polymer may decrease the polymer's ability to diffuse within the coating matrix. This may generate an adverse effect on surface blooming of the coating matrix. To minimize this effect, the molecular weight of the hydrophilic, non-fouling polymer can be below a critical molecular weight such that the hydrophilic, non-fouling polymer would retain its ability to diffuse readily within the coating matrix to allow surface blooming. As used herein, the critical molecular weight of a hydrophilic, non-fouling polymer generally refers to the maximum molecular weight at which the polymer retains its ability to diffuse.

Moreover, the proper molecular weight that one can select may also depend on the degradability of the hydrophilic, non-fouling polymer. For non-degradable, hydrophilic, non-fouling polymers, the proper molecular weight can be selected such that the polymeric molecule readily passes through the renal system. Typically, the proper molecular weight for a non-degradable, hydrophilic, non-fouling polymer would be below about 200,000 Daltons. For biodegradable hydrophilic, non-fouling polymers, larger molecules can be used because under physiological conditions, the biodegradable hydrophilic, non-fouling polymers can break down to smaller fragments and species that can readily pass through the renal system. Typically, the proper molecular weight for a degradable, hydrophilic, non-fouling polymer can be up to several million Daltons, e.g., 3 million Daltons.

Accordingly, the proper molecular weight would be one within the range between about the minimum molecular weight that a hydrophilic, non-fouling polymer would remain in the coating matrix and about the critical molecular weight of the polymer. In addition, the molecules of the polymer should be readily capable of passing through the renal system or breaking down into smaller fragments or species that can readily pass through the renal system. For example, a molecular weight of hyaluronic acid useful for forming the coating described herein would have a molecular weight between about 300,000 Daltons and about 2 millions Daltons, inclusive, and that of PEG would be between about 10,000 Daltons and about 150,000 Daltons, inclusive. For a poly(ester amide), the proper molecular weight can be one between about 50,000 Daltons and about 300,000 Daltons, for example, 150,000 Daltons.

The coating polymers that are modified can be any biocompatible low Tg or high Tg polymers. The coating polymer can be an absorbable or non-absorbable polymer. Absorbable is inclusive of bioerodable and biodegradable.

In one embodiment, the coating polymers can be any of the following: polyhydroxyalkanoates (PHA), poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), poly(hydroxybutyrate-co-valerate), poly (ortho ester), polyanhydride, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(lactide-co-glycolide), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphazenes, polyphosphoester urethane, poly(amino acids), poly(cyanoacrylates), poly(trimethylene carbonate), poly(iminocarbonate), polyurethanes, silicones, polyesters, polyolefins, polystyrene, polyisobutylene, ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers such as polyvinyl chloride, polyvinyl ethers such as polyvinyl methyl ether, polyvinylidene halides such as polyvinylidene fluoride and polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics such as polystyrene, polyvinyl esters such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins such as poly(butylenes-co-methacrylate) (PBMA) and ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, block copolymers formed of a bioabsorbable block and a perfluoro chain, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose.

In another embodiment, the coating polymer can be a polymer having low Tg. Exemplary polymers having a low Tg include, but are not limited to, poly(ester amide), poly(glycerol sebacic acid) (PGS), and low Tg PolyAspirin. PolyAspirin is a drug having about 100 individual molecules of aspirin strung together in a chain to form an elastic compound, or polymer.

In a further aspect of the present invention, the properties of a coating comprising a first, bulk polymer having a high Tg can be improved by blending the first polymer with a second, minor polymer having a low or very low Tg. Conversely, the properties of a coating comprising a first polymer that is the bulk polymer having a low or very low Tg can be improved by blending the first polymer with a second polymer that is the minor polymer having a high Tg. In some embodiments, bulk is the majority component of the blend. The coating can comprise about 50%-99.99% the bulk polymer and about 0.01%-50% the minor polymer. The resultant polymer blend would have an effective Tg below the high Tg and above the low Tg or very low Tg. The effective Tg of the polymer blend is the sum of the product of the molar ratio of the high Tg polymer times the high Tg plus the product of the molar ratio of the low Tg polymer times the low Tg (Tg(mix)=N×Tg(high)+(1-N)×Tg(low)).

Blending a low or very low Tg polymer and a high Tg polymer allows one to combine the mechanical strength of the high Tg polymer and the flexibility of the low or very low Tg polymer and thus to modulate the glass or melting temperature of a polymeric coating material and thus to control the mechanical properties of the coating. As shown in FIGS. 4, 6 and 8, implantable device coatings formed by a composition comprising a low Tg polymer and a high Tg polymer have good surface and mechanical properties. In addition, increasing the effective Tg of the polymeric coating composition will also slow the release rate of a bioactive agent, if the composition includes an agent. Further, increasing the effective Tg of the polymeric coating composition will slow the degradation rate of the composition, thereby reducing incidents of inflammatory responses to the degradation products released from polymer degradation.

In some embodiment, whether a polymer should be categorized as high Tg or low Tg is relative. The one having a higher Tg is referred to as “high Tg polymer”, and the one having a lower Tg is referred to as “low Tg polymer.” If more than one polymer is used, the polymers can be ranked in order of their respective Tg. The difference between the high and low Tg should be of sufficient differences to achieve desired coating properties.

The high Tg polymer is biocompatible, preferably, bioabsorbable. When the low Tg polymer in the coating composition is a bioabsorable polymer, the high Tg polymer is preferably a bioabsorbable polymer. Representative biocompatible, bioabsorbable polymers useful for the compositions disclosed herein include, but are not limited to, polyalkanoates (PHA), poly(3-hydroxyalkanoates) such as poly(3-hydroxypropanoate), poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) and poly(3-hydroxyoctanoate), poly(4-hydroxyalknaote) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanote), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers comprising any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers described herein or blends thereof, polyesters, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(lactide-co-glycolide), polycaprolactone, poly(lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(dioxanone), poly(ortho esters), poly(anhydrides), poly(tyrosine carbonates) and derivatives thereof, poly(tyrosine ester) and derivatives thereof, poly(imino carbonates), poly(phosphoesters), poly(phosphazenes), poly(amino acids), polysaccharides, collagen, chitosan, alginate, PolyAspirin, and combinations thereof. As for blending with PEA, it is preferred that the minor component be miscible with PEA and have a higher Tg than PEA.

Representative biocompatible, but non-bioabsorbable polymers include, but are not limited to, polyethers, polyamides, polyurethanes, polyalkylenes, polystyrene, poly(vinyl pyrrolidone) (PVP), alkylene vinyl acetate copolymers such as ethylene vinyl acetate (EVA), alkylene vinyl alcohol copolymers such as ethylene vinyl alcohol (EVOH or EVAL), and a combination thereof.

Representative low Tg polymers useful for the polymeric coatings described herein include, but not limited to, poly(ester amide), polyglycerol sebacic acid (PGS), polyalkylene oxides, polyethylene glycol (PEG), polyethylene oxide, polypropylene oxide (PPO), poly(ethylene glycol-co-propylene oxide) (PEG-PPO), low Tg PolyAspirin, low molecular weight DLPLA, and a combination thereof.

The term “low molecular weight DLPLA” refers to DLPLA having a molecular weight, for example, in the range between about 10,000 Daltons and about 20,000 Daltons. Low molecular weight DLPLA has a higher concentration of end-group, which can be —COOH or —OH, depending on the initiating species, typically a carboxylic acid or an alcohol, of the polymerization process making the PLA. Blending low molecular weight DLPLA in the coating would allow increase the concentration of —COOH or —OH end group in the polymer coating, which may increase water uptake, thereby having a better plasticizing effect and thus further decreasing the Tg. Therefore, blending low molecular weight DLPLA in the coating would have a double effect on the reduction of Tg. In addition, a higher concentration of the —COOH and/or —OH in the coating increases the release rate of a hydrophilic drug and also the absorption rate of an absorbable coating polymer. This is especially useful when the coating comprises a polymer that has a low in vivo degradation rate when it is desirable to enhance the degradation rate of the polymer. Examples of polymers having a low in vivo degradation rate include, but are not limited to PHB, PHBV, and DLPLA having a molecular weight more than 20,000 Daltons, etc.

Various ratios of the bulk low Tg polymer over the minor high Tg polymer can be selected. For example, the coating can have a ratio of the low Tg polymer over the high Tg polymer in the range between about 50/50 and about 99.99/0.01, for example, about 55/45, 60/40, 65/35, 70/30, 75/25, 80/20, 85/15, 90/10, 95/5, 99/1, 99.9/0.1 and 99.99/0.01.

In a further aspect of the invention, the properties of a coating comprising a first polymer which is the bulk polymer that can have either a high or low Tg can be improved by blending the first polymer with a second, minor polymer that is a semi-crystalline polymer having a very low Tg and/or a melting point (Tm). The coating can comprise about 50%-99.99% the bulk polymer and about 0.01%-50% the minor polymer. For example, the ratio of the bulk polymer over the semi-crystalline polymer can be about 55/45, 60/40, 65/35, 70/30, 75/25, 80/20, 85/15, 90/10, 95/5, 99/1, 99.9/0.1 and 99.99/0.01.

Semi-crystalline materials such as polyamides generally do not exhibit a clear Tg or ‘rubbery’ region. For these polymers the main transition occurs at Tm when the crystalline regions break down. Some chain rotation in the amorphous regions will occur below Tm, giving some impact resistance at these temperatures. The inclusion of the Tm contributes to the overall mechanical property of the coating.

Representative semi-crystalline polymers with a low or very low Tg include high density polyethylene (HDPE), polycaprolactone (PCL), polypropylene, natural rubber (NR), polydimethyl siloxane (PDMS), polyethylene terephthalate (PET), nylon 6, polyetherimide (PEI), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (HFP), and a combination thereof.

The polymeric coating with enhanced mechanical or surface properties disclosed herein can further include materials such as chopped fiber and high surface/volume (S/V) ratio particulates as reinforcements within the coating. As used herein, the term “high surface/volume ratio” refers to nano and/or microparticulates having a size in the range between 1 nanometer to 1000 microns, for example, particles of a size of about 10 nanometers, about 50 nanometers, about 100 nanometers, about 1 micron, about 10 microns, about 50 microns, about 100 microns, or about 200 microns.

Any biocompatible chopped fibers can be used. Representative useful chopped fibers include, but are not limited to, absorbable materials such as poly(glycolic acid), poly(dioxanone), absorbable glass fibers, carbon nanotube fibers and non-absorbable materials such as polyethylene (PE), poly(ethylene vinyl alcohol) (EVAL), polypropylene (PP), polyethylenetelephthalate (PET), hydroxyapatite, and combinations thereof. Exemplary useful high S/V particulates include, but are not limited to, alumina particulates, carbon nanoparticles, carbon nanoshells, carbon nanotubes, hydroxyapatite, tricalcium phosphate (TCP), carbides, nitrides, TiO2, SiO2, calcium sulfate, α-tricalcium phosphate (TCP), β-tricalcium phosphate (TCP), Carbonate-apatite (Dahlite), titanium (Ti), niobium (Nb), tantalum (Ta), platinum (Pt), alloy of platinum and iridium (Ir) (Pt/Ir), and combination thereof. It is noteworthy that some of the reinforcement materials, for example carbon nanotube, Al2O3, and polypropylene, may additionally contribute to passivation of the coating surface.

The chopped fibers and/or high S/V particulates can be present in the coating in various percentages, ranging, for example, from about 0.01% to about 20% of the total coating composition. In one embodiment, the coating can have about 1 wt %, about 5 wt %, or about 10 wt % of chopped fibers and/or high S/V particulates.

The polymeric coatings described herein may optionally include one or more bioactive agents. The bioactive agent can be any agent which is biologically active, for example, a therapeutic, prophylactic, or diagnostic agent.

Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Compounds with a wide range of molecular weight can be encapsulated, for example, between 100 and 500,000 grams or more per mole. Examples of suitable materials include proteins such as antibodies, receptor ligands, and enzymes, peptides such as adhesion peptides, saccharides and polysaccharides, synthetic organic or inorganic drugs, and nucleic acids. Examples of materials which can be encapsulated include enzymes, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator; antigens for immunization; hormones and growth factors; polysaccharides such as heparin; oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. The polymer can also be used to encapsulate cells and tissues. Representative diagnostic agents are agents detectable by x-ray, fluorescence, magnetic resonance imaging, radioactivity, ultrasound, computer tomagraphy (CT) and positron emission tomagraphy (PET). Ultrasound diagnostic agents are typically a gas such as air, oxygen or perfluorocarbons.

In the case of controlled release, a wide range of different bioactive agents can be incorporated into a controlled release device. These include hydrophobic, hydrophilic, and high molecular weight macromolecules such as proteins. The bioactive compound can be incorporated into polymeric coating in a percent loading of between 0.01% and 70% by weight, more preferably between 5% and 50% by weight.

In one embodiment, the bioactive agent can be for inhibiting the activity of vascular smooth muscle cells. More specifically, the bioactive agent can be aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells for the inhibition of restenosis. The bioactive agent can also include any substance capable of exerting a therapeutic or prophylactic effect for the patient. For example, the bioactive agent can be for enhancing wound healing in a vascular site or improving the structural and elastic properties of the vascular site. Examples of active agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The bioactive agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S. A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, proteins, peptides, anti-inflammatory agents, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, estradiol, steroidal anti-inflammatory agents, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578 (zotarolimus), clobetasol, cytostatic agents, prodrugs thereof, co-drugs thereof, and a combination thereof.

The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.

The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.

As used herein, an implantable device may be any suitable medical substrate including those that can be implanted in a human or veterinary patient. Examples of medical devices include, but not limited to, self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. For example, the device can be a bioabsorbable or bioerodable stent.

In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will retain on the medical device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation. Preferably, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.

For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.

The embodiments of the present invention will be illustrated by the following set forth examples. All parameters and data do not limit the scope of the embodiments of the invention.

PENTA™ 13 mm stents (available from Guidant Corp.) were coated as described in the following:

A composition containing 400 μg PolyAspirin PX510 (Tg 45° C.) in a concentration of 2% (w/w) in chloroform was sprayed onto one stent. Each stent was rotated about the stent's central longitudinal axis at a speed of 3 rpm during coating. After a waiting period of 1 second following the application of the composition, warm air of approximately 80° C. was directed from an air gun onto each stent for 15 seconds to remove most of the solvent. The coated stent was dried for about 45 minutes in an oven at about 80° C. The stent was then subject to a crimp test. An SEM image of the coated stent is shown in FIG. 3.

PENTA™ 13 mm stents were coated as described in the following:

The PENTA™ stents were coated with a composition containing a 400 μg mixture of high Tg PolyAspirin PX510 (PA) (Tg=45° C.) and PEG (Mw 18.5K) (Tg=−0.41° C.) (PolyAspirin:PEG=19/1 w/w) in a total concentration of 2% (w/w) in chloroform and then dried at about 80° C. for 45 minutes in an oven. The Tg of the coating of this polymeric mixture (Tg mix) is 40.7° C. (Tg mix=5% Tg PEG+95% Tg PA=40.7° C.) The stents were then subject to a crimp test. An SEM image of the coated stent is shown in FIG. 4.

PENTA™ 13 mm stents were coated as described in the following:

The PENTA™ stents were coated with a composition containing a 400 μg mixture of high Tg PolyAspirin PX510 and PEG (Mw 18.5K) (PolyAspirin:PEG=9/1 w/w) (Tg mix=10% Tg PEG+90% Tg PA=36.4° C.) in a total concentration of 2% (w/w) in chloroform and then dried at about 80° C. for 45 minutes in an oven. The stents were subject to a crimp test. An SEM image of the coated stent is shown in FIG. 5.

PENTA™ 13 mm stents were coated as described in the following:

The PENTA™ stents were primed with a composition containing a 200 μg PolyAspirin (PX261) in a concentration of 2% in chloroform and dried in an oven at 80° C. for 30 minutes. The primed stents were then coated with composition containing a 400 μg mixture of 180 μg PolyAspirin PX510, 20 μg PEG (Mw 18.5K) and 200 μg pactaxel in a total concentration of 2% in chloroform and dried at about 80° C. for 45 minutes in an oven.

VISION™ 12 mm stents (available from Guidant Corp.) were coated as described in the following:

VISION™ stents were coated with a composition containing 300 μg poly(ester amide) (Mn=44K, Tg=16° C.) in a concentration of 2% (w/w) in a solvent mixture of dimethylacetamide (DMAC) and methanol (w/w=1:1) and then dried at about 80° C. for 60 minutes in an oven. A coated stent was then tested for wet expansion. As shown in FIG. 6, the coating with PEA has poor mechanical properties.

VISION™ mm stents were coated as described in the following:

The VISION™ stents were coated with a composition containing a 300 μg mixture of poly(ester amide)) (270 μg, Mn=44K, Tg=16° C.) and polycaprolactone (30 μg, inherent viscosity (i.v.) 1.14 dL/g, Tm 60° C.) in a concentration of 2% (w/w) in a solvent mixture of tetrahydrofuran (THF) (68.6%) and DMAC (29.4%) (total 98%) and then dried at about 80° C. for 60 minutes in an oven. A coated stent was tested for wet expansion. An SEM image shown in FIG. 7 shows some improvements to the stent coating.

VISION™ mm stents were coated as described in the following:

The vision stents were coated with a composition containing a 300 μg mixture of poly(ester amide) (210 μg, Mn=44K, Tg=16° C.) and polycaprolactone (90 μg, inherent viscosity (i.v.) 1.14 dL/g, Tm 60° C.) in a concentration of 2% (w/w) in a solvent mixture of tetrahydrofuran (THF) (68.6%) and DMAC (29.4%) (total 98%) and then dried at about 80° C. for 60 minutes in an oven. A coated stent was tested for wet expansion. An SEM image as shown in FIG. 8, shows a much improved coating surface of the stent.

PENTA™ 13 mm stents can be coated as described in the following:

Primer: 200 μg high Tg PolyAspirin (PX261), to be coated from a solution of 2% PX261 in chloroform, to be dried 30 minutes at 80° C. in oven;

Load: 400 μg total solid, to be coated from a solution of 1% high Tg PolyAspirin (PX261) and 1.0% Paclitaxel in chloroform, and dried for 45 minutes at 80° C. in oven.

PENTA™ 13 mm stents can be coated as described in the following:

Primer: 200 μg high Tg PolyAspirin (PX261), to coated from a solution of 2% PX261 in chloroform, and dried 30 minutes at 80° C. in oven;

Load: 400 μg total solid, to be coated from a solution of 0.95% high Tg PolyAspirin (PX261), 0.05% PEG (18.5K), and 1.0% Paclitaxel in chloroform, and dried for 45 minutes at 80° C. in oven.

PENTA™ mm stents can be coated as described in the following:

Primer: 200 μg high Tg PolyAspirin (PX261), can be coated from a solution of 2% PX261 in chloroform, and dried 30 minutes at 80° C. in oven;

Load: 400 μg total solid, can be coated from a solution of 0.90% high Tg PolyAspirin (PX261), 0.10% PEG (18.5K), and 1.0% Paclitaxel in chloroform, and dried for 45 minutes at 80° C. in oven.

While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Pacetti, Stephen D., DesNoyer, Jessica Reneé, Hossainy, Syed Faiyaz Ahmed, Tang, Yiwen, Borgaonkor, Harshad

Patent Priority Assignee Title
11001525, Jun 17 2016 Owens Corning Intellectual Capital, LLC Sizing composition for wet use chopped strand glass fibers
8465789, May 04 2006 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
8596215, May 04 2006 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
8637110, May 04 2006 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
8741379, May 04 2006 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
8815274, Apr 30 2004 Advanced Cardiovascular Systems, Inc. Poly(ester amides) for the control of agent-release from polymeric compositions
8865189, Feb 28 2006 Abbott Cardiovascular Systems Inc. Poly(ester amide)-based drug delivery systems
8980300, Aug 05 2004 Advanced Cardiovascular Systems, Inc. Plasticizers for coating compositions
9067000, Oct 27 2004 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
9381280, Jun 13 2014 ABBOTT CARDIOVASCULAR SYSTEMS INC Plasticizers for a biodegradable scaffolding and methods of forming same
9539332, Aug 05 2004 Abbott Cardiovascular Systems Inc. Plasticizers for coating compositions
9610387, Jun 13 2014 Abbott Cardiovascular Systems Inc. Plasticizers for a biodegradable scaffolding and methods of forming same
9821091, Jun 06 2006 Abbot Cardiovascular Systems Inc. Methods of treatment of polymeric coatings for control of agent release rates
Patent Priority Assignee Title
2072303,
2386454,
3773737,
3849514,
4226243, May 12 1978 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
4304767, May 15 1980 SRI International Polymers of di- (and higher functionality) ketene acetals and polyols
4329383, Jul 24 1979 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
4343931, Dec 17 1979 Minnesota Mining and Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
4529792, Dec 17 1979 Minnesota Mining and Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
4611051, Dec 31 1985 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
4656242, Jun 07 1985 Henkel Corporation; HENKEL CORPORATION A DE CORP Poly(ester-amide) compositions
4733665, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4800882, Mar 13 1987 Cook Incorporated Endovascular stent and delivery system
4882168, Sep 05 1986 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
4886062, Oct 19 1987 Medtronic, Inc. Intravascular radially expandable stent and method of implant
4931287, Jun 14 1988 University of Utah Research Foundation Heterogeneous interpenetrating polymer networks for the controlled release of drugs
4941870, Nov 10 1986 JMS CO , LTD Method for manufacturing a synthetic vascular prosthesis
4977901, Nov 23 1988 Minnesota Mining and Manufacturing Company Article having non-crosslinked crystallized polymer coatings
5019096, Feb 11 1988 Trustees of Columbia University in the City of New York; TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE, A EDUCATIONAL CORP OF NY Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
5085629, Oct 06 1988 Cabot Technology Corporation Biodegradable stent
5100992, May 04 1989 BIOMEDICAL POLYMERS INTERNATIONAL, LTD A CORPORATION OF DELAWARE Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
5112457, Jul 23 1990 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
5133742, Jun 15 1990 LifeShield Sciences LLC Crack-resistant polycarbonate urethane polymer prostheses
5163952, Sep 14 1990 Expandable polymeric stent with memory and delivery apparatus and method
5165919, Mar 28 1988 ASAHI MEDICAL CO , LTD Medical material containing covalently bound heparin and process for its production
5219980, Apr 16 1992 SRI International Polymers biodegradable or bioerodiable into amino acids
5231140, May 22 1991 BASF Aktiengesellschaft Preparation of polymers with side groups with NLO activity, and the use thereof
5258020, Sep 14 1990 Method of using expandable polymeric stent with memory
5272012, Jun 23 1989 Medtronic Ave, Inc Medical apparatus having protective, lubricious coating
5292516, May 01 1990 MDV TECHNOLOGIES, INC Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
5298260, May 01 1990 MDV TECHNOLOGIES, INC Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
5300295, May 01 1990 MDV TECHNOLOGIES, INC Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
5306501, May 01 1990 MDV TECHNOLOGIES, INC Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
5306786, Dec 21 1990 U C B S A Carboxyl group-terminated polyesteramides
5328471, Feb 26 1990 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
5330768, Jul 05 1991 Massachusetts Institute of Technology Controlled drug delivery using polymer/pluronic blends
5376406, Aug 21 1992 Mitsui Toatsu Chemicals, Incorporated Method for preparing decomposable film and its utilization
5380299, Aug 30 1993 Cook Medical Technologies LLC Thrombolytic treated intravascular medical device
5417981, Apr 28 1992 Terumo Kabushiki Kaisha Thermoplastic polymer composition and medical devices made of the same
5447724, May 17 1990 Harbor Medical Devices, Inc. Medical device polymer
5455040, Jul 26 1990 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
5462828, Jun 22 1994 Xerox Corporation Styrene/n-butyl acrylate toner resins with excellent gloss and fix properties
5462990, Aug 05 1991 Board of Regents, The University of Texas System Multifunctional organic polymers
5464650, Apr 26 1993 Medtronic, Inc.; LATHAM, DANIEL W Intravascular stent and method
5485496, Sep 22 1994 Cornell Research Foundation, Inc.; Cornell Research Foundation, Inc Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
5516881, Aug 10 1994 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
5569463, May 17 1990 Harbor Medical Devices, Inc. Medical device polymer
5578073, Sep 16 1994 UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY, THE; RAMOT-UNIVERSITY AUTHORITY FOR APPLIED RESEARCH AND INDUSTRIAL DEVELOPMENT, LTD Thromboresistant surface treatment for biomaterials
5581387, Aug 04 1993 Fujitsu Limited Optical data communications network with a plurality of optical transmitters and a common optical receiver connected via a passive optical network
5584877, Jun 25 1993 Sumitomo Electric Industries, Ltd. Antibacterial vascular prosthesis and surgical suture
5605696, Mar 30 1995 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
5607467, Sep 14 1990 Expandable polymeric stent with memory and delivery apparatus and method
5609629, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
5610241, May 07 1996 Cornell Research Foundation, Inc Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
5616338, Feb 11 1988 Trustees of Columbia University in the City of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
5624411, Apr 26 1993 Medtronic, Inc Intravascular stent and method
5628730, Jun 15 1990 VENTION MEDICAL ADVANCED COMPONENTS, INC Phoretic balloon catheter with hydrogel coating
5644020, Aug 12 1993 Bayer Aktiengesellschaft Thermoplastically processible and biodegradable aliphatic polyesteramides
5649977, Sep 22 1994 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
5658995, Nov 27 1995 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
5667767, Jul 27 1995 MICRO THERAPEUTICS, INC Compositions for use in embolizing blood vessels
5670558, Jul 07 1994 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
5674242, Jun 06 1995 Boston Scientific Scimed, Inc Endoprosthetic device with therapeutic compound
5679400, Apr 26 1993 Medtronic, Inc Intravascular stent and method
5700286, Dec 13 1994 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
5702754, Feb 22 1995 Boston Scientific Scimed, Inc Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
5711958, Jul 11 1996 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd Methods for reducing or eliminating post-surgical adhesion formation
5716981, Jul 19 1993 ANGIOTECH BIOCOATINGS CORP Anti-angiogenic compositions and methods of use
5721131, Mar 06 1987 United States of America as represented by the Secretary of the Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
5723219, Dec 19 1995 Talison Research Plasma deposited film networks
5735897, Oct 19 1993 Boston Scientific Scimed, Inc Intravascular stent pump
5746998, Jun 24 1994 The General Hospital Corporation Targeted co-polymers for radiographic imaging
5759205, Jan 21 1994 Brown University Research Foundation Negatively charged polymeric electret implant
5776184, Apr 26 1993 Medtronic, Inc. Intravasoular stent and method
5783657, Oct 18 1996 CRODA INTERNATIONAL PLC Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
5788979, Jul 22 1994 Boston Scientific Scimed, Inc Biodegradable coating with inhibitory properties for application to biocompatible materials
5800392, Jan 23 1995 VENTION MEDICAL ADVANCED COMPONENTS, INC Microporous catheter
5820917, Jun 07 1995 Medtronic, Inc Blood-contacting medical device and method
5824048, Apr 04 1993 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
5824049, May 16 1996 Cook Medical Technologies LLC Coated implantable medical device
5830178, Oct 11 1996 MICRO THERAPEUTICS, INC Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
5837008, Apr 26 1993 Medtronic, Inc. Intravascular stent and method
5837313, Apr 19 1995 Boston Scientific Scimed, Inc Drug release stent coating process
5849859, Mar 27 1992 Novartis AG Polyesters
5851508, Jul 27 1995 MicroTherapeutics, Inc. Compositions for use in embolizing blood vessels
5854376, Mar 09 1995 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
5858746, Apr 20 1992 Board of Regents, The University of Texas System Gels for encapsulation of biological materials
5861387, Jun 28 1991 Endorecherche Inc. Controlled release systems and low dose androgens
5865814, Jun 07 1995 Medtronic, Inc. Blood contacting medical device and method
5869127, Feb 22 1995 Boston Scientific Scimed, Inc Method of providing a substrate with a bio-active/biocompatible coating
5873904, May 16 1996 Cook Medical Technologies LLC Silver implantable medical device
5876433, May 29 1996 Ethicon, Inc Stent and method of varying amounts of heparin coated thereon to control treatment
5877224, Jul 28 1995 Emory University Polymeric drug formulations
5879713, Oct 12 1994 Genzyme Corporation Targeted delivery via biodegradable polymers
5902875, Jan 28 1997 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
5905168, Dec 11 1992 Rhone-Poulenc Chimie Process for treating a material comprising a polymer by hydrolysis
5910564, Dec 07 1995 Goldschmidt GmbH Polyamino acid ester copolymers
5914387, Jan 28 1997 United States Surgical Corporation Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom
5919893, Jan 28 1997 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
5925720, Apr 19 1995 Kazunori, Kataoka Heterotelechelic block copolymers and process for producing the same
5932299, Apr 23 1996 KT Holdings, LLC Method for modifying the surface of an object
5932539, Oct 15 1996 ILLINOIS, THE BOARD OF TRUSTEES OF THE UNIVERSITY OF Biodegradable polymer matrix for tissue repair
5955509, May 01 1996 Board of Regents, The University of Texas System pH dependent polymer micelles
5958385, Sep 28 1994 LVMH RECHERCHE Polymers functionalized with amino acids or amino acid derivatives, method for synthesizing same, and use thereof as surfactants in cosmetic compositions, particularly nail varnishes
5962138, Dec 19 1995 Talison Research, Inc. Plasma deposited substrate structure
5971954, Jan 10 1990 Rochester Medical Corporation Method of making catheter
5980928, Jul 29 1997 Implant for preventing conjunctivitis in cattle
5980972, Dec 20 1996 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Method of applying drug-release coatings
5997517, Jan 27 1997 SURGICAL SPECIALTIES CORPORATION LIMITED Bonding layers for medical device surface coatings
6010530, Jun 07 1995 BIOMED RESEARCH, INC Self-expanding endoluminal prosthesis
6011125, Sep 25 1998 General Electric Company Amide modified polyesters
6015541, Nov 03 1997 Covidien LP Radioactive embolizing compositions
6033582, Jan 22 1997 Etex Corporation Surface modification of medical implants
6034204, Aug 08 1997 BASF Aktiengesellschaft Condensation products of basic amino acids with copolymerizable compounds and a process for their production
6042875, Apr 30 1997 Schneider (USA) Inc. Drug-releasing coatings for medical devices
6051576, Jan 28 1994 UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION, THE Means to achieve sustained release of synergistic drugs by conjugation
6051648, Dec 18 1995 AngioDevice International GmbH Crosslinked polymer compositions and methods for their use
6054553, Jan 29 1996 LANXESS Deutschland GmbH Process for the preparation of polymers having recurring agents
6056993, May 30 1997 LifeShield Sciences LLC Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
6060451, Sep 08 1994 NATIONAL RESEARCH COUNCIL OF CANADA, THE Thrombin inhibitors based on the amino acid sequence of hirudin
6060518, Aug 16 1996 SUPRATEK PHARMA INC Polymer compositions for chemotherapy and methods of treatment using the same
6080488, Feb 01 1996 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
6096070, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
6099562, Jun 13 1996 Boston Scientific Scimed, Inc Drug coating with topcoat
6110188, Mar 09 1998 Ethicon, Inc Anastomosis method
6110483, Jun 23 1997 SURGICAL SPECIALTIES CORPORATION LIMITED Adherent, flexible hydrogel and medicated coatings
6113629, May 01 1998 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
6120491, Nov 07 1997 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
6120536, Apr 19 1995 Boston Scientific Scimed, Inc Medical devices with long term non-thrombogenic coatings
6120788, Oct 16 1997 ADERANS RESEARCH INSTITUTE, INC Bioabsorbable triglycolic acid poly(ester-amide)s
6120904, Feb 01 1995 Schneider (USA) Inc. Medical device coated with interpenetrating network of hydrogel polymers
6121027, Aug 15 1997 Surmodics, Inc Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
6129761, Jun 07 1995 REPROGENESIS, INC Injectable hydrogel compositions
6136333, Jul 11 1996 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd Methods and compositions for reducing or eliminating post-surgical adhesion formation
6143354, Feb 08 1999 Medtronic, Inc One-step method for attachment of biomolecules to substrate surfaces
6153252, Jun 30 1998 Cordis Corporation Process for coating stents
6159978, May 28 1997 AVENTIS PHARMACEUTICALS PRODUCTS INC Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6165212, Oct 21 1993 LIFEPORT SCIENCES LLC Expandable supportive endoluminal grafts
6172167, Jun 28 1996 Dow Global Technologies Inc Copoly(ester-amides) and copoly(ester-urethanes)
6177523, Jul 14 1999 CARDIO TECH INTERNATIONAL, INC Functionalized polyurethanes
6180632, May 18 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6203551, Oct 04 1999 Advanced Cardiovascular Systems, INC Chamber for applying therapeutic substances to an implant device
6211249, Jul 11 1997 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd Polyester polyether block copolymers
6214901, Apr 27 1998 Surmodics, Inc.; Surmodics, Inc Bioactive agent release coating
6231600, Feb 22 1995 Boston Scientific Scimed, Inc Stents with hybrid coating for medical devices
6240616, Apr 15 1997 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
6245753, May 28 1998 Mediplex Corporation, Korea Amphiphilic polysaccharide derivatives
6245760, May 28 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6248129, Sep 14 1990 Boston Scientific Scimed, Inc Expandable polymeric stent with memory and delivery apparatus and method
6251136, Dec 08 1999 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
6254632, Sep 28 2000 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
6258121, Jul 02 1999 Boston Scientific Scimed, Inc Stent coating
6258371, Apr 03 1998 JARO, MICHAEL J Method for making biocompatible medical article
6262034, Jun 06 1995 NEUROTECH S A Polymeric gene delivery system
6270788, Apr 03 1998 Medtronic INC Implantable medical device
6277449, Dec 19 1995 Method for sequentially depositing a three-dimensional network
6283947, Jul 13 1999 Advanced Cardiovascular Systems, INC Local drug delivery injection catheter
6283949, Dec 27 1999 Advanced Cardiovascular Systems, INC Refillable implantable drug delivery pump
6284305, Jun 13 1996 Schneider (USA) Inc. Drug coating with topcoat
6287628, Sep 03 1999 Advanced Cardiovascular Systems, INC Porous prosthesis and a method of depositing substances into the pores
6299604, Aug 20 1998 Cook Medical Technologies LLC Coated implantable medical device
6306176, Jan 27 1997 SURGICAL SPECIALTIES CORPORATION LIMITED Bonding layers for medical device surface coatings
6331313, Oct 22 1999 Allergan, Inc Controlled-release biocompatible ocular drug delivery implant devices and methods
6335029, Aug 28 1998 BOSTON SCIENTIFIC LIMITED Polymeric coatings for controlled delivery of active agents
6344035, Apr 27 1998 Surmodics, Inc. Bioactive agent release coating
6346110, Oct 04 1999 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implantable device
6358556, Apr 19 1995 Boston Scientific Scimed, Inc Drug release stent coating
6379381, Sep 03 1999 Advanced Cardiovascular Systems, INC Porous prosthesis and a method of depositing substances into the pores
6387379, Apr 10 1987 UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
6395326, May 31 2000 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
6419692, Feb 03 1999 Boston Scientific Scimed, Inc Surface protection method for stents and balloon catheters for drug delivery
6451373, Aug 04 2000 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
6482834, May 28 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6494862, Jul 13 1999 Advanced Cardiovascular Systems; Advanced Cardiovascular Systems, INC Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
6503538, Aug 30 2000 Cornell Research Foundation, Inc Elastomeric functional biodegradable copolyester amides and copolyester urethanes
6503556, Dec 28 2000 Advanced Cardiovascular Systems, INC Methods of forming a coating for a prosthesis
6503954, Mar 31 2000 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
6506437, Oct 17 2000 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
6524347, May 28 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6527801, Apr 13 2000 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
6527863, Jun 29 2001 Advanced Cardiovascular Systems, Inc.; Advanced Cardiovascular Systems, INC Support device for a stent and a method of using the same to coat a stent
6528526, May 18 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6530950, Jan 12 1999 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
6530951, Oct 24 1996 Cook Medical Technologies LLC Silver implantable medical device
6540776, Dec 28 2000 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
6544223, Jan 05 2001 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
6544543, Dec 27 2000 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
6544582, Jan 05 2001 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
6555157, Jul 25 2000 Advanced Cardiovascular Systems, INC Method for coating an implantable device and system for performing the method
6558733, Oct 26 2000 Advanced Cardiovascular Systems, Inc.; Advanced Cardiovascular Systems, INC Method for etching a micropatterned microdepot prosthesis
6565659, Jun 28 2001 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
6572644, Jun 27 2001 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
6585755, Jun 29 2001 Advanced Cardiovascular Systems, INC Polymeric stent suitable for imaging by MRI and fluoroscopy
6585765, Jun 29 2000 Advanced Cardiovascular Systems, Inc.; Advanced Cardiovascular Systems, INC Implantable device having substances impregnated therein and a method of impregnating the same
6585926, Aug 31 2000 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
6605154, May 31 2001 Advanced Cardiovascular Systems, Inc. Stent mounting device
6616765, May 31 2000 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
6623448, Mar 30 2001 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
6625486, Apr 11 2001 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
6645135, Mar 30 2001 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
6645195, Jan 05 2001 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
6656216, Jun 29 2001 ABBOTT CARDIOVASCULAR SYSTEMS INC Composite stent with regioselective material
6656506, May 09 2001 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
6660034, Apr 30 2001 Advanced Cardiovascular Systems, Inc.; Advanced Cardiovascular Systems, INC Stent for increasing blood flow to ischemic tissues and a method of using the same
6663662, Dec 28 2000 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
6663880, Nov 30 2001 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
6666880, Jun 19 2001 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
6673154, Jun 28 2001 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
6673385, May 03 2000 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
6689099, Jul 13 1999 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
6695920, Jun 27 2001 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
6703040, Jan 11 2000 Ecolab USA Inc Polymer blends as biodegradable matrices for preparing biocomposites
6706013, Jun 29 2001 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
6709514, Dec 28 2001 Advanced Cardiovascular Systems, INC Rotary coating apparatus for coating implantable medical devices
6712845, Apr 24 2001 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
6713119, Sep 03 1999 Advanced Cardiovascular Systems, INC; ADVANCED CARDIOVASCULAR SYSTEMS, IN Biocompatible coating for a prosthesis and a method of forming the same
6716444, Sep 28 2000 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
6723120, Apr 15 1997 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
6733768, Aug 04 2000 Advanced Cardiovascular Systems, Inc. Composition for coating an implantable prosthesis
6740040, Jan 30 2001 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
6743462, May 31 2001 ADVANCED CARDIOVASCULAR SYSTEM, INC ; Advanced Cardiovascular Systems, INC Apparatus and method for coating implantable devices
6749626, Mar 31 2000 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
6753071, Sep 27 2001 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
6758859, Oct 30 2000 Advanced Cardiovascular Systems, INC Increased drug-loading and reduced stress drug delivery device
6759054, Sep 03 1999 Advanced Cardiovascular Systems, INC Ethylene vinyl alcohol composition and coating
6764505, Apr 12 2001 Advanced Cardiovascular Systems, INC Variable surface area stent
20010007083,
20010014717,
20010018469,
20010020011,
20010029351,
20010037145,
20010051608,
20020005206,
20020007213,
20020007214,
20020007215,
20020009604,
20020016625,
20020032414,
20020032434,
20020051730,
20020071822,
20020077693,
20020082679,
20020087123,
20020091230,
20020091433,
20020094440,
20020111590,
20020120326,
20020123801,
20020142039,
20020155212,
20020165608,
20020176849,
20020183581,
20020188037,
20020188277,
20030004141,
20030028243,
20030028244,
20030031780,
20030032767,
20030036794,
20030039689,
20030040712,
20030040790,
20030057601,
20030059520,
20030060877,
20030065377,
20030072868,
20030073961,
20030083646,
20030083739,
20030097088,
20030097173,
20030099712,
20030105518,
20030113439,
20030150380,
20030157241,
20030158517,
20030190406,
20030203991,
20030207020,
20030211230,
20040018296,
20040029952,
20040047978,
20040047980,
20040052858,
20040052859,
20040054104,
20040060508,
20040062853,
20040063805,
20040071861,
20040072922,
20040073298,
20040086542,
20040086550,
20040096504,
20040098117,
20040170685,
20050048121,
DE4224401,
EP301856,
EP396429,
EP514406,
EP604022,
EP623354,
EP665023,
EP701802,
EP716836,
EP809999,
EP832655,
EP850651,
EP879595,
EP910584,
EP923953,
EP953320,
EP970711,
EP982041,
EP1023879,
EP1192957,
EP1273314,
JP2001190687,
SU1016314,
SU1293518,
SU790725,
SU811750,
SU872531,
SU876663,
SU905228,
WO2599,
WO12147,
WO18446,
WO56376,
WO64506,
WO101890,
WO115751,
WO117577,
WO145763,
WO149338,
WO151027,
WO174414,
WO203890,
WO2056790,
WO2058753,
WO2102283,
WO226162,
WO234311,
WO3000308,
WO3022323,
WO3028780,
WO3037223,
WO3039612,
WO3080147,
WO3082368,
WO4000383,
WO2004009145,
WO2005011770,
WO2005039489,
WO2005042600,
WO2005051445,
WO2005066241,
WO9112846,
WO9409760,
WO9510989,
WO9524929,
WO9640174,
WO9710011,
WO9745105,
WO9746590,
WO9808463,
WO9817331,
WO9832398,
WO9832777,
WO9836784,
WO9901118,
WO9938546,
WO9963981,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 30 2004Advanced Cardiovascular Systems, Inc.(assignment on the face of the patent)
May 24 2004HOSSAINY, SYED F A Advanced Cardiovascular Systems, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0157770907 pdf
May 24 2004BORGANKOR, HARSHADAdvanced Cardiovascular Systems, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0157770907 pdf
Jun 01 2004TANG, YIWENAdvanced Cardiovascular Systems, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0157770907 pdf
Jun 04 2004DESNOYER, JESSICA RENEEAdvanced Cardiovascular Systems, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0157770907 pdf
Jun 04 2004DESNOYER, JESSION RENEEAdvanced Cardiovascular Systems, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0249580243 pdf
Jul 23 2004PACETTI, STEPHEN D Advanced Cardiovascular Systems, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0157770907 pdf
Date Maintenance Fee Events
Mar 26 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 13 2018M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 13 2022REM: Maintenance Fee Reminder Mailed.
Nov 28 2022EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 26 20134 years fee payment window open
Apr 26 20146 months grace period start (w surcharge)
Oct 26 2014patent expiry (for year 4)
Oct 26 20162 years to revive unintentionally abandoned end. (for year 4)
Oct 26 20178 years fee payment window open
Apr 26 20186 months grace period start (w surcharge)
Oct 26 2018patent expiry (for year 8)
Oct 26 20202 years to revive unintentionally abandoned end. (for year 8)
Oct 26 202112 years fee payment window open
Apr 26 20226 months grace period start (w surcharge)
Oct 26 2022patent expiry (for year 12)
Oct 26 20242 years to revive unintentionally abandoned end. (for year 12)