An embodiment of a system for disconnecting a first element from a second element at a desired position in a wellbore includes a disconnect tool containing an expandable material, the disconnect tool being actuatable from a locked position, wherein the first and the second elements are interconnected, to an unlocked position, wherein the first and the second element are disconnected, upon a determined expansion of the expandable material in response to a temperature at the desired position.
|
5. A disconnect tool, comprising:
a first portion having an internal chamber containing an expandable material and a neck forming an opening into the internal chamber;
a second portion having a cavity for receiving the neck;
a member having an expanded region, the member extending axially from the neck into the cavity;
a piston disposed within the neck and the cavity, the piston urging the expanded region into engagement with the second portion when the disconnect tool is in a locked position; and
a shear mechanism in connection between the first portion and the piston when the disconnect tool is in the locked position, the shear mechanism releasing the connection upon a determined expansion of the expandable material in response to the ambient temperature at the desired position in a wellbore.
1. A system for disconnecting a first element from a second element at a desired position in a wellbore, the system comprising:
a disconnect tool containing an expandable material, the disconnect tool being actuatable from a locked position, wherein the first and the second elements are interconnected, to an unlocked position, wherein the first and the second element are disconnected, upon a determined expansion of the expandable material in response to the ambient temperature at the desired position in the wellbore;
a first portion connected to the first element, the first portion having an internal chamber containing the expandable material and a neck forming an opening into the internal chamber;
a second portion connected to the second element, the second portion having a cavity receiving the neck when the tool is in the locked position; and
a locking mechanism releasably holding the first portion and the second portion in the locked position.
8. A method for disconnecting a first element from a second element at a desired location in a wellbore, the method comprising the steps of:
providing a disconnect tool comprising a first portion having a chamber and a neck forming an opening into the chamber, a second portion having a cavity adapted to receive the neck, an expandable material disposed in the chamber and a locking mechanism releasably holding the first portion and the second portion in a locked position interconnecting the first portion and the second portion;
making up the disconnect tool in the locked position wherein the neck is received in the cavity;
connecting the first element to the first portion and the second element to the second portion;
positioning the disconnect tool at the desired location in the well; and
activating the disconnect tool to an unlocked position upon a determined expansion of the expandable material in response to exposure of the disconnect tool to the ambient temperature at the desired location in the wellbore.
2. The system of
3. The system of
4. The system of
6. The system of
7. The system of
9. The method of
10. The method of
|
The present invention relates in general to actuators and more specifically to a thermally actuated actuator.
Oilfield tools and operations commonly utilize an actuator to shift a member to achieve a desired result such as opening or closing a valve, shifting a sleeve, energizing a seal, or disconnecting elements. In downhole wellbore operations, current technologies require some sort of surface intervention to activate the actuator. Examples of surface intervention primarily include manipulation of the well string and applying hydraulic pressure through the well string to the actuator. In at least one disconnect device, a hot fluid such as steam or a corrosive agent is utilized to melt a retaining member thereby releasing the interconnected elements.
It is a desire to provide a substantially self-contained actuator for downhole operation that does not require surface intervention for actuation. It is a still further desire to provide an actuation device that is actuated by the ambient conditions of the environment in which the actuator is positioned. It is a still further desire to provide an actuator that is actuated by expansion or contraction of a material in response to the surrounding environmental temperature.
Accordingly, thermally actuated actuators and methods are provided. In one embodiment, an actuator assembly includes a first portion, a second portion, means for releasably locking the first portion and the second portion in a locked position interconnecting the first and second portions, and an expandable material in operational connection with the locking means, the expandable material expanding in response to exposure to a selected temperature activating the locking means to an unlocked position disengaging the first portion from the second portion.
An embodiment of a system for disconnecting a first element from a second element at a desired position in a wellbore includes a disconnect tool containing an expandable material, the disconnect tool being actuatable from a locked position, wherein the first and the second elements are interconnected, to an unlocked position, wherein the first and the second element are disconnected, upon a determined expansion of the expandable material in response to a temperature at the desired position.
An embodiment of a method for disconnecting a first element from a second element at a desired location in a wellbore includes the steps of: providing a disconnect tool having first portion, a second portion, and containing an expandable material, the disconnect tool having a locked position interconnecting the first and second portions and an unlocked position disconnecting the first and second portions; making up the disconnect tool in the locked position; connecting the first element to the first portion and the second element to the second portion; positioning the disconnect tool at the desired location in the well; and activating the disconnect tool to the unlocked position upon a determined expansion of the expandable material in response to exposure of the disconnect tool to a temperature at the desired location in the wellbore.
The foregoing has outlined the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
The foregoing and other features and aspects of the present invention will be best understood with reference to the following detailed description of a specific embodiment of the invention, when read in conjunction with the accompanying drawings, wherein:
Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
As used herein, the terms “up” and “down”; “upper” and “lower”; and other like terms indicating relative positions to a given point or element are utilized to more clearly describe some elements of the embodiments of the invention. Commonly, these terms relate to a reference point as the surface from which drilling operations are initiated as being the top point and the total depth of the well being the lowest point.
The present disclosure teaches an actuation device and method that may utilize the temperature of the environment in which the device is positioned for actuation. The present invention is described herein in relation to an embodiment as a disconnect device for use downhole in wellbore operations. However, it is recognized that the device and method may be utilized in various operations and processes, such as for shifting valve members, energizing seals and the like.
In the illustrated embodiment, first element 18 is coiled tubing and second element 20 is a tubing string. Tubing string 20 is a primary tubing string and is utilized to run coil tubing string 18 into position without being damaged. Once coiled tubing 18 is positioned, the heat from formation 16 causes actuator 10 to actuate to a release position, disengaging coiled tubing 18 from tubing string 20. Coiled tubing 18 may then be removed from wellbore 12 leaving tubing string 20 in place for further operations, or left in position free from connection with primary tubing string 20.
Referring now to
First portion 22 is cylindrical body having a connection end 30, an opposing neck 32, and an internal chamber 34. Neck 32 forms an opening into chamber 34, and is sized to receive a portion of piston 26. A collet 36, having an arm and an expanded portion or finger 38, extends substantially axially from neck 32.
Connection end 30 is illustrated as a threaded connection for connecting with coiled tubing 18 (
Second portion 24 includes a generally tubular housing forming a cavity 50 adapted to receive neck 32 and piston 26. The internal surface 42 of second portion 24 is profiled to include at least one recessed portion 44 for holding expanded region 38 of collet 36 when actuator 10 is in the first or locked position. Piston 26 includes an external, stepped platform 46 having a raised portion for maintaining expanded region 38 in recess 44 when actuator 10 is in the locked position. Piston 26 may further include an expanded diameter end 52.
When in the locked position, first portion 22 and piston 26 are held in connection with one another by mechanism 48, generally described as a shear mechanism. Shear mechanism 48 may include any shear, fracture, frangible, or rupture type device such as pins, screws, discs, or other device that releases the connection upon exertion of determined force.
Piston 36, expanded region 38, and recess 44, work in combination as a releasable locking mechanism 60. Locking mechanism 60 interconnects first and second portions in a fixed position relative to each other in the locked position to prevent the accidental or premature disconnection of first and second portions when running the tool into the wellbore. Thermally activated expandable material 28 is in operational connection with locking mechanism 60. Upon a determined expansion of material 28, locking mechanism 60 is activated to the unlocked position as shown in
Second portion 24 also includes a connection end 40 adapted for connection with tubing string 20 (
Thermally activated expandable material 28 provides the motivating or actuating energy for moving locking mechanism 60 to the unlocked position. Material 28 may include any material (fluid, solid, or gas) that expands in response to thermal energy. The volumetric thermal expansion coefficient of material 28 must be such that the material will expand in response to the temperature differential between surface 14 (
The make-up of thermal actuator 10 in the locked, or run-in, position is now described. Piston 26 is positioned with expanded end 52 disposed within cavity 50. End 52 is located a distance form the back wall 54 of cavity 50 leaving a void 56. External platform 46 of piston 26 urges and holds expanded region 38 of collet 36 within recess portion 44 of internal surface 42. A retainer mechanism 58, such as a snap spring, may be positioned from second portion 24 to engage expanded end 52 of piston 26. First element 18 is connected to first portion 22 and second element 20 is connected to second portion 24. Thermally activated expandable material 28 is disposed in chamber 34 so as to substantially fill the volume of chamber 34 to piston 26. For purposes of this example, 0.25 liters of hydraulic oil is filled in chamber 34 up to piston 26. The surface, or run-in, temperature is 20 degrees Celsius. The anticipated temperature at the desired actuation point is approximately 100 degrees Celsius, and at which point the hydraulic oil will expand to a volume of approximately 0.267 liters.
Operation of thermal actuator 10 is now described with reference to
Exposure of actuator 10, and more specifically expandable material 28 to the increased temperature in formation 16 relative to surface 14 causes material 28 to expand. Expansion of material 28 urges piston 26 axially away from first portion 22 and chamber 34. Shear mechanism 48 maintains piston 26 in a fixed position with first portion 22 maintaining a substantially constant volume of chamber 34. The pressure generated by the expansion of material 28 acts on area 61 of piston 26 exerting a force on shear mechanism 48. The pressure in chamber 34 increases until the capacity of shear mechanism 48 is exceeded, releasing the connection between first portion 22 and piston 26. The pressure from expansion of material 28 then moves piston 36 axially. As piston 26 moves, expanded region 38 of collet 36 moves radially inward against the decreasing diameter of external platform 46, releasing region 38 from engagement with recess portion 44 and second portion 24.
As shown in
From the foregoing detailed description of specific embodiments of the invention, it should be apparent that a thermal actuator that is novel has been disclosed. Although specific embodiments of the invention have been disclosed herein in some detail, this has been done solely for the purposes of describing various features and aspects of the invention, and is not intended to be limiting with respect to the scope of the invention. It is contemplated that various substitutions, alterations, and/or modifications, including but not limited to those implementation variations which may have been suggested herein, may be made to the disclosed embodiments without departing from the spirit and scope of the invention as defined by the appended claims which follow.
Patent | Priority | Assignee | Title |
10221653, | Feb 28 2013 | Halliburton Energy Services, Inc. | Method and apparatus for magnetic pulse signature actuation |
10808523, | Nov 25 2014 | Halliburton Energy Services, Inc | Wireless activation of wellbore tools |
10907471, | May 31 2013 | Halliburton Energy Services, Inc. | Wireless activation of wellbore tools |
11326411, | Jun 18 2019 | BAKER HUGHES OILFIELD OPERATIONS LLC | Thermal activation of liner hanger for elastomer-less completion |
8839871, | Jan 15 2010 | Halliburton Energy Services, Inc | Well tools operable via thermal expansion resulting from reactive materials |
8973657, | Dec 07 2010 | Halliburton Energy Services, Inc. | Gas generator for pressurizing downhole samples |
9010442, | Sep 21 2012 | Halliburton Energy Services, Inc. | Method of completing a multi-zone fracture stimulation treatment of a wellbore |
9068411, | May 25 2012 | BAKER HUGHES HOLDINGS LLC | Thermal release mechanism for downhole tools |
9169705, | Oct 25 2012 | Halliburton Energy Services, Inc. | Pressure relief-assisted packer |
9284817, | Mar 14 2013 | Halliburton Energy Services, Inc. | Dual magnetic sensor actuation assembly |
9366134, | Mar 12 2013 | Halliburton Energy Services, Inc | Wellbore servicing tools, systems and methods utilizing near-field communication |
9562429, | Mar 12 2013 | Halliburton Energy Services, Inc | Wellbore servicing tools, systems and methods utilizing near-field communication |
9587486, | Feb 28 2013 | Halliburton Energy Services, Inc. | Method and apparatus for magnetic pulse signature actuation |
9587487, | Mar 12 2013 | Halliburton Energy Services, Inc | Wellbore servicing tools, systems and methods utilizing near-field communication |
9726009, | Mar 12 2013 | Halliburton Energy Services, Inc | Wellbore servicing tools, systems and methods utilizing near-field communication |
9752414, | May 31 2013 | Halliburton Energy Services, Inc | Wellbore servicing tools, systems and methods utilizing downhole wireless switches |
9982530, | Mar 12 2013 | Halliburton Energy Services, Inc | Wellbore servicing tools, systems and methods utilizing near-field communication |
9988872, | Oct 25 2012 | Halliburton Energy Services, Inc. | Pressure relief-assisted packer |
Patent | Priority | Assignee | Title |
4589484, | Oct 11 1984 | FOSTER-MILLER, INC , A CORP OF MA | Deployment system |
4640354, | Dec 08 1983 | Schlumberger Technology Corporation | Method for actuating a tool in a well at a given depth and tool allowing the method to be implemented |
5209303, | Nov 20 1991 | HALLIBURTON COMPANY A CORP OF DELAWARE | Compressible liquid mechanism for downhole tool |
5323853, | Apr 21 1993 | Camco International Inc. | Emergency downhole disconnect tool |
5392860, | Mar 15 1993 | Baker Hughes Incorporated | Heat activated safety fuse |
6202747, | Sep 02 1998 | Schlumberger Technology Corporation | Hydraulic well packer and method |
6276457, | Apr 07 2000 | Halliburton Energy Services, Inc | Method for emplacing a coil tubing string in a well |
6352119, | May 12 2000 | Schlumberger Technology Corporation | Completion valve assembly |
6425443, | Nov 20 2000 | BRP US INC | Pressure compensated disconnect system and method |
6439305, | May 19 2000 | Bakke Technology AS | Hydraulically releasable coupling device |
6481496, | Jun 17 1999 | Schlumberger Technology Corporation | Well packer and method |
6523613, | Oct 20 2000 | Schlumberger Technology Corp. | Hydraulically actuated valve |
6571879, | Nov 08 2000 | Baker Hughes Incorporated | Surface-actuated release tool for submersible pump assemblies |
6684950, | Mar 01 2001 | Schlumberger Technology Corporation | System for pressure testing tubing |
6923256, | Oct 28 2003 | VARCO I P, INC | Disconnect device |
7090008, | May 29 2003 | Sensor Highway Limited | System to connect conduit sections in a subterranean well |
7152674, | Nov 29 2000 | Wells Fargo Bank, National Association | Disconnect devices |
7174963, | Mar 21 2003 | Wells Fargo Bank, National Association | Device and a method for disconnecting a tool from a pipe string |
20060278388, | |||
EP1169545, | |||
WO188328, | |||
WO200029715, | |||
WO2006052333, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 26 2007 | Schlumberger Technology Corporation | (assignment on the face of the patent) | / | |||
Mar 26 2007 | NGUY, VI | Schlumberger Technology Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019136 | /0656 |
Date | Maintenance Fee Events |
Jun 27 2014 | REM: Maintenance Fee Reminder Mailed. |
Nov 16 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 16 2013 | 4 years fee payment window open |
May 16 2014 | 6 months grace period start (w surcharge) |
Nov 16 2014 | patent expiry (for year 4) |
Nov 16 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 16 2017 | 8 years fee payment window open |
May 16 2018 | 6 months grace period start (w surcharge) |
Nov 16 2018 | patent expiry (for year 8) |
Nov 16 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 16 2021 | 12 years fee payment window open |
May 16 2022 | 6 months grace period start (w surcharge) |
Nov 16 2022 | patent expiry (for year 12) |
Nov 16 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |