A biopsy device comprises a targeting set, a probe assembly, and a holster assembly, which are detachable from one another. The targeting set comprises a needle assembly having a tissue piercing tip and tissue receiving aperture. The probe assembly comprises a tissue cutter, a body, cutter driving mechanism components, and a sliding cutter cover. The cutter extends from a distal portion of the probe assembly. The sliding cutter cover extends from the distal portion of the probe assembly when the probe assembly is detached from the needle assembly of the targeting set assembly. This extension of the sliding cutter cover shields a user of the biopsy device from the sharp cutter. The sliding cutter cover further retracts into the probe assembly when the probe assembly is coupled with the needle assembly of the targeting set assembly. The cover may be resiliently biased to extend distally from the probe assembly.
|
1. A biopsy probe comprising:
(a) a detachable needle;
(b) a body comprising a distal portion and proximal portion, wherein the body comprises an opening at an end of the distal portion, wherein the body is operably configured to selectively couple with the needle;
(c) a cutter comprising a hollow tube having a sharp distal end operable to sever tissue, wherein the cutter is positioned within the probe and extends from the opening of the body, wherein the cutter is operable to translate longitudinally relative to the body; and
(d) a cover comprising a distal portion and proximal portion, wherein the cover is movable from an extended position to a retracted position, wherein the cover shields the cutter when the cover is in the extended position, wherein the cover is simultaneously retracted relative to the body in response to the act of coupling the distal portion of the body with the detachable needle.
19. A method of protecting a user from an exposed cutter of a biopsy device, the method comprising:
(a) providing a detachable needle having a tissue piercing tip and an axial lumen;
(b) providing a biopsy probe, wherein the biopsy probe comprises:
(i) a body comprising a distal portion and proximal portion;
(ii) a cutter extending distally from the body, wherein the cutter is operable to translate longitudinally relative to the body; and
(iii) a cover comprising a distal portion and proximal portion, wherein the cover extends distally from the body to shield the cutter, wherein the cover is operable to translate relative to the body; and
(c) coupling the biopsy probe with the detachable needle, wherein the act of coupling comprises:
(i) aligning the cutter with the axial lumen of the detachable needle; and
(ii) coupling the distal portion of the body with the detachable needle, wherein the cover is simultaneously retracted relative to the body in response to the act of coupling the distal portion of the body with the detachable needle.
18. A biopsy device with a detachable needle, wherein the biopsy device comprises:
(a) a needle, wherein the needle comprises a probe body engagement member, wherein the needle defines a lumen;
(b) a probe body comprising a distal portion and proximal portion, wherein the probe body comprises a needle engagement mechanism, wherein the needle engagement mechanism is operable to selectively engage the probe body engagement member of the needle to selectively secure the probe body relative to the needle;
(c) a cutter extending distally from the probe body, wherein the cutter is configured to be received in the lumen defined by the needle, wherein the cutter is operable to translate longitudinally relative to the probe body; and
(d) a cover, wherein the cover is movable from an extended position to a retracted position, wherein the cover shields the cutter when the cover is in the extended position, wherein the cover is simultaneously retracted relative to the body in response to the act of coupling the distal portion of the body with the detachable needle.
2. The biopsy probe of
3. The biopsy probe of
4. The biopsy probe of
5. The biopsy probe of
7. The biopsy probe of
9. The biopsy probe of
10. The biopsy probe of
12. The biopsy probe of
13. The biopsy probe of
14. The biopsy probe of
15. The biopsy probe of
16. The biopsy probe of
17. The biopsy probe of
20. The method of
|
Biopsy samples have been obtained in a variety of ways in various medical procedures using a variety of devices. Biopsy devices may be used under stereotactic guidance, ultrasound guidance, MRI guidance, PEM guidance, BSGI guidance, or otherwise. Merely exemplary biopsy devices are disclosed in U.S. Pat. No. 5,526,822, entitled “Method and Apparatus for Automated Biopsy and Collection of Soft Tissue,” issued Jun. 18, 1996; U.S. Pat. No. 6,086,544, entitled “Control Apparatus for an Automated Surgical Biopsy Device,” issued Jul. 11, 2000; U.S. Pub. No. 2003/0109803, entitled “MRI Compatible Surgical Biopsy Device,” published Jun. 12, 2003; U.S. Pub. No. 2007/0118048, entitled “Remote Thumbwheel for a Surgical Biopsy Device,” published May 24, 2007; U.S. Pub. No. 2008/0214955, entitled “Presentation of Biopsy Sample by Biopsy Device,” published Sep. 4, 2008; U.S. Provisional Patent Application Ser. No. 60/869,736, entitled “Biopsy System,” filed Dec. 13, 2006; and U.S. Provisional Patent Application Ser. No. 60/874,792, entitled “Biopsy Sample Storage,” filed Dec. 13, 2006. The disclosure of each of the above-cited U.S. Patents, U.S. Patent Application Publications, and U.S. Provisional Patent Applications is incorporated by reference herein.
Some biopsy systems may provide a probe assembly having an attached needle. Such biopsy systems may also be used with a cannula and obturator, which are used to create the channel through the tissue to a desired biopsy site. In some such biopsy systems, the obturator may be removed once the cannula is positioned, and the needle of the probe assembly may be inserted through the cannula to reach the biopsy site. The tissue sample may then be pulled through aligning apertures in the cannula and needle into an axial lumen of the needle. A cutter may then travel through the axial lumen to sever the tissue sample. In some situations, it might be desirable to eliminate one or more of the components that enter the patient's tissue during a biopsy procedure. One situation may be to eliminate the outer cannula by using a biopsy system having a probe assembly, including a cutter, and a separate targeting set assembly, including a needle. Once the targeting set assembly is positioned—with needle adjacent to the targeted tissue—the probe assembly may be attached to the targeting set assembly for severing and removing the targeted tissue.
While several systems and methods have been made and used for obtaining a biopsy sample, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings. In the drawings, like numerals represent like elements throughout the several views.
The following description of certain examples should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
I. Overview of Exemplary Biopsy System
As will also be described in greater detail below, biopsy devices (10, 12) shown in
Needle assembly (28, 29, 30, 134, 160, 161) of the present example comprises a needle (42, 44, 64), which includes a tissue piercing tip (212), a transverse tissue receiving aperture (278), a lumen (82) for receiving a cutter (106, 107), a lateral lumen (84) running parallel with lumen (82), and openings (86) for providing fluid communication from lateral lumen (84) to lumen (82). As will also be described in greater detail below, probe assembly (14, 18, 19) includes cutter (106, 107), which is configured to rotate and translate within lumen (82) when probe assembly (14, 18, 19) is coupled with needle assembly (28, 29, 30, 134, 160, 161). For instance, when a distal portion of needle assembly (28, 29, 30, 134, 160, 161) is inserted into a patient's breast, tissue may be drawn into aperture (278) under influence of a vacuum. Cutter (106, 107) may then simultaneously rotate and translate within lumen (82) to sever a tissue sample from such tissue protruding into aperture (278).
An exemplary vacuum control module may provide power (e.g., electrical, pneumatic, etc.), control signals, saline, vacuum, pressurized air and/or venting from the vacuum control module to biopsy device (10, 12). For instance, a vacuum control module may provide a vacuum to lumen (82) via one path; while providing a vacuum or venting to lateral lumen (84) via another path (e.g., a path that includes a manifold (97, 99, 101) of probe assembly (14, 18, 19), etc.). Examples of components, features, and methods of operating a vacuum control module are described in U.S. Pub. No. 2008/0195066, entitled “Revolving Tissue Sample Holder For Biopsy Device,” published Aug. 14, 2008, the disclosure of which is incorporated by reference herein. In some versions, a vacuum control module interface may be provided between biopsy device (10, 12) and the vacuum control module, such as the vacuum control module interface described in U.S. Non-Provisional patent application Ser. No. 12,337,814, entitled “CONTROL MODULE INTERFACE,” filed on even date herewith, the disclosure of which is incorporated by reference herein.
II. Exemplary Targeting Set Assemblies
An exemplary targeting set assembly may be comprised of several assemblies in combination. Such assemblies may include a stand assembly (24), cradle assembly (26, 32), and needle assembly (28, 29, 30, 134, 160, 161). These assemblies will be discussed in greater detail in the sections that follow. However, it should be understood that a targeting set assembly may comprise a variety of other components in addition to or in lieu of any of the components described below. Other suitable components, features, configurations, and methods of operating a targeting set assembly will be apparent to those of ordinary skill in the art in view of the teachings herein.
A. Exemplary Stand and Cradle Assemblies
As shown in
Suitable components of, features of, configurations of, and methods of operating stand assembly (24) and cradle assembly (26, 32), as well as ways in which biopsy devices (10, 12) may be coupled with cradle assembly (26, 32), are described in further detail in U.S. Non-Provisional patent application Ser. No. 12/337,872, entitled “MULTI-ORIENTATION TARGETING SET FOR MRI BIOPSY DEVICE,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Of course, it will be appreciated in view of the disclosure herein that biopsy devices (10, 12) may be used in a variety of other settings and combinations. For instance, as one merely illustrative alternative, any of biopsy devices (10, 12) and/or needle assemblies (28, 29, 30, 134, 160, 161) described herein may be coupled with a cube as described in U.S. Pub. No. 2007/0255170, entitled “BIOPSY CANNULA ADJUSTABLE DEPTH STOP,” published Nov. 1, 2007, the disclosure of which is incorporated by reference herein. Exemplary needle assemblies (28, 29, 30), including those shown in
B. Exemplary Needle Assemblies
As noted above, needle assembly (28, 29, 30, 134, 160, 161) of the examples described below each comprises a needle (42, 44, 64), which includes a tissue piercing tip (212), a transverse tissue receiving aperture (278), a lumen (82) for receiving a cutter (106, 107), a lateral lumen (84) running parallel with lumen (82), and openings (86) for providing fluid communication from lateral lumen (84) to lumen (82). Lumen (82) is configured to receive a cutter (106, 107) from a probe assembly (14, 18, 19) includes cutter (106, 107). For instance, when a distal portion of needle (42, 44, 64) is inserted into a patient's breast, tissue may be drawn into aperture (278) under influence of a vacuum. Cutter (106, 107) may then simultaneously rotate and translate within lumen (82) to sever a tissue sample from such tissue protruding into aperture (278).
In some existing biopsy systems that are used in an MRI setting, a targeting cannula and obturator are used, which are separate from a biopsy device. The cannula has a transverse aperture, similar to aperture (278). For instance, in some uses of such systems, the cannula and obturator are inserted into a patient's breast, and the transverse aperture of the cannula is positioned near a suspicious lesion. Such positioning of the transverse aperture of the cannula may be assisted by MRI imaging and targeting routines. The obturator may then be removed from the cannula, and the integral needle of a biopsy device may be inserted into the obturator. To the extent that the integral needle of the biopsy device also has a transverse aperture, that transverse aperture may be substantially aligned with the transverse aperture of the targeting cannula. A cutter in the biopsy device may then be translated and rotated relative to both apertures to sever tissue protruding therethrough. Examples of such biopsy systems are disclosed in U.S. Pub. No. 2005/0277829, entitled “MRI BIOPSY APPARATUS INCORPORATING A SLEEVE AND A MULTI-FUNCTION OBTURATOR,” published Dec. 15, 2005, the disclosure of which is incorporated by reference herein; and U.S. Pub. No. 2007/0167736, entitled “MRI BIOPSY APPARATUS INCORPORATING AN IMAGEABLE PENETRATING PORTION,” published Jul. 19, 2007, the disclosure of which is incorporated by reference herein.
It should be understood that, in some settings, examples of needle assembly (28, 29, 30, 134, 160, 161) described herein may eliminate the need for having both a targeting cannula that is separate from a biopsy device and a needle that is integral with the biopsy device for insertion into the targeting cannula as described in the above-referenced published U.S. patent applications. In other words, in some settings, examples of needle assembly (28, 29, 30, 134, 160, 161) described herein may provide combined functionalities of both the targeting cannulas and the integral needles described in the above-referenced published U.S. patent applications. For instance, a detachable needle assembly is described in U.S. Pub. No. 2003/0199785, entitled “LOCALIZATION MECHANISM FOR AN MRI COMPATIBLE BIOPSY DEVICE,” published Oct. 23, 2003, the disclosure of which is incorporated by reference herein. Some examples of needle assembly (28, 29, 30, 134, 160, 161) described herein may also be used as a targeting cannula, separate from probe assembly (14, 18, 19), at initial stages of operation. Needle assembly (28, 29, 30, 134, 160, 161) may thus be used with an obturator (not shown) as described in the above-referenced published U.S. patent applications, to position aperture (278) near suspicious tissue. The obturator may then be removed, and a probe assembly (14, 18, 19) may be coupled with needle assembly (28, 29, 30, 134, 160, 161) while needle (42, 44, 64) is still in the patient's breast (or other tissue area). Probe assembly (14, 18, 19) and needle assembly (28, 29, 30, 134, 160, 161) may then be used to acquire a tissue sample as described herein.
While several needle assemblies (28, 29, 30) will be discussed in greater detail below, it should be understood that the components, features, configurations, and methods of operation of needle assemblies (28, 29, 30) are not limited to the contexts provided below. In particular, components, features, configurations, and methods of operation described in the context of one of the exemplary needle assemblies (28, 29, 30) may be incorporated into any of the other needle assemblies (28, 29, 30). Furthermore, additional and alternative suitable components, features, configurations, and methods of operation for needle assemblies (28, 29, 30) will be apparent to those of ordinary skill in the art in view of the teachings herein.
1. Exemplary Needle Assembly Mounting
When considering needle assembly (28, 29, 30, 134, 160, 161), one aspect to address may include modes for mounting needle assembly (28, 29, 30, 134, 160, 161) to cradle assembly (26, 32).
Sleeve mount (34) may further be configured to slide along a track (40) located on cradle assembly (26, 32) as shown in
Additional ways in which a needle assembly (28, 29, 30, 134, 160, 161) may mount to a cradle assembly (26, 32), as well as other methods of operating the same, are disclosed in U.S. Non-Provisional patent application Ser. No. 12/337,872, entitled “MULTI-ORIENTATION TARGETING SET FOR MRI BIOPSY DEVICE,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Of course, a needle assembly (28, 29, 30, 134, 160, 161) may mount to cradle assembly (26, 32) in any other suitable fashion, and needle assembly (28, 29, 30, 134, 160, 161) may have any other suitable relationship with cradle assembly (26, 32). Other suitable relationships, mounting techniques, structures, and configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
Another aspect to address when considering needle assembly (28, 29, 30, 134, 160, 161) may include modes for mounting needle (42, 44) to needle assembly (28, 29, 30, 134, 160, 161). By way of example only, needle (42, 44) may engage with thumbwheel (36, 38) in a variety of ways to make a suitable connection. For instance, as shown in
In another exemplary needle (44) to thumbwheel (38) connection, as shown in
In another exemplary needle (64) to thumbwheel (66) connection, as shown in
Of course, a needle (42, 44, 64) may be incorporated into a needle assembly (28, 29, 30, 134, 160, 161) in any other suitable fashion, and needle (42, 44, 64) may have any other suitable relationship with needle assembly (28, 29, 30, 134, 160, 161). Other suitable relationships, mounting techniques, structures, and configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
2. Exemplary Needle Deflection Reduction
Another aspect to address when considering a detachable needle assembly (28, 29, 30, 134, 160, 161) may be minimizing needle deflection as needle (42, 44, 64) is inserted into a patient, while maintaining imaging ability (e.g., under MRI, etc.). As shown in
It should be understood that the above examples of needles (42, 44) are merely illustrative. Needles (42, 44) may have any other suitable features, components, or configurations to reduce deflection while maintaining imaging ability. Alternatively, needles (42, 44) may lack features, components, or configurations to reduce deflection. Similarly, needles (42, 44) may be non-imageable if desired. By way of example only, needles (42, 44, 46) may be configured in accordance with the teachings of U.S. Pub. No. 2008/0195066, entitled “Revolving Tissue Sample Holder For Biopsy Device,” published Aug. 14, 2008, the disclosure of which is incorporated by reference herein. Other suitable features, components, configurations, or properties for needles (42, 44, 46) will be apparent to those of ordinary skill in the art in view of the teachings herein.
3. Exemplary Fluid Sealing and Vacuum Arrangement
With a detachable needle assembly (28, 29, 30, 134, 160, 161), another aspect to address may concern fluid sealing and vacuum arrangement.
As shown in
Mounting portion (48) of the present example also includes an axial port (100) for communicating with the axial lumen (82) of needle (42). A cup seal (102) is provided over axial port (100) to prevent fluid leakage. A cutter entry cone (104) may also be provided over cup seal (102). When probe assembly (14, 18, 19) is attached to needle assembly (28, 30) as will be described in greater detail below, a cutter (106, 107) of probe assembly (14, 18, 19) may enter axial port (100) through the cutter entry cone (104) and the cup seal (102) makes an opening for cutter (106, 107) via a slit (not shown) in cup seal (102). Alternatively, cup seal (102) may be initially formed with or as a puncturable membrane (e.g., without a slit or other opening in it), such that cutter (106, 107) breaks the membrane when advanced into needle assembly (28, 30) for the first time upon coupling of probe assembly (14, 18, 19) with needle assembly (28, 30).
When a probe assembly (14, 18, 19) is attached to needle hub (89), fixed sleeve (110) sits over a vacuum manifold (97, 99, 101) of probe assembly (14, 18, 19). For instance, and as shown in
4. Exemplary Needle Indexing
Another aspect to address with a detachable needle assembly (28, 29, 30, 134, 160, 161) design may include indexing of needle (42, 44, 64). For instance, needle indexing may include rotation of needle (42, 44, 64) to orient aperture (278) at various angular positions about the longitudinal axis defined by needle (42, 44, 54). Such multiple orientations may be desirable, by way of example only, to obtain a plurality of tissue samples from a biopsy site, without requiring needle (42, 44, 64) to be removed from the patient during the acquisition of such a plurality of tissue samples. An illustrative example of such rotation and acquisition of multiple tissue samples is disclosed in U.S. Pat. No. 5,526,822, the disclosure of which is incorporated by reference herein. Other ways in which multiple tissue samples may be obtained at various locations will be apparent to those of ordinary skill in the art in view of the teachings herein.
Needle assembly (28) of
In particular, and as shown in
In other versions, a needle indexing gear (51) such as the one shown in
Now turning to the modes for actuating the needle indexing drive mechanisms,
Biopsy device (12) of
Of course, knob (170) may also be similarly coupled with a drive shaft (154) that has a hexagonal needle rotation drive socket, such as in probe assembly (14) of
It should be appreciated that the needle indexing mechanisms disclosed herein may be interchangeable among various biopsy devices (10, 12). For instance, those of ordinary skill in the art will understand that a biopsy device (10, 12) having a hexagonal interface indexing mechanism may be adapted to include a gear interface indexing mechanism, and vice versa. Similarly, those of ordinary skill in the art will understand that a biopsy device (10, 12) having a probe assembly (14, 18, 19) with a drive shaft (154) for use with a needle assembly (28) having a hexagon-shaped indexing portion (49), may be modified to substitute a needle indexing drive gear (156, 157, 159) for the drive shaft (154) for use with a needle assembly (29, 30) having a needle indexing gear (162). Additionally, the various biopsy devices (10, 12) may be adapted for use with any of the various indexing drive mechanisms disclosed.
It will further be appreciated that needle indexing may be accomplished without the use of a probe assembly (14, 18, 19) and/or holster assembly (16, 20, 21) containing a needle indexing mechanism. For instance, needle assembly (30) of
III. Exemplary Probe Assemblies
Another aspect to consider in a biopsy device having a detachable needle may be probe assembly design. When considering such probe assemblies, some aspects to address might include the following: (A) probe assembly engagement with a detachable needle; (B) cutter exposure (i.e., sharp control) before the cutter is inserted into the detachable needle, cutter rotation, and cutter translation; and/or (C) vacuum supply and tissue sample management, among other things.
A. Exemplary Probe Assembly Mounting
1. Exemplary Rocking Probe Locking Cover
Locking cover (182) of the present examples includes an engaging member (188) on its distal end. Engaging member (188) may take the form of a tab, protrusion, or any other suitable structure. Engaging member (188) uses a snap connection to attach to an annular recess or groove (190) located on a thumbwheel (36) of needle assembly (28). Springs (192) are included on each side of probe casing (180) to provide a rotational bias to locking cover (182) (e.g., urging locking cover (182) to rotate about pivot pins (184)). The bias introduced by springs (192) causes engaging member (188) to engage annular groove (190) in a secure connection, as shown in
Furthermore, thumbwheel (36) may be provided with a chamfer (196), as shown in
It should further be recognized that the annular groove (190) design permits the snap connection to be secure during needle indexing. For instance, annular groove (190) allows needle assembly (28) to be rotated for indexing without rotating probe assembly (14). In this example, engaging member (188) slides around within annular groove (190) during the indexing of needle assembly (28). Those of ordinary skill in the art will recognize that there are a variety of ways in which friction may be reduced during rotation, as well as structures and techniques for providing engagement without affecting rotation.
The locking cover (182) includes spring covers (194) on its proximal portion. To disengage engaging member (188) from annular groove (190), a user pushes downward on spring covers (194), which overcomes the spring-bias on locking cover (182). Such downward pushing on spring covers (194) may cause locking cover (182) to rotate about pivot pins (184). Engaging member (188) of locking cover (182) is then disengaged from annular groove (190) of thumbwheel (36), as shown in
2. Exemplary Probe Locking Ring
To disengage probe assembly (18, 19) from needle assembly (29) in this example, the user pushes annular ring (198) distally toward needle tip (212). Annular ring (198) is configured to be slidingly engaged with probe assembly (18, 19). Such sliding engagement may be achieved by incorporating a tapered design of probe's (18, 19) distal end and sizing the diameter of annular ring (198) to achieve a sliding engagement. With such a sliding engagement, annular ring (198) may be supported on probe assembly (18, 19) by support members or rails, etc. (not shown) on the sides of probe assembly (18, 19). When annular ring (198) is pushed distally, annular ring (198) contacts a wedge portion (214) on the proximal end of locking members (202). This contact causes the distal portion of the locking members (202) to deflect away from cavities (204) and thereby disengage the thumbwheel (206).
It should further be appreciated that thumbwheel (206) may be configured with a single annular cavity or groove (not shown) instead of separate cavities (204). Such an annular cavity or groove may be similar to annular groove (190) of needle assembly (28), described above. The single annular cavity or groove (not shown) may be engaged by locking members (202) to connect the probe assembly (18, 19) to the needle assembly (29). In such a configuration, the single annular cavity or groove (not shown) may allow needle assembly (29) to be rotated for indexing without rotating probe assembly (18, 19). In this example, locking members (202) may thus slide around the single annular cavity or groove (not shown) during the indexing of needle assembly (29).
3. Exemplary Probe Locking Ring with Levers
To attach probe assembly (218) to needle assembly (30) in this example, the user pushes probe assembly (218) longitudinally against needle assembly (30). Locking members (202) of locking ring (200) engage corresponding cavities (222) in thumbwheel (38) of needle assembly (30). Chamfer (210) of locking members (202) allows proximal edge (224) of thumbwheel (38) to deflect locking members (202) until cavities (222) are reached, at which point locking members (202) will make a snap connection with cavities (222). Locking members (202) of this example are resiliently biased to engage cavities (222), while being flexible enough to deflect away from cavities (222) as probe assembly (218) is coupled and decoupled from needle assembly (30).
To disengage probe assembly (218) from needle assembly (30), the user pushes inwardly against pivot members (226) of levers (220). Levers (220) have a chamfer (228) on their distal end. When pivot members (226) are pushed inwardly, the opposite ends of levers (220) rotate away from the body of probe assembly (218) about pivot pins (230). This rotation causes chamfer (228) of levers (220) to drive annular ring (216) distally against wedge portion (214) of locking members (202) on locking ring (200). The contact between annular ring (216) and wedge portion (214) causes the distal portion of locking members (202) to deflect away from cavities (222) and thereby disengage thumbwheel (38). Again, cavities (222) may be substituted with an annular groove or other feature or structure.
Attachment of probe assembly (232) to a needle assembly is achieved as described in the previous paragraphs with respect to
Those of ordinary skill in the art will appreciate that there are various other ways in which a probe assembly may selectively couple with a needle assembly. For example, those of ordinary skill in the art will appreciate that the thumbwheel of the needle assembly may be repositioned as a component of the probe assembly, or that the thumbwheel pre-mounted on the probe assembly. In such versions, the attachment of the probe assembly to the needle assembly may be accomplished as described above in the section discussing needle to the thumbwheel attachment. Other suitable components, features, structures, configurations, and techniques for selectively coupling a probe assembly with a needle assembly will be apparent to those of ordinary skill in the art in view of the teachings herein.
It will also be understood by those of ordinary skill in the art that the specific probe assemblies and needle assemblies identified above are merely exemplary and that no single probe assembly as indicated is meant to require a specific needle assembly. Instead, the probe assemblies and needle assemblies may be adapted such that they may be used interchangeably. For instance, needle assembly (28) may be adapted with a thumbwheel design that operates with an annular ring (198) probe mounting design instead of a locking cover (182) probe mounting design. Similarly, the probe assembly (18, 19) may be fitted with a locking cover (182) instead of an annular ring (198) for use with a needle assembly having a thumbwheel (36) with an annular groove (190). Other suitable variations in probe assembly and needle assembly combinations will be apparent to those of ordinary skill in the art in view of the teachings herein.
B. Exemplary Cutter Exposure Protection and Cutter Rotation and Cutter Translation Mechanisms
Another aspect to consider with a biopsy probe having a detachable needle design may be cutter exposure and cutter rotation and translation. As discussed previously, a detachable needle design may include a needle assembly that is separate from a probe assembly and holster assembly. The cutter portion of a biopsy device may remain as a component of the probe assembly. For instance, the cutter portion may be an elongated hollow tube having a sharp distal end that serves to sever the tissue sample. Because of the sharp nature of the cutter, and with the cutter extending distally and unexposed relative to a probe assembly body, it may be important to protect the user from exposure to the cutter when the probe assembly is detached from a needle assembly. The following paragraphs will discuss several merely exemplary modes of cutter exposure protection and related cutter rotation and translation mechanisms where appropriate.
1. Exemplary Sliding Cutter Cover
In operation, elastic strings (246) may be used to control the movement of sliding cutter cover (244). For instance, elastic strings (246) may connect to external hooks (248) on a proximal portion of sliding cutter cover (244). Similarly, the opposing ends of elastic strings (246) may connect to internal hooks (not shown) on a distal portion of probe casing (180). This arrangement may allow for elastic strings (246) to bias sliding cutter cover (244) to an extended position when probe assembly (14) is not coupled with a needle assembly (28). When probe assembly (14) is coupled with a needle assembly (28), sliding cutter cover (244) is retracted in probe assembly (14) against tension in the elastic strings (246). For instance, the distal edge of an extended sliding cutter cover (244) may contact the proximal face of thumbwheel (36) when an operator starts to couple probe assembly (14) with needle assembly (28). Needle assembly (28) may be fixed in place by stand assembly (24). Accordingly, as probe assembly (14) is moved distally to couple with needle assembly (28), engagement between the distal edge of sliding cutter cover (244) and the proximal face of thumbwheel (36) may urge sliding cutter cover (244) proximally to a retracted position within probe assembly (14).
When needle assembly (28) is detached from probe assembly (14), the tension in elastic strings (246) is released and sliding cutter cover (244) automatically extends back to the extended position to protect the sharp cutter (106). Of course, any other suitable component, structure, feature, or configuration may be used in addition to or in lieu of elastic strings (246) to bias sliding cutter cover (244) to an extended position. By way of example only, one or more springs may be used in addition to, or in place of, elastic strings (246). Still other suitable components, structures, features, or configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
Sliding cutter cover (244) may be designed to have any suitable shape that may effectively reduce a user's exposure to the sharp cutter (106). For example, as shown in
In terms of cutter rotation and translation associated with a biopsy probe device having a sliding cutter cover (244) as described above, a conventional cutter rotation and translation mechanism may be used. Suitable cutter rotation and translation mechanisms are described in further detail in U.S. Pub. No. 2008/0195066, entitled “Revolving Tissue Sample Holder For Biopsy Device,” published Aug. 14, 2008, the disclosure of which is incorporated by reference herein; and U.S. Non-Provisional patent application Ser. No. 12,337,942, entitled “TISSUE BIOPSY DEVICE WITH CENTRAL THUMBWHEEL,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Alternatively, any other suitable mechanism may be used to rotate and/or translate cutter (106).
It should be understood that, the length of cutter (106) may be such that, when probe assembly (14) is coupled with needle assembly (28), the distal end of cutter (106) may be positioned just proximal to (e.g., very near to yet still proximal to) the proximal edge of aperture (278). When a cutting sequence is initiated, cutter (106) will thus not need to travel far in order to sever tissue protruding through aperture (278). In other words, cutter (106) will not necessarily have to travel the full longitudinal length of needle assembly (28) in order to reach aperture (278) to sever a tissue sample when a cutting sequence is initiated. Cutter (106) may thus be effectively “staged” for cutting immediately upon coupling of probe assembly (14) with needle assembly (28).
2. Exemplary Telescoping Cutter Cover
When probe assembly (19) is detached from needle assembly (29), telescopic cutter cover (250) extends from probe assembly (19) under the distal urging of compression spring (252). Also, cutter (106) is partially retracted inside the probe assembly (19) by a cutter translation and rotation mechanism as discussed further below. The combination of partially retracted cutter (106) and extended telescopic cutter cover (250) may protect a user from exposure to the sharp cutter (106) to some degree.
As shown in
Also as shown in
Translation gear (260) is in communication with a drive gear (264), which is exposed by holster assembly (21). As will be described in greater detail below, holster assembly (21) is operable to rotate drive gear (264). Furthermore, translation gear (260) and drive gear (264) are positioned and configured such that gears (260, 264) mesh when probe assembly (19) is coupled with holster assembly (21). Rotation of drive gear (264) thus causes corresponding rotation of the translation gear (260), which in turn causes external helix (254) to rotate. As external helix (254) rotates, the bracket (268) translates longitudinally due to engagement of pin (270) with track (266). Cutter (106), being attached to bracket (268), translates longitudinally with bracket (268). The translating movement is greater when bracket (268) travels through fast thread portion (256) of track (266) compared to fine thread portion (258).
Rotation of drive gear (264) also imparts rotation to the cutting gear (262) through cutting gear's (262) connection with external helix (254). An elongated gear (272) is unitarily secured to cutter (106) (e.g., via overmolding, etc.) in this example. Elongated gear (272) is configured to engage cutting gear (262) once cutter (106) has translated from its partially retracted position. In particular, thread portions (256, 258) and elongated gear (272) are sized and configured such that, about when pin (270) reaches a transition between fast thread portion (256) and fine thread portion (258), cutter (106) has translated distally to a longitudinal position whereby elongated gear (272) engages cutting gear (262). The engagement of cutter gear (262) with elongated gear (272) is such that rotating cutter gear (262) rotates elongated gear (272), thereby rotating cutter (106), which may aid in severing a tissue sample. Furthermore, the elongated design of elongated gear (272) may allow for continued rotation as cutter (106) translates through a longitudinal range of motion.
It will therefore be appreciated that, in the present example, bracket (268) is attached to cutter (106) in a way that allows cutter (106) to rotate freely while translating longitudinally. For instance, as shown in
It will also be appreciated that telescopic cutter cover (250) may be designed to have any suitable shape that may effectively reduce a user's exposure to the sharp cutter (106). For instance, as shown in
In the present example, approximately 60% of the length of cutter (106) is retracted within probe assembly (16) when cutter (106) is in a retracted position; while telescoping cutter cover (250) extends to shield the other 40% of the length of cutter (106), which extends distally from probe assembly (19). Of course, any other amount of the length of cutter (106) may be retracted within probe assembly (16) when cutter (106) is in a retracted position. Similarly, telescoping cutter cover (250) may shield any other suitable length of cutter (106) extending distally from probe assembly (19) when cutter (106) is in a retracted position.
In some variations, telescopic cutter cover (250) is substituted with a design having multiple telescopic cutter covers (280), as seen in
3. Exemplary Retractable Cutter
A rotating drive gear (298) is exposed by holster assembly (20) in this example. As will be described in greater detail below, holster assembly (21) is operable to rotate drive gear (264). Drive gear (298) and gear (288) of internal helix mechanism (282) are positioned and configured such that gears (288, 298) mesh when probe assembly (18) is coupled with holster assembly (20). Rotation of drive gear (298) thus causes corresponding rotation of gear (288). Gear (288) is fixedly coupled with hollow tube (284) in this example, such that rotation of drive gear (298) also causes rotation of hollow tube (284) when probe assembly (18) is coupled with holster assembly (20). As tube (284) is rotated, cutter (107) translates longitudinally in this example. In particular, pin (296) of cutter driver (292) travels in interior track (294) of tube (284) as tube (284) is rotated. This longitudinal translation of cutter driver (292) causes corresponding translation of cutter (107), as cutter driver (292) is fixedly secured to cutter (107) in this example. Retraction or extension of the cutter (107) relative to the remainder of probe assembly (18) may thus be determined by the direction of rotation. It will be appreciated by those of ordinary skill in the art that the pitch of track (294) may be adjusted to provide greater or lesser translational movement per unit of rotation. Furthermore, it will be appreciated that the pitch of track (294) may be variable through the length of hollow tube (284) (e.g., a fast pitch region and a fine pitch region, etc.).
As shown, fine thread lead screw (286) is positioned longitudinally adjacent to and distal to hollow tube (284). Fine thread lead screw (286) is fixed within probe assembly (18), and includes a leaf spring (300), which biases a pin (302) toward cutter (107). Cutter (107) has a longitudinal slot (304) along a portion of its length. In particular, longitudinal slot begins near the distal end of cutter (107) and terminates at a selected proximal point on cutter (107). By way of example only, cutter (107) may have a stepped configuration such that a portion having slot (304) is of a greater outer diameter than the portion without slot (304). Thus, slot (304) terminates at or near a longitudinal position where cutter (107) outer diameter transitions.
Longitudinal slot (304) is configured to receive pin (302). Engagement of pin (302) in slot (304) prevents cutter (107) from rotating as pin (296) of cutter driver (292) travels in interior track (294) of tube (284). For instance, in the first stages of extending cutter (107) (or the later stages of retracting cutter (107)), as hollow tube (284) rotates and cutter (107) translates longitudinally, pivot pin (302) travels in slot (304), and prevents cutter (107) from rotating while permitting translational movement of cutter (107). Of course, any other suitable structures, components, features, configurations, or techniques may be used to restrict rotation of cutter (107) during stages of extending cutter (107) from probe assembly (18) and/or retracting cutter (107) into probe assembly (18).
As cutter (107) reaches an extended position (e.g., when the distal end of cutter (107) nears aperture (278) of attached needle assembly (29)), longitudinal slot (304) of the cutter (107) terminates and pivot pin (302) no longer restricts rotational movement of cutter (107). Furthermore, lead screw nut (290) engages fine thread lead screw (286) when cutter (107) reaches a sufficiently distally extended position. At this point, pin (296) of the cutter driver (292) reaches the transition from helical region (295) of interior track (294) to longitudinal region (297) of interior track (294). With pivot pin (302) no longer restricting rotational movement of cutter (107), and with pin (296) of cutter driver (292) at longitudinal region (297) of interior track (294), further rotational motion communicated to hollow tube (284) by gear (288) cause cutter (107) to rotate in this example. Furthermore, with cutter (107) at such an extended longitudinal position, lead screw nut (290) internally engages fine thread lead screw (286). Lead screw nut (290) and fine thread lead screw (286) have complementary threads, such that rotation of cutter (107) (and, hence, rotation of lead screw nut (290)) causes longitudinal translation of cutter (107). Longitudinal region (297) of interior track (294) permits pin (296) (and, hence, cutter (107)) to translate relative to hollow tube (284) during such engagement between threads of lead screw nut (290) and fine thread lead screw (286). Cutter (107) may thus rotate and translate simultaneously as hollow tube (284) is rotated throughout this longitudinal positioning of cutter (107), to sever a tissue sample from tissue protruding through aperture (278). After severing the tissue sample, retraction of cutter (107) may occur in reverse order and begins by imparting rotation to hollow tube (284) in the reverse direction.
An encoder gear (299) is also secured to hollow tube (284), such that encoder gear (299) rotates unitarily with hollow tube (284). Encoder gear (299) is configured to mesh with a complementary encoder gear (301) exposed by holster (20), when probe assembly (18) is coupled with holster assembly (20). Encoder gear (301) is coupled with an encoder (303) located within holster (20). Encoder (303) may thus be used to track the longitudinal position and/or rotation speed, etc., of cutter (107). Suitable encoders and ways in which encoder (303) may be used are disclosed in U.S. Non-Provisional patent application Ser. No. Ser. No. 12.337,942, entitled “TISSUE BIOPSY DEVICE WITH CENTRAL THUMBWHEEL,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Of course, encoder (303) and associated components may be omitted, if desired.
C. Exemplary Hybrid Detachable Needle
In some settings, it may be desirable to have a first portion of a biopsy device needle provided as an integral component of the biopsy device, with a second portion of the needle being provided as a separate targeting cannula. For instance,
Cannula (308) also includes a dual lumen portion (314) in its distal region. Dual lumen portion (314) may be achieved by including a dividing member (316) within cannula (308) in the distal region. Dividing member (316) partially extends longitudinally within cannula (308), proximally terminating at a proximal edge (319). Dividing member (316) thus creates an upper lumen (315) and a lower lumen (317). The portion of cannula (308) without dividing member (316) defines a single lumen portion (318). Dividing member (316) includes openings (320) that provide fluid communication between upper lumen (315) and lower lumen (317). Also, as shown in
In the present example, a partial needle (306) extends distally from a probe (not shown). By way of example only, the probe may otherwise be configured in accordance with any of the teachings herein; any of the teachings of U.S. Pub. No. 2008/0195066, entitled “Revolving Tissue Sample Holder For Biopsy Device,” published Aug. 14, 2008, the disclosure of which is incorporated by reference herein; or any of the teachings of U.S. Non-Provisional patent application Ser. No. 12/337,942, entitled “TISSUE BIOPSY DEVICE WITH CENTRAL THUMBWHEEL,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Alternatively, the probe may have any other suitable configuration.
Partial needle (306) of the present example has a shovel end (322). Shovel end (322) has an upper distal edge (323), a tongue (325), and a lower distal edge (327) at the distal end of tongue (325). Tongue (325) has a plurality of openings (328) formed therethrough. Partial needle (306) also defines an upper lumen (329) and a lower lumen (334), which terminates at a lower lumen distal edge (333). Upper lumen (229) and lower lumen (334) together define a dual lumen region (324) of partial needle (306); while upper lumen (229) extends distally past lower lumen distal edge (333) to form a single lumen region (326) of partial needle (306).
As shown in
In operation, cannula (308) may be positioned using any suitable guidance technique (e.g., MRI imaging). Cannula (308) may have an blunt obturator inserted therein (e.g., to “close off” aperture (312), etc.), and cannula (308) with obturator may be inserted into a patient's breast. After positioned, the obturator may be removed. At this stage, some tissue may naturally prolapse or otherwise protrude into aperture (312), even without a vacuum applied. A probe (not shown)—equipped with partial needle (306) and cutter (not shown)—may then be inserted into the positioned cannula (308) (e.g., until lower distal edge (327) of shovel end (322) abuts the rear face of tip (310)). The configuration of shovel end (322) may reduce any likelihood that partial needle (306) will move or otherwise interfere with any tissue that is naturally prolapsing or otherwise protruding into aperture (312) as partial needle (306) is inserted into cannula (308). Vacuum may then be induced in lower lumens (317, 334) to draw tissue into aperture (312). The cutter (not shown) may then be translated and rotated through upper lumens (315, 329) to sever the tissue sample. The severed tissue sample may then be transported through the lumen of the cutter to a tissue sample container (not shown), such as by inducing a vacuum in the cutter lumen while venting lower lumens (317, 334).
The foregoing is just one example of how a partial needle (306) may be configured relative to a targeting cannula (308). It should be understood that partial needle (306) and targeting cannula (308) may each be configured in a variety of other ways, and that partial needle (306) and targeting cannula (308) may have a variety of other relationships with each other. Suitable variations of partial needle (306) and targeting cannula (308) and their relationships will be apparent to those of ordinary skill in the art in view of the teachings herein.
D. Exemplary Vacuum Delivery and Tissue Sample Holding
Each probe assembly (14, 18, 19) discussed herein includes vacuum delivery and tissue sample holding. As noted above, biopsy devices (10, 12) described herein function to capture tissue samples, sever the tissue samples from the targeted tissue, and transport the tissue samples to a tissue sample holder.
In terms of vacuum delivery, vacuum may be delivered to a lateral lumen (84) in needle assembly (28, 29, 30, 134, 160, 161) as well as to an axial lumen defined by cutter (106, 107). The vacuum induced in lateral lumen (84) may aid in capturing the tissue sample for biopsy, such as by drawing tissue into aperture (278). The vacuum provided to the axial lumen in cutter (106, 107) may aid in transporting the severed tissue sample from the interior of the cutter to a tissue sample container (500). Various ways in which vacuum delivery and other fluid communication may be provided to and within any biopsy device (10, 12) described herein are disclosed in U.S. Pub. No. 2008/0195066, entitled “Revolving Tissue Sample Holder For Biopsy Device,” published Aug. 14, 2008, the disclosure of which is incorporated by reference herein.
In terms of tissue sample containers (500), examples of such containers (500) are shown in
To the extent that tissue sample container (500) includes a rotatable portion to successively index discrete tissue sample compartments with the lumen of cutter (106, 107), there are a variety of mechanisms and features that may be used to rotate and otherwise operate such a rotatable portion. By way of example only, tissue sample container (500) may be rotatable in accordance with any of the teachings of U.S. Pub. No. 2008/0195066, entitled “Revolving Tissue Sample Holder For Biopsy Device,” published Aug. 14, 2008, the disclosure of which is incorporated by reference herein. Alternatively, tissue sample container (500) may be rotatable in accordance with any of the teachings of U.S. Non-Provisional patent application Ser. No. 12/337,874, entitled “MECHANICAL TISSUE SAMPLE HOLDER INDEXING DEVICE,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Alternatively, tissue sample container (500) may be rotatable in accordance with any of the teachings of U.S. Non-Provisional patent application Ser. No. 12/337,942, entitled “TISSUE BIOPSY DEVICE WITH CENTRAL THUMBWHEEL,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Of course, tissue sample container (500) may be rotatable in any other suitable fashion.
Furthermore, those of ordinary skill in the art will appreciate that a tissue sample container (500) may be omitted altogether if desired. A tissue sample container (500) may also be mounted on another assembly of a biopsy device (10, 12) instead of probe assembly (14, 18, 19) (e.g., to holster assembly (16, 20, 21)). Alternatively, tissue sample container (500) may be located separate from biopsy device (10, 12), such as by being remotely connected by a vacuum line that transports the tissue sample. Still other ways in which a tissue sample container may be incorporated into a biopsy device (10, 12) will be apparent to those of ordinary skill in the art in view of the teachings herein.
IV. Exemplary Holster Assemblies
As described briefly above and shown in
By way of example only, holster assemblies (16, 20, 21) may be configured in accordance with the teachings of U.S. Pub. No. 2008/0195066, entitled “Revolving Tissue Sample Holder For Biopsy Device,” published Aug. 14, 2008, the disclosure of which is incorporated by reference herein. Alternatively, holster assemblies (16, 20, 21) may be configured in accordance with the teachings of U.S. Non-Provisional patent application Ser. No. 12/337,942, entitled “TISSUE BIOPSY DEVICE WITH CENTRAL THUMBWHEEL,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Alternatively, holster assemblies (16, 20, 21) may have any other suitable structures, components, features, configurations, functionalities, and methods of operation. Suitable structures, components, features, configurations, functionalities, and methods of operation will be apparent to those of ordinary skill in the art in view of the teachings herein.
Embodiments of the present invention have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.
Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometries, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
Parihar, Shailendra K., Ludzack, Michael R.
Patent | Priority | Assignee | Title |
10028730, | Aug 26 2011 | Devicor Medical Products, Inc. | Biopsy device tissue sample holder with bulk chamber and pathology chamber |
10052087, | Dec 18 2008 | Devicor Medical Products, Inc. | Control module interface for MRI biopsy device |
10092276, | Mar 15 2013 | Cook Medical Technologies LLC | Tissue acquisition device with indication system |
10149664, | Oct 24 2006 | C. R. Bard, Inc. | Large sample low aspect ratio biopsy needle |
10166011, | Jul 09 2004 | Bard Peripheral Vascular, Inc. | Transport system for biopsy device |
10271827, | Mar 19 2002 | C. R. Bard, Inc. | Disposable biopsy unit |
10285673, | Mar 20 2013 | Bard Peripheral Vascular, Inc. | Biopsy device |
10456120, | Nov 05 2013 | C. R. Bard, Inc. | Biopsy device having integrated vacuum |
10463350, | May 01 2015 | C. R. Bard, Inc. | Biopsy device |
10499888, | Jul 09 2004 | Bard Peripheral Vascular, Inc. | Tissue sample flushing system for biopsy device |
10575833, | Aug 12 2009 | C. R. Bard, Inc. | Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula |
10617399, | Aug 21 2006 | C.R. Bard, Inc. | Self-contained handheld biopsy needle |
10687791, | Dec 20 2007 | C. R. Bard, Inc. | Biopsy device |
11179141, | Dec 13 2006 | Devicor Medical Products, Inc. | Biopsy system |
11179142, | May 01 2015 | C.R. Bard, Inc. | Biopsy device |
11382608, | Mar 19 2002 | C. R. Bard, Inc. | Disposable biopsy unit |
11480756, | Dec 14 2020 | KARL STORZ IMAGING, INC | Two-speed focusing mechanism |
11534148, | Nov 05 2013 | C. R. Bard, Inc. | Biopsy device having integrated vacuum |
11583261, | Oct 24 2006 | C. R. Bard, Inc. | Large sample low aspect ratio biopsy needle |
11779316, | Mar 20 2013 | Bard Peripheral Vascular, Inc. | Biopsy device |
8414602, | Jan 06 2010 | Biopsy devices and methods | |
8454629, | Jun 11 2004 | Biopsy devices and methods | |
8617084, | Dec 18 2008 | Devicor Medical Products, Inc. | Control module interface for MRI biopsy device |
8690793, | Mar 16 2009 | C R BARD, INC | Biopsy device having rotational cutting |
8708928, | Apr 15 2009 | Bard Peripheral Vascular, Inc | Biopsy apparatus having integrated fluid management |
8708929, | Apr 15 2009 | Bard Peripheral Vascular, Inc. | Biopsy apparatus having integrated fluid management |
8708930, | Apr 15 2009 | Bard Peripheral Vascular, Inc. | Biopsy apparatus having integrated fluid management |
8721563, | Aug 10 2005 | C. R. Bard, Inc. | Single-insertion, multiple sample biopsy device with integrated markers |
8728004, | Mar 29 2003 | C.R. Bard, Inc. | Biopsy needle system having a pressure generating unit |
8758369, | Aug 01 2002 | Biopsy devices and methods | |
8808197, | Oct 29 2009 | Bard Peripheral Vascular, Inc. | Biopsy driver assembly having a control circuit for conserving battery power |
8858462, | Dec 18 2008 | Devicor Medical Products, Inc. | Biopsy probe and targeting set interface |
8858463, | Dec 20 2007 | C. R. Bard, Inc. | Biopsy device |
8926527, | Jul 09 2004 | Bard Peripheral Vascular, Inc. | Tissue sample flushing system for biopsy device |
8951208, | Aug 21 2006 | C. R. Bard, Inc. | Self-contained handheld biopsy needle |
9060759, | Mar 31 2011 | Cook Medical Technologies LLC | Adjustable-throw biopsy needle |
9072502, | Mar 19 2002 | C. R. Bard, Inc. | Disposable biopsy unit |
9134388, | Dec 18 2008 | Devicor Medical Products, Inc. | Control module interface for MRI biopsy device |
9173641, | Aug 12 2009 | C. R. Bard, Inc. | Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula |
9282949, | Sep 25 2009 | Bard Peripheral Vascular, Inc. | Charging station for battery powered biopsy apparatus |
9326755, | Aug 26 2011 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device tissue sample holder with bulk chamber and pathology chamber |
9345458, | Jul 09 2004 | Bard Peripheral Vascular, Inc. | Transport system for biopsy device |
9421002, | Mar 19 2002 | C. R. Bard, Inc. | Disposable biopsy unit |
9439632, | Aug 21 2006 | C. R. Bard, Inc. | Self-contained handheld biopsy needle |
9456809, | Jul 09 2004 | Bard Peripheral Vascular, Inc. | Tissue sample flushing system for biopsy device |
9463043, | Jun 16 2009 | Devicor Medical Products, Inc. | Biopsy targeting cube with living hinges |
9545244, | Dec 18 2008 | Devicor Medical Products, Inc. | Mechanical tissue sample holder indexing device |
9561020, | Dec 18 2008 | Devicor Medical Products, Inc. | Biopsy probe and targeting set interface |
9655599, | Aug 12 2009 | C. R. Bard, Inc. | Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula |
9724073, | Apr 16 2012 | Biopsy device | |
9775588, | Dec 20 2007 | C. R. Bard, Inc. | Biopsy device |
9949726, | Oct 29 2009 | Bard Peripheral Vscular, Inc. | Biopsy driver assembly having a control circuit for conserving battery power |
Patent | Priority | Assignee | Title |
5226426, | Dec 18 1990 | Safety penetrating instrument | |
5285795, | Sep 12 1991 | Clarus Medical, LLC | Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula |
5490860, | Dec 08 1993 | SOFAMOR DANEK PROPERTIES, INC | Portable power cutting tool |
5526822, | Mar 24 1994 | DEVICOR MEDICAL PRODUCTS, INC | Method and apparatus for automated biopsy and collection of soft tissue |
5580347, | Jul 31 1991 | MENTOR OPHTHALMICS, INC | Controlling operation of handpieces during ophthalmic surgery |
6007497, | Jun 30 1998 | DEVICOR MEDICAL PRODUCTS, INC | Surgical biopsy device |
6086544, | Mar 31 1999 | DEVICOR MEDICAL PRODUCTS, INC | Control apparatus for an automated surgical biopsy device |
6283925, | May 12 1998 | MEDICAL DEVICE TECHNOLOGIES, INC | Biopsy needle handle |
6461350, | Nov 22 1995 | Arthrocare Corporation | Systems and methods for electrosurgical-assisted lipectomy |
6475190, | Jan 23 2001 | ISPG, Inc. | Needle assembly including a retractable sheath |
6626849, | Nov 01 2001 | DEVICOR MEDICAL PRODUCTS, INC | MRI compatible surgical biopsy device |
6638235, | Nov 06 2000 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Biopsy apparatus |
6984213, | Mar 15 2001 | Specialized Health Products, Inc. | Biopsy needle device |
7025732, | Feb 25 2003 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device with variable speed cutter advance |
7211069, | Feb 06 2002 | TecPharma Licensing AG | Needle cover and cannula support comprising a needle cover |
7311673, | Apr 24 2003 | ATOSSA THERAPEUTICS, INC | Biopsy device |
7442171, | Oct 13 2000 | DEVICOR MEDICAL PRODUCTS, INC | Remote thumbwheel for a surgical biopsy device |
7481775, | Mar 04 2005 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy device incorporating an adjustable probe sleeve |
7507210, | May 01 2006 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy cannula adjustable depth stop |
20030199753, | |||
20030199785, | |||
20040019297, | |||
20040167428, | |||
20040245103, | |||
20050119627, | |||
20050277829, | |||
20060276772, | |||
20070032742, | |||
20070167736, | |||
20080195066, | |||
20080214955, | |||
20080281226, | |||
DE10227352, | |||
DE202008004651, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 18 2008 | Devicor Medical Products, Inc. | (assignment on the face of the patent) | / | |||
Jan 13 2009 | PARIHAR, SHAILENDRA K | Ethicon Endo-Surgery, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022330 | /0335 | |
Jan 13 2009 | LUDZACK, MICHAEL R | Ethicon Endo-Surgery, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022330 | /0335 | |
May 12 2010 | Ethicon Endo-Surgery, Inc | Ethicon Endo-Surgery, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024369 | /0626 | |
Jul 09 2010 | Ethicon Endo-Surgery, LLC | DEVICOR MEDICAL PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024656 | /0727 | |
Jul 09 2010 | DEVICOR MEDICAL PRODUCTS, INC | GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT | SECURITY AGREEMENT | 024672 | /0088 |
Date | Maintenance Fee Events |
Feb 27 2014 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Jun 09 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 18 2015 | ASPN: Payor Number Assigned. |
Jul 23 2018 | REM: Maintenance Fee Reminder Mailed. |
Jan 14 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 07 2013 | 4 years fee payment window open |
Jun 07 2014 | 6 months grace period start (w surcharge) |
Dec 07 2014 | patent expiry (for year 4) |
Dec 07 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 07 2017 | 8 years fee payment window open |
Jun 07 2018 | 6 months grace period start (w surcharge) |
Dec 07 2018 | patent expiry (for year 8) |
Dec 07 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 07 2021 | 12 years fee payment window open |
Jun 07 2022 | 6 months grace period start (w surcharge) |
Dec 07 2022 | patent expiry (for year 12) |
Dec 07 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |