An organic electronic module has a clock generator having n organic switching elements connected in series. The output of the nth organic switching element is connected to the input of the first organic switching element. The outputs of two or more organic switching elements are connected to respective inputs of a first electronic circuit of the electronic module tapping off two or more clock signals such that a first clock signal for a first electronic circuit is tapped from the output of a first one of the switching elements and a second clock signal, phase-shifted with respect to the first clock signal, for the first electronic circuit is tapped from the output of a second switching element different than the first switching element.
|
1. An electronic module having organic components comprising:
a first electronic circuit; and
a clock generator having n organic switching elements, wherein n is greater than or equal to 11 and is odd, each element having an input and an output and connected in series from a first to the nth element and constructed from organic components, the output of the nth organic switching element being connected as an input to the first organic switching element, the outputs of two or more of the organic switching elements having at least one further switching element therebetween such that the two or more switching elements are not directly connected to one another, the outputs of the two or more switching elements being connected as a respective input to the first electronic circuit for tapping off two or more clock signals at tapping points from the outputs of the two or more switching elements to the respective corresponding inputs of the electronic circuit, the at least one further switching element output not being connected as a clock signal to the first electronic circuit, with the result that a first clock signal for the first electronic circuit is tapped off from the output of a first of the two or more switching elements at a first tapping point and a second clock signal, which is phase-shifted with respect to the first clock signal, for the first electronic circuit is tapped off at a second tapping point from the output of a second of the two or more switching elements so that a clock signal is only applied to the first electronic circuit from the outputs of the two or more switching elements and not from the further switching element output, and wherein the outputs of three or more of the organic switching elements of the clock generator are connected to respective inputs of the first electronic circuit for the purpose of tapping off three or more clock signals which are phase-shifted with respect to one another, and in that the first electronic circuit has two or more logic gates which are constructed from organic components and combine the three or more clock signals to generate two or more output signals having pulses which do not overlap in time of occurrence.
2. The electronic module as claimed in
3. The electronic module as claimed in
4. The electronic module as claimed in
5. The electronic module as claimed in
6. The electronic module as claimed in
7. The electronic module as claimed in
8. The electronic component as claimed in
9. The electronic module as claimed in
10. The electronic module as claimed in
11. The electronic module as claimed in
12. The electronic module as claimed in
|
The invention relates to an electronic module having organic components, in particular an RFID transponder (RFID=Radio Frequency Identification).
RFID transponders are increasingly being used to provide goods, articles or security products with information which can be read electronically. They are thus used, for example, as electronic bar code for consumer goods, as a luggage tag for identifying luggage or as a security element which is incorporated in the cover of a passport and stores authentication information.
RFID transponders usually comprise two components, an antenna and a silicon chip. The RF carrier signal transmitted by the base station is injected into the antenna resonant circuit of the RFID transponder. The silicon chip modulates an additional item of information onto the signal which is fed back to the base station. In this case, modulation is controlled by an ID code generator which is implemented on the silicon chip using digital circuit technology. In this case, the circuit clock rate for the electronic circuits on the silicon chip is directly derived from the frequency of the radio signal received by the antenna.
The digital circuits on the silicon chip are therefore operated in synchronism with the radio carrier frequency.
In order to be able to reduce the costs of producing RFID transponders, it has been proposed to use organic integrated circuits based on organic field effect transistors in RFID transponders WO 99/304 32, for example, thus proposes using an integrated circuit, which is essentially constructed from organic material and provides the function of an ID code generator, in an RFID transponder.
For carrier frequencies of greater than 10 MHz, in particular in the region of 13.56 MHz which is of particular interest for RFID transponders and in the UHF band above 900 MHz, it is currently not possible to operate organic circuits of RFID transponders in synchronism with the radio carrier frequency, as is customary in the case of silicon RFID transponders. On account of the restricted charge carrier mobility and the resultant switching times, organic logic circuits are currently too slow to operate in synchronism with the carrier frequency at such high switching frequencies.
In addition, a multiplicity of clock generators which provide a clock signal for the purpose of operating logic circuits, in particular processors, are known. Such clock generators usually have a resonant circuit from which the clock signal is derived.
The invention is now based on the object of specifying an improved electronic module having organic components.
The object of the invention is achieved by an electronic module having organic components, in particular by an RFID transponder, which module has a clock generator and a first electronic circuit, the clock generator having n organic switching elements which are connected in series and are each constructed from organic components, in particular from organic field effect transistors, the output of the nth organic switching element of the clock generator being connected to the input of the first organic switching element of the clock generator, and the outputs of two or more of the organic switching elements of the clock generator being connected to respective inputs of the first electronic circuit for the purpose of tapping off two or more clock signals, with the result that a first clock signal for the first electronic circuit is tapped off from the output of a first one of the switching elements and a second clock signal, which is phase-shifted with respect to the first clock signal, for the first electronic circuit is tapped off from the output of a second switching element which differs from the first switching element.
A module which comprises organic components and generates a periodically circulating signal is thus used as a clock generator. Output signals for the first electronic circuit are tapped off from two or more points in the chain, said output signals, on account of their properties (phase offset), allowing the outlay on components for implementing the function of the first circuit to be reduced or allowing more complex data signals which could otherwise only be generated using more complex logic modules, such as counters or decoder circuits, to be generated with little outlay on components.
Particular advantages result when the invention is used in the field of RFID transponders. A separate circuit clock rate which is independent of the radio carrier frequency is generated inside the organic circuit of the RFID transponder using the clock generator. The organic circuit of the RFID transponder is then operated asynchronously to the carrier frequency of the radio path at this clock rate which is specifically generated for this purpose. The output signal from the circuit is then used to modulate the radio signal. This makes it possible to clock the organic circuit part of the RFID transponder in a completely asynchronous manner to the carrier frequency.
The periodic output signals produced in this arrangement are optimally matched to the switching speed of organic circuits and may therefore be optimally used as clock signals, for example for the organic circuit of an RFID transponder. In this case, the frequency and phase angles of the clock signals are essentially dependent only on the design of the clock generator module described above (length of the chain, component geometry etc.) but not on the carrier frequency of the radio path of the RFID transponder.
Advantageous developments of the invention are described in the subclaims.
The first electronic circuit is preferably a logic circuit which is constructed from organic components. As already explained above, the output signals from the clock generator are optimally matched to the switching speed of organic circuits, with the result that the two or more clock signals derived from the clock generator can be used to implement a multiplicity of functions which could otherwise only be implemented with a considerably higher outlay on components or could not be implemented at all.
According to one preferred exemplary embodiment of the invention, the first electronic circuit in this case has one or more logic gates which are constructed from organic components and logically combine the two or more clock signals supplied and thus generate one or more output signals for a second electronic circuit which is likewise preferably a logic circuit which is constructed from organic components. More complex signals, for example asymmetrical signals, which could otherwise only be generated using complex circuits or—on account of the restricted charge carrier mobility and resultant switching times of organic components—could not be generated at all using organic circuit technology can be obtained in this manner using simple circuits having only a few logic gates. It is thus possible, for example, to generate data signals or addressing signals for organic logic circuits at a very high circuit clock rate and with very little delay, which signals could not be generated in another manner using organic components, at least not at such a high circuit clock rate and/or delay. Accordingly, the invention can also be used to improve and speed up information processing by organic digital circuits.
Two clock signals are preferably tapped off from switching elements of the clock generator, said switching elements being at a distance of INT (n/2) switching elements from one another, in which case n should preferably be selected to be even. Two clock signals which are phase-shifted through 90° relative to one another can be generated in this manner.
According to one preferred exemplary embodiment of the invention, second clock signals are combined in the first electronic circuit using a NOR gate or an AND gate in order to generate an asymmetrical pulsed output signal. The pulse width of the pulses of the output signal is determined in this case by the number of organic switching elements arranged between the tapping points of the clock signals, with the result that the relative position of the two tapping points with respect to one another is selected in such a manner that the desired pulse width of the pulses of the output signal results. The asymmetrical signals generated in this manner make it possible to distinguish between the useful signal and the unavoidable noise during radio transmission in a simpler manner, with the result that advantages result during operation of an RFID transponder as a result of the use of a clock signal which has been generated in this manner.
According to another preferred exemplary embodiment of the invention, the outputs of three or more of the organic switching elements of the clock generator are connected to respective inputs of the first electronic circuit for the purpose of tapping off three or more clock signals which are phase-shifted with respect to one another. The first electronic circuit has two or more logic gates which are constructed from organic components and combine the three or more clock signals in order to generate two or more output signals having pulses which do not overlap. These output signals can be used, for example, to address memory locations. In this case, the addressing signals can be generated with very little outlay on components. The three or more clock signals which are phase-shifted with respect to one another are thus combined in pairs, for example, using a logic gate, and the number of electronic switching elements arranged between the respective tapping points of the clock signals is selected in such a manner that the two or more output signals have pulses which do not overlap.
In order to generate more complex addressing or data signals, the first electronic circuit is in the form of a two-stage or multistage logic circuit, very complex signal forms which can be used, for example, as ID information of an RFID transponder also being able to be realized in this case with very little outlay on components.
In comparison with the otherwise usually used traditional generation of such signals using counter and decoder circuits, the practice of directly generating these more complex signals from the combination of a plurality of phase-shifted clock signals has the advantage that it requires considerably fewer components than these relatively complex modules. This reduces the amount of space required and thus increases the yield of the organic circuits.
The electronic module according to the invention can be used to provide a multiplicity of functions and is not restricted to use in an RFID transponder. In this case, particular advantages result if the electronic module is manufactured in the form of a flexible film element which is used as a security element for protecting valuable documents, for example banknotes or passports, or for protecting goods.
The invention is explained by way of example below using a plurality of exemplary embodiments and with the aid of the accompanying drawings.
In this case, the electrical functional layers of the film body are configured in such a manner that they realize the functions explained below.
According to a first exemplary embodiment of the invention, the electronic module 10 is used as an RFID transponder.
From a functional point of view, the electronic module 10 has an antenna resonant circuit 11, a rectifier 12, a modulator 13, an electronic circuit 4 and a clock generator 2 for this purpose. The rectifier 12 provides the supply voltage for the modulator 3, the electronic circuit 4 and the clock generator 2. The clock generator 2 provides the switching clock rate for the electronic circuit 4 and continues to also supply the electronic circuit 4 with a plurality of clock signals 31 to 35 which are phase-shifted with respect to one another. The electronic circuit generates the control signal for the modulator 13 and provides, for example, the function of an ID code generator or a control module which uses a specific communication protocol to interchange authorization or identification information with a corresponding base station via the air interface by driving the modulator 13.
As indicated in
The organic switching elements 21 are preferably a respective inverter which is constructed from organic components.
For example,
The clock frequency of a clock signal that is tapped off from the clock generator 2 according to
The clock signals 31 to 35 which are supplied to respective modules 41 to 45 of the electronic circuit 4 are tapped off in this case from the outputs of different organic switching elements 21. The clock signals 31 to 35 are thus tapped off from the tapping points 22 to 26. The clock signals 31 to 35 are thus at the same clock frequency but have a different phase angle which is determined by the number of organic switching elements 21 arranged between the respective tapping points.
The electronic circuit 6 is a logic gate, for example an AND gate or a NOR gate. The electronic circuit generates a pulsed output signal 73 by combining the two clock signals 71 and 72, the pulse width of said output signal being determined, on the one hand, by the type of logic combination (AND, NOR on the one hand; OR, NAND on the other hand) and by the distance between the tapping points 52 and 53. In this case, the phase angle of this pulsed signal is determined by the position of the tapping points 52 and 53 and by the type of combination.
When using this functional principle, very complex data and addressing signals can be generated. If a plurality of clock signals which are phase-shifted with respect to one another are tapped off from different tapping points of the clock generator 5 and are respectively combined in pairs, as shown in
Ullmann, Andreas, Fix, Walter, Knobloch, Alexander, Welker, Merlin
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3512052, | |||
3769096, | |||
3955098, | Oct 12 1973 | Hitachi, Ltd. | Switching circuit having floating gate mis load transistors |
3999122, | Feb 14 1974 | Siemens Aktiengesellschaft | Semiconductor sensing device for fluids |
4246298, | Mar 14 1979 | American Can Company | Rapid curing of epoxy resin coating compositions by combination of photoinitiation and controlled heat application |
4302648, | Jan 22 1979 | Shin-Etsu Polymer Co., Ltd. | Key-board switch unit |
4340057, | Dec 24 1980 | S. C. Johnson & Son, Inc. | Radiation induced graft polymerization |
4442019, | May 26 1978 | Electroordered dipole suspension | |
4554229, | Apr 06 1984 | AT&T Technologies, Inc. | Multilayer hybrid integrated circuit |
4865197, | Mar 04 1988 | Unisys Corporation | Electronic component transportation container |
4926052, | Mar 03 1986 | Kabushiki Kaisha Toshiba | Radiation detecting device |
4937119, | Dec 15 1988 | Hoechst Celanese Corp. | Textured organic optical data storage media and methods of preparation |
5075816, | Aug 11 1989 | Vaisala Oy | Capacitive humidity sensor construction and method for manufacturing the sensor |
5173835, | Oct 15 1991 | Freescale Semiconductor, Inc | Voltage variable capacitor |
5206525, | Dec 27 1989 | Nippon Petrochemicals Co., Ltd. | Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials |
5259926, | Sep 24 1991 | Hitachi, Ltd. | Method of manufacturing a thin-film pattern on a substrate |
5321240, | Jan 30 1992 | Mitsubishi Denki Kabushiki Kaisha | Non-contact IC card |
5347144, | Jul 04 1990 | Centre National de la Recherche Scientifique (CNRS) | Thin-layer field-effect transistors with MIS structure whose insulator and semiconductor are made of organic materials |
5364735, | Jul 01 1988 | Sony Corporation | Multiple layer optical record medium with protective layers and method for producing same |
5395504, | Feb 04 1993 | Asulab S.A. | Electrochemical measuring system with multizone sensors |
5480839, | Jan 15 1993 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing method |
5486851, | Oct 30 1991 | Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V. | Illumination device using a pulsed laser source a Schlieren optical system and a matrix addressable surface light modulator for producing images with undifracted light |
5502396, | Sep 21 1993 | Asulab S.A. | Measuring device with connection for a removable sensor |
5528222, | Sep 09 1994 | INTERMEC IP CORP , A CORPORATION OF DELAWARE | Radio frequency circuit and memory in thin flexible package |
5546889, | Oct 06 1993 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Method of manufacturing organic oriented film and method of manufacturing electronic device |
5569879, | Feb 19 1991 | Gemplus Card International | Integrated circuit micromodule obtained by the continuous assembly of patterned strips |
5574291, | Dec 09 1994 | Bell Semiconductor, LLC | Article comprising a thin film transistor with low conductivity organic layer |
5578513, | Sep 17 1993 | Renesas Electronics Corporation | Method of making a semiconductor device having a gate all around type of thin film transistor |
5580794, | Aug 24 1993 | POLYMER TECHNOLOGY SYSTEMS, INC | Disposable electronic assay device |
5625199, | Jan 16 1996 | Bell Semiconductor, LLC | Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors |
5629530, | May 16 1994 | CREATOR TECHNOLOGY B V | Semiconductor device having an organic semiconductor material |
5630986, | Jan 13 1995 | Bayer HealthCare LLC | Dispensing instrument for fluid monitoring sensors |
5652645, | Jul 24 1995 | Anvik Corporation | High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates |
5691089, | Mar 25 1993 | Texas Instruments Incorporated | Integrated circuits formed in radiation sensitive material and method of forming same |
5693956, | Jul 29 1996 | UNIVERSAL DISPLAY CORPORATION | Inverted oleds on hard plastic substrate |
5705826, | Jun 28 1994 | PANASONIC LIQUID CRYSTAL DISPLAY CO , LTD | Field-effect transistor having a semiconductor layer made of an organic compound |
5729428, | Apr 25 1995 | NEC TOKIN TOYAMA, LTD | Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same |
5854139, | Jun 28 1994 | PANASONIC LIQUID CRYSTAL DISPLAY CO , LTD | Organic field-effect transistor and production thereof |
5869972, | Feb 26 1996 | Inverness Medical Switzerland GmbH | Testing device using a thermochromic display and method of using same |
5883397, | Jul 01 1993 | Mitsubishi Denki Kabushiki Kaisha | Plastic functional element |
5892244, | Jan 10 1989 | Mitsubishi Denki Kabushiki Kaisha; Sumitomo Chemical Company, Limited | Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor |
5946551, | Mar 25 1997 | GLOBALFOUNDRIES Inc | Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric |
5967048, | Jun 12 1998 | Anocoil Corporation | Method and apparatus for the multiple imaging of a continuous web |
5970318, | May 15 1997 | UNILOC 2017 LLC | Fabrication method of an organic electroluminescent devices |
5973598, | Sep 11 1997 | Precision Dynamics Corporation | Radio frequency identification tag on flexible substrate |
5994773, | Mar 06 1996 | FUJI MACHINERY MFG & ELECTRONICS CO , LTD | Ball grid array semiconductor package |
5997817, | Dec 05 1997 | Roche Diabetes Care, Inc | Electrochemical biosensor test strip |
5998805, | Dec 11 1997 | UNIVERSAL DISPLAY CORPORATION | Active matrix OED array with improved OED cathode |
6036919, | Jul 23 1996 | Roche Diagnostics GmbH | Diagnostic test carrier with multilayer field |
6045977, | Feb 19 1998 | Bell Semiconductor, LLC | Process for patterning conductive polyaniline films |
6060338, | Jan 10 1989 | Mitsubishi Denki Kabushiki Kaisha; Sumitomo Chemical Company, Limited | Method of making a field effect transistor |
6072716, | Apr 14 1999 | Massachusetts Institute of Technology | Memory structures and methods of making same |
6083104, | Jan 16 1998 | Silverlit Limited | Programmable toy with an independent game cartridge |
6087196, | Jan 30 1998 | PRINCETON UNIVERSITY, THE TRUSTEES OF | Fabrication of organic semiconductor devices using ink jet printing |
6133835, | Dec 05 1997 | U.S. Philips Corporation | Identification transponder |
6150668, | May 29 1998 | Bell Semiconductor, LLC | Thin-film transistor monolithically integrated with an organic light-emitting diode |
6180956, | Mar 03 1999 | GLOBALFOUNDRIES Inc | Thin film transistors with organic-inorganic hybrid materials as semiconducting channels |
6197663, | Dec 07 1999 | Bell Semiconductor, LLC | Process for fabricating integrated circuit devices having thin film transistors |
6207472, | Mar 09 1999 | GLOBALFOUNDRIES Inc | Low temperature thin film transistor fabrication |
6215130, | Aug 20 1998 | Bell Semiconductor, LLC | Thin film transistors |
6221553, | Jan 15 1999 | SAMSUNG DISPLAY CO , LTD | Thermal transfer element for forming multilayer devices |
6251513, | Nov 08 1997 | Littlefuse, Inc. | Polymer composites for overvoltage protection |
6284562, | Nov 17 1999 | Lucent Technologies Inc | Thin film transistors |
6291126, | Jan 15 1999 | SAMSUNG DISPLAY CO , LTD | Thermal transfer element and process for forming organic electroluminescent devices |
6300141, | Mar 02 1999 | Helix BioPharma Corporation | Card-based biosensor device |
6321571, | Dec 21 1998 | Corning Incorporated | Method of making glass structures for flat panel displays |
6322736, | Mar 27 1998 | Bell Semiconductor, LLC | Method for fabricating molded microstructures on substrates |
6329226, | Jun 01 2000 | Bell Semiconductor, LLC | Method for fabricating a thin-film transistor |
6330464, | Aug 26 1998 | Senseonics, Incorporated | Optical-based sensing devices |
6335539, | Nov 05 1999 | GLOBALFOUNDRIES Inc | Method for improving performance of organic semiconductors in bottom electrode structure |
6336017, | Mar 03 1998 | Canon Kabushiki Kaisha | Mounting member for mounting a flange to an end of a cylindrical member of an electrophotographic photosensitive drum of a process cartridge, such a flange, such a drum, and such a process cartridge |
6340822, | Oct 05 1999 | Bell Semiconductor, LLC | Article comprising vertically nano-interconnected circuit devices and method for making the same |
6344662, | Mar 25 1997 | International Business Machines Corporation | Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages |
6362509, | Oct 11 1999 | SAMSUNG ELECTRONICS CO , LTD | Field effect transistor with organic semiconductor layer |
6384804, | Nov 25 1998 | Alcatel-Lucent USA Inc | Display comprising organic smart pixels |
6403396, | Jan 28 1998 | Thin Film Electronics ASA | Method for generation of electrically conducting or semiconducting structures in three dimensions and methods for erasure of the same structures |
6429450, | Aug 22 1997 | SAMSUNG ELECTRONICS CO , LTD | Method of manufacturing a field-effect transistor substantially consisting of organic materials |
6498114, | Apr 09 1999 | E Ink Corporation | Method for forming a patterned semiconductor film |
6517955, | Feb 22 1999 | Nippon Steel Corporation | High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof |
6518949, | Apr 10 1998 | E Ink Corporation | Electronic displays using organic-based field effect transistors |
6521109, | Sep 13 1999 | INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM IMEC | Device for detecting an analyte in a sample based on organic materials |
6548875, | Mar 06 2000 | Kabushiki Kaisha Toshiba | Sub-tenth micron misfet with source and drain layers formed over source and drains, sloping away from the gate |
6555840, | Feb 16 1999 | Sharp Kabushiki Kaisha | Charge-transport structures |
6593690, | Sep 03 1999 | 3M Innovative Properties Company | Large area organic electronic devices having conducting polymer buffer layers and methods of making same |
6603139, | Apr 16 1998 | Flexenable Limited | Polymer devices |
6621098, | Nov 29 1999 | PENN STATE RESEARCH FOUNDATION, THE | Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material |
6852583, | Jul 07 2000 | POLYIC GMBH & CO KG | Method for the production and configuration of organic field-effect transistors (OFET) |
6903958, | Sep 13 2000 | POLYIC GMBH & CO KG | Method of writing to an organic memory |
6960489, | Sep 01 2000 | POLYIC GMBH & CO KG | Method for structuring an OFET |
7078937, | Dec 17 2003 | 3M Innovative Properties Company | Logic circuitry powered by partially rectified ac waveform |
7223995, | Mar 21 2002 | POLYIC GMBH & CO KG | Logic components comprising organic field effect transistors |
20010026187, | |||
20010046081, | |||
20020018911, | |||
20020022284, | |||
20020025391, | |||
20020053320, | |||
20020056839, | |||
20020068392, | |||
20020130042, | |||
20020170897, | |||
20020195644, | |||
20030059987, | |||
20030070500, | |||
20030112576, | |||
20030141807, | |||
20030178620, | |||
20040002176, | |||
20040013982, | |||
20040026689, | |||
20040084670, | |||
20040119504, | |||
20040211329, | |||
20040233065, | |||
20040256467, | |||
DE10006257, | |||
DE10012204, | |||
DE10033112, | |||
DE10043204, | |||
DE10045192, | |||
DE10047171, | |||
DE10058559, | |||
DE10061297, | |||
DE10117663, | |||
DE10120686, | |||
DE10120687, | |||
DE10141440, | |||
DE10151440, | |||
DE10163267, | |||
DE10209400, | |||
DE10212640, | |||
DE10219905, | |||
DE10341962, | |||
DE19506907, | |||
DE19629291, | |||
DE19816860, | |||
DE19851703, | |||
DE19852312, | |||
DE19918193, | |||
DE19921024, | |||
DE19933757, | |||
DE19935527, | |||
DE19937262, | |||
DE20111825, | |||
DE2102735, | |||
DE3338597, | |||
DE4103675, | |||
DE4243832, | |||
DE4312766, | |||
DE69232740, | |||
DE69519782, | |||
DE69913745, | |||
EP108650, | |||
EP128529, | |||
EP268370, | |||
EP350179, | |||
EP418504, | |||
EP442123, | |||
EP460242, | |||
EP501456, | |||
EP511807, | |||
EP528662, | |||
EP603939, | |||
EP615256, | |||
EP685985, | |||
EP690457, | |||
EP716458, | |||
EP785578, | |||
EP786820, | |||
EP962984, | |||
EP964516, | |||
EP966182, | |||
EP979715, | |||
EP981165, | |||
EP989614, | |||
EP1048912, | |||
EP1052594, | |||
EP1065725, | |||
EP1083775, | |||
EP1102335, | |||
EP1103916, | |||
EP1104035, | |||
EP1113502, | |||
EP1134694, | |||
EP1170851, | |||
EP1224999, | |||
EP1237207, | |||
EP1296280, | |||
EP1318084, | |||
FR2793089, | |||
GB2058462, | |||
GB723598, | |||
JP10026934, | |||
JP1169942, | |||
JP2001085272, | |||
JP2969184, | |||
JP3290976, | |||
JP362065477, | |||
JP5152560, | |||
JP5259434, | |||
JP5347422, | |||
JP54069392, | |||
JP60117769, | |||
JP61001060, | |||
JP61167854, | |||
JP62065472, | |||
JP63205943, | |||
JP8197788, | |||
JP9083040, | |||
JP9320760, | |||
WO2004068608, | |||
WO7151, | |||
WO33063, | |||
WO36666, | |||
WO79617, | |||
WO103126, | |||
WO106442, | |||
WO108241, | |||
WO115233, | |||
WO117029, | |||
WO117041, | |||
WO127998, | |||
WO146987, | |||
WO147044, | |||
WO147045, | |||
WO169517, | |||
WO173109, | |||
WO205360, | |||
WO205361, | |||
WO2065557, | |||
WO2071139, | |||
WO2071505, | |||
WO2076924, | |||
WO2091495, | |||
WO2095805, | |||
WO2099907, | |||
WO2099908, | |||
WO215264, | |||
WO217233, | |||
WO219443, | |||
WO221612, | |||
WO229912, | |||
WO243071, | |||
WO247183, | |||
WO3027948, | |||
WO3036686, | |||
WO3038897, | |||
WO3046922, | |||
WO3057501, | |||
WO3067680, | |||
WO3069552, | |||
WO3081671, | |||
WO3095175, | |||
WO2004032257, | |||
WO2004042837, | |||
WO2004047144, | |||
WO2004047194, | |||
WO2004083859, | |||
WO2005004194, | |||
WO9316491, | |||
WO9417556, | |||
WO9506240, | |||
WO9531831, | |||
WO9602924, | |||
WO9619792, | |||
WO9712349, | |||
WO9718944, | |||
WO9818156, | |||
WO9818186, | |||
WO9840930, | |||
WO9907189, | |||
WO9910929, | |||
WO9910939, | |||
WO9921233, | |||
WO9930432, | |||
WO9939373, | |||
WO9940631, | |||
WO9953371, | |||
WO9954842, | |||
WO9954936, | |||
WO9966540, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 21 2006 | PolyIC GmbH & Co. KG | (assignment on the face of the patent) | / | |||
Oct 05 2007 | ULLMANN, ANDREAS | POLYIC GMBH & CO KG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019960 | /0950 | |
Oct 05 2007 | WELKER, MERLIN | POLYIC GMBH & CO KG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019960 | /0950 | |
Oct 08 2007 | FIX, WALTER | POLYIC GMBH & CO KG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019960 | /0950 | |
Oct 09 2007 | KNOBLOCH, ALEXANDER | POLYIC GMBH & CO KG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019960 | /0950 |
Date | Maintenance Fee Events |
Jul 11 2014 | REM: Maintenance Fee Reminder Mailed. |
Nov 30 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 30 2013 | 4 years fee payment window open |
May 30 2014 | 6 months grace period start (w surcharge) |
Nov 30 2014 | patent expiry (for year 4) |
Nov 30 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 30 2017 | 8 years fee payment window open |
May 30 2018 | 6 months grace period start (w surcharge) |
Nov 30 2018 | patent expiry (for year 8) |
Nov 30 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 30 2021 | 12 years fee payment window open |
May 30 2022 | 6 months grace period start (w surcharge) |
Nov 30 2022 | patent expiry (for year 12) |
Nov 30 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |