A recording apparatus for performing recording by scanning a recording head includes an acquisition unit configured to acquire temperature information of the recording head, a generation unit configured to generate a signal that indicates outputting of an output voltage based on the temperature information, a voltage control unit configured to control a voltage to be output to the recording head based on the signal, and a control unit configured to simultaneously perform preliminary ejection processing in an interval between a previous scan and a next scan of the recording head and output processing of the signal.
|
1. A recording apparatus for performing recording by scanning a recording head, the recording apparatus comprising:
an acquisition unit configured to acquire temperature information of the recording head;
a generation unit configured to generate a signal that indicates outputting of an output voltage based on the temperature information;
a voltage control unit configured to control a voltage to be output to the recording head based on the signal; and
a control unit configured to simultaneously perform preliminary ejection processing in an interval between a previous scan and a next scan of the recording head and output processing of the signal,
wherein the voltage control unit is a DC-to-DC converter, the DC-to-DC converter including a discharge circuit configured to perform discharge processing based on a signal, output from the control unit, indicating discharge, and
wherein a time constant for discharge of the discharge circuit is a value that enables discharge of a controllable voltage width in a period of time shorter than a stop interval of the recording head between a previous scan and a next scan.
2. The recording apparatus according to
|
This application is a Divisional of U.S. patent application Ser. No. 11/686,117 filed Mar. 14, 2007, issued U.S. Pat. No. 7,600,841, which claims priority from Japanese Patent Application No. 2006-071128 filed Mar. 15, 2006, the entire contents of both of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a recording apparatus for recording an image on a recording medium.
2. Description of the Related Art
A thermal printer and an inkjet recording apparatus, which records characters and images by ejecting ink onto a recording medium, such as recording paper, are well known as a recording apparatus. An inkjet recording apparatus, which is typically used as an information outputting unit of a printer, a copier, or a facsimile machine, performs recording by ejecting ink while moving a relative position between a recording medium and an inkjet recording head. The image quality of a recording result of the inkjet recording apparatus depends on control of a relative velocity between the inkjet recording head and the recording medium, control of an ejection timing associated therewith, and stability of power supply to the recording head.
Ink jet recording apparatuses are broadly divided into a so-called serial type and full-line type. The serial-type recording apparatus performs recording by ejecting ink while moving an inkjet recording head and is commonly and widely used.
The ink ejecting recording head can eject ink by the operation of a piezoelectric element, the momentary surface boiling of ink, or some other operation. A recording head that ejects ink by boiling of ink supplies ejection energy by boiling ink adjacent to a heater in the vicinity of an ink path adjacent to an ink nozzle by energization of the heater.
In order to maintain satisfactory image quality, it is important to generate uniform ink droplets by continuous stable supply of energy required for ejecting ink and by maintaining the same conditions for ink ejection. However, in recording operations, a duty ratio varies with image data, and thus the number of heaters simultaneously energized varies. Therefore, driving conditions vary depending on effects of voltage variations caused by the difference between output currents of a power source, the difference between drop voltages caused by the resistive component in a transmission system, and some other factor.
Ink ejection control described above is carried out in a range that satisfies a stable ejection condition by use of high accuracy of an output voltage of a power source or a transmission system that has a structure with lower loss. A DC/DC converter that supplies the recording head with power is described below.
An output signal from the error amplifier 207, which receives a Vcc potential from a reference voltage 212 and a feedback output voltage signal VH, is an output signal of the voltage control circuit 206 and performs pulse-width modulation (PWM) control and constant voltage control on the switching element 201 via a PWM comparator circuit 208. A resistor R5 and a capacitor C1 connected to an inversion terminal and an output terminal of the error amplifier 207, respectively, constitutes an example of a phase compensation circuit for adjusting stability and responsivity of an output voltage.
As described above, power is supplied such that feedback is controlled so that a stable output voltage is supplied so as to accommodate variations in output current caused by variations in the number of nozzles simultaneously driven on a recording head being a load.
The recent improvement in semiconductor processes enables the switching speed of a DC/DC converter to be driven at the megahertz level. Additionally, the responsivity of feedback control found in current-mode control is becoming high, like the advent of a control IC that achieves high responsivity on the order of microseconds, so it becomes possible to accurately supply power.
For an inkjet recording head, the performance of ink ejection is apt to depend on the temperature of the recording head. In particular, in a thermal inkjet recording apparatus, since ink droplets are ejected from nozzles by film boiling of ink caused by energization of heater resistors of the recording head, the temperature of the recording head during printing varies constantly.
In particular, when a larger number of sheets are printed continuously or a high-duty image is printed, the frequency of foaming of ink in the recording head increases and the number of ink ejection operations is high, and thus the temperature of the recording head gradually rises.
For the performance of ink ejection with respect to temperature, at low temperatures, the viscosity of ink is high and thus it is difficult to eject, and at high temperatures, the viscosity of ink is low and thus the amount of ink ejected from nozzles increases. Therefore, a defect of ink ejection, such as an increased diameter of a dot of a pixel formed on a recording medium, occurs.
Japanese Patent Laid-Open No. 10-119273 describes correction of energy for heat generation with respect to variations in the temperature of a recording head by controlling a driving pulse width.
However, if the temperature of the recording head itself continues rising by continuous recording operations, control of only the driving pulse width may not suppress an increase in the amount of ink ejection. That is, under present circumstances, it is difficult to perform control of reducing the amount of ink ejection by only pulse-width control.
The present invention provides a recording apparatus capable of recording a high-quality image through stabilization of the amount of ink ejection effected by modulation of not only a driving pulse but also a driving voltage in consideration of the temperature of a recording head.
An aspect of the present invention provides a recording apparatus for performing recording by scanning a recording head. The recording apparatus includes an acquisition unit configured to acquire temperature information of the recording head, a generation unit configured to generate a signal that indicates outputting of an output voltage based on the temperature information, a voltage control unit configured to control a voltage to be output to the recording head based on the signal, and a control unit configured to simultaneously perform preliminary ejection processing in an interval between a previous scan and a next scan of the recording head and output processing of the signal.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Exemplary embodiments of the present invention are described below with reference to the drawings. In the exemplary embodiments described below, an inkjet recording apparatus is described by way of example.
As illustrated in
The carriage 3 is attached to part of a driving belt 4 for transmitting a driving force of a carriage drive motor 5 and moves along a guide shaft 6. This structure enables the recording head 2 to perform scan recording on a recording sheet and to form an image on the recording sheet.
By use of a signal of a carriage encoder 403 (not shown) arranged in parallel with the guide shaft 6, moving and stopping of the recording head 2 and a recording position are controlled.
The inkjet recording head units 2-1 to 2-4 each include a plurality of head nozzles for ejecting ink at an ejection surface facing a recording surface of the recording sheet. The nozzles have the form of a thin pipe and are arranged in parallel. The inkjet recording head units 2-1 to 2-4 each further include a heater in the proximity of the nozzles. The heater provides ejection energy to ink supplied from integral ink tanks 1-1 to 1-4.
The nozzles of the inkjet recording head units 2-1 to 2-4 are aligned so as to be substantially perpendicular to the direction of scanning of the carriage 3. The four recording head units 2-1 to 2-4 are arranged along the direction of scanning of the carriage 3.
The inkjet recording apparatus described above converts data into recording data corresponding to the recording head 2 on the basis of data such as an image information control command input from an external host device and the like. The recording data is transferred to the recording head 2 while the carriage 3 performs scanning, and the recording head 2 ejects ink at a necessary timing, so that an image is formed on the recording sheet.
The carriage 3 is connected to a main substrate with a flexible cable 11 and receives various signals and power necessary for the sensor and the DC/DC converter 50.
The drive motor 5 can be, for example, a stepping motor or a DC motor. The ASIC 31 transmits a signal for the drive motor 5 to the driver reset circuit 35 to move the carriage 3 and at the same time keeps track of the present position of the carriage 3, which mounts the recording head 2, by managing the number of operation signals from a datum point in the direction of scanning and a signal from the carriage encoder 403.
When the carriage 3 moves and reaches a position at which the mounted recording head units 2-1 to 2-4 are to eject ink, the ASIC 31 controls the recording head units 2-1 to 2-4 to eject ink.
Although only management of a driving pulse of the drive motor 5 would allow a print position in the direction of scanning to be detected, the recording apparatus according to the present embodiment includes the dedicated carriage encoder 403 to detect the position of the carriage 3 more accurately and uses a signal from the carriage encoder 403 to detect the position of the carriage.
The ASIC 31 controls operation of the inkjet recording apparatus in accordance with a program previously stored in the ROM 32 or a control command input from the host device 51 via the interface circuit 34. The ROM 32 holds a program used for causing the ASIC 31 to operate and various table data required for control of the recording head 2.
The interface circuit 34 functions as an interface used when a control command and control data are exchanged between the host device 51 and the inkjet recording apparatus.
The RAM 33 contains a work area used during computation of the ASIC 31 or a temporary storage area for recording data and control code input from the host device 51 via the interface circuit 34. A print buffer, which stores bit data corresponding to nozzles of the recording head 2 developed from the recording data, is present in the RAM 33.
A power-source unit 9 supplies a Vcc voltage to the main substrate 30, supplies a VM voltage to the driver reset circuit 35, the paper feed motor 10, and the drive motor 5, and supplies a VHin voltage to a DC/DC converter 50.
The DC/DC converter 50 performs control of changing the value of the VH voltage to be supplied to the recording head 2 according to a DCHRG signal and a voltage setting signal C from the ASIC 31. The reference voltage Vcc for the DC/DC converter 50 is turned on or off by use of a Vcc_ENB signal. The VH modulation DC/DC converter 50 is turned on or off by use of a VH_ENB signal.
A temperature detecting unit 36 is adjacent to the nozzle heater of each of the inkjet recording head units 2-1 to 2-4 and detects the temperature of the nozzle heater of each of the inkjet recording head units 2-1 to 2-4. The temperature detecting unit 36 detects the temperature of the recording head 2. The temperature of the recording head 2 is transmitted to the ASIC 31 via an A/D converter (not shown) after being converted from an analog value to a digital value by the A/D converter.
A rise in the temperature of the recording head 2 increases the temperature of ink present in an ink channel inside the recording head prior to foaming and ejected. As a result, the temperature difference ΔT between the ejection temperature of ink in the recording head 2 and the temperature of film boiling of ink varies depending on the temperature of the recording head 2. Thus, if the temperature of ink prior to foaming varies, ink foaming energy required for ink ejection varies. Therefore, energy adjustment is necessary for stable ink ejection.
The ink foaming energy is adjusted by changing the value of an output voltage of the DC/DC converter 50 by ΔV to optimally adjust energy for ink foaming caused by the temperature difference ΔT. Additionally, in order to perform accurate and stable foaming, the value of the output voltage of the DC/DC converter 50 is corrected so as to be changed by change of the amount of ejection to the amount of electric power with respect to a change in the temperature of the recording head 2.
The actual DC/DC converter 50 is described below with reference to
The Vcc_ENB signal is a signal that turns on or off a reference-voltage circuit 212. The reference-voltage circuit 212 is operated by the Vcc_ENB signal having an H level and supplies a reference voltage for a DC/DC control circuit (DC/DC control IC) via a D/A converter 211 and resistors R4 and R5. The Vcc_ENB signal having an L level turns off the reference-voltage circuit 212.
The VH_ENB signal is supplied to the DC/DC control IC and turns on or off the operation of the DC/DC converter 50. The VH_ENB signal having an H level turns on the DC/DC converter 50. The VH_ENB signal having an L level turns off the DC/DC converter 50.
To modulate an output voltage VH, the DC/DC converter 50 according to the present embodiment adds a current to a division point of the output voltage VH by the D/A converter 211. The reference-voltage circuit 212 outputs a Vcc potential to the D/A converter 211 when the Vcc_ENB signal output from the ASIC 31 is at the H level. At this time, the Vcc potential is also supplied to an error amplifier 207 of the DC/DC control IC via the resistors R4 and R5.
The D/A converter 211 receives a reference voltage Vcc generated by the reference-voltage circuit 212 and outputs an output voltage VA corresponding to a control signal (digital signal) C output from the ASIC 31.
Therefore, a current I2 corresponding to the output voltage VA is added to a division point of resistors R1 and R3 via a resistor R2. For example, if the control signal C is an 8-bit digital signal, the output of the D/A converter 211 can be adjusted in 256 levels. In this case, the output voltage VA of the D/A converter 211 is represented by the following expression:
where Vcc denotes an input voltage of the D/A converter 211 and Xbit denotes a value of the 8-bit control signal C. By addition of the current I2 corresponding to the output voltage VA to the division point of the resistors R1 and R3, the output voltage VH is changed in the following manner.
A voltage VH1 to be input to a noninverting terminal of the error amplifier 207 is controlled so as to eliminate the error between the voltage VH1 and a reference voltage Vref to be input to an inverting terminal of the error amplifier 207. Therefore, currents I1, I2, and I3 passing through the resistors R1, R2, and R3, respectively, are represented by the following expressions:
By applying Kirchhoff's current law:
Hence, the output voltage VH is represented by the following expressions:
In this way, the output voltage VH can be changed by changing the value of the output voltage VA of the D/A converter 211.
A discharge circuit 301 includes a MOS-FET Q102, which functions as a switching element, and a resistor R6 for restricting a discharge current. The discharge circuit 301 removes a charge from a capacitor C101 when the DC/DC converter 50 is turned off. The discharge circuit 301 removes a charge from the capacitor C101 when the output voltage VH is modulated.
A DCHRG signal is a signal that turns on or off the discharge circuit 301 of the DC/DC converter 50 and is supplied to a gate of the switching element Q102. When the DCHRG signal is at an H level, the switching element Q102 is turned on. When the DCHRG signal is at an L level, the switching element Q102 is turned off.
A timing of acquisition of temperature data and a timing of changing the voltage during printer operation are described with reference to
Each of a period (timing) A and a period (timing) B illustrated in
Although a rise in the temperature of the recording head 2 increases the amount of ink ejection, the increase in the amount of ink ejection can be suppressed by increasing a driving voltage and shortening a pulse width. Therefore, the amount of ink ejection can be stabilized by increasing the VH voltage of the DC/DC converter 50 when the temperature of the recording head 2 rises and by reducing the VH voltage of the DC/DC converter 50 when the temperature of the recording head 2 declines.
Control of a pulse width is a known technique, so the description thereof is omitted. Modulation of a driving voltage of the recording head 2 is described below.
In
The carriage 3 ejects ink to an end of a maximum recording-medium width of the apparatus to form an image. Therefore, the carriage 3 moves from a range A to a range B illustrated in
When the carriage 3 moves directly above the recording medium 401, the carriage 3 is in a uniform speed range, in which an image is formed by ejection of ink and control of a relative speed between the carriage 3 and the recording medium 401 by conveyance of the recording medium 401.
In
The increase in the temperature of the recording head 2 is not very sharp, but, if a high-duty image, which requires an increased number of ink ejection from the recording head 2, is formed or if an image is repeatedly formed on a plurality of recording media, the temperature of the recording head 2 gradually rises. In this case, image quality may be different for every recording medium or may be different according to the location where ink is ejected on a recording medium, so it is difficult to provide stable image quality.
A sequence of a series of recording operations and signals are described below with reference to
On the other hand, for example, if the temperature of the recording head 2 declines, the amount of ink ejection decreases. In the a2 section, in order to suppress the reduction in the amount of ink ejection, the voltage VH is reduced.
In
In
A section of (c) in
The temperature of the recording head 2 is measured by a temperature sensor, such as a diode sensor, in units of, for example, 10 ms. The diode sensor is disposed on a heater board (base member) on which the heaters are mounted. It is difficult for a temperature sensor, such as the diode sensor, to accurately measure the temperature while the heaters of the recording head 2 are being driven because of superimposition of noise caused by effects of a driving signal.
More specifically, the temperature is measured as a value that is approximately 20° C. higher than a value that would be detected when the heaters are not driven because of superimposition of a noise component caused by a driving signal. It has been found that, since the temperature of the recording head during printing rises on the order of a few seconds to several tens of seconds or declines on the order of several tens of seconds to a few minutes, the temperature of the recording head 2 detected on the order of milliseconds does not vary significantly.
As a result, the difference in temperature data between a head-temperature datum detected at a timing and a head-temperature datum detected at a next timing is managed by a digital filter disposed in the ASIC. If a sharp change in temperature is detected in a short period of time, the detected temperature data is cancelled as data on which a noise component is superimposed. Alternatively, the data is processed as data that has no temperature change (e.g., 1° C. or less).
When, at a timing of (d) in
The ASIC 31 acquires a base temperature T0 of the recording head within 0.3 seconds after the activation of the DC/DC converter 50 and then refers to a table (not shown) of the recording head 2 temperature to the set voltage. The ASIC 31 transmits a voltage control signal C to the D/A converter 211. The D/A converter 211 outputs an output voltage VA according to the value of the voltage control signal C. The switching element Q102 in the discharge circuit 301 is turned on in response to the DCHRG signal transmitted from a controller for a fixed period of time after the ASIC 31 transmits the voltage control signal C. At this time, a charge flows as a discharge current from the capacitor C101 via the resistor R6.
If the value of the voltage VH decreases from VHmax to VHx, a period of time during which the discharge circuit 301 is in the on state is represented by the following expression:
where C101 represents an output capacitance of the capacitor C101 in the DC/DC converter 50 and R6 represents a resistance of the resistor R6. In
This processing causes the voltage of the capacitor C101 (VH voltage) to decrease to a second voltage value (preset voltage value) determined from the base temperature T0 of the recording head 2.
In the present embodiment, the amount of electric energy applied on the capacitor C101 by the voltage setting signal C is larger than the amount of electric energy discharged by the discharge circuit 301. Therefore, discharge processing of the discharge circuit 301 is always performed at a timing set by the voltage setting signal C, so that the output voltage VH is increased or reduced.
As described above, the VH voltage has a set value set by a set voltage of the D/A converter 211. The output voltage VH in a short period of time is adjusted by a combination of feedback control in the power-source circuit (DC/DC converter 50) and discharge processing.
Another method for adjusting the level of the output voltage VH is to operate the discharge circuit 301 at a timing set by the voltage control signal C only when the output voltage VH is to be reduced.
Processing of ejecting ink from the recording head 2 includes preliminary ejection (processing) for ejecting ink on a regular basis to prevent the nozzle from clogging and main ejection (processing) for ejecting ink to form an image.
The main ejection is performed when the carriage 3 is positioned directly above the recording medium, whereas the preliminary ejection is performed when the carriage 3 is not positioned directly above the recording medium but is at its home position.
The temperature of the recording head 2 gradually rises when recording operation continues. In the sections A and B illustrated in
Data detected by the temperature sensor during the main ejection, in which ink is ejected onto the recording medium, contains a superimposed noise component. Therefore, temperature information of the recording head 2 is cancelled by a digital filter or some other member.
Temperature data (information on temperature) is acquired in a fixed period of time (0.2 s) in the ranges A and B, where the reciprocating motion is turned from the forward direction (forward scan) to the return direction (return scan), outside the printing area, the ranges A and B being an acceleration/deceleration range of the carriage.
The temperature data is digitized by the A/D converter (not shown) in order to be processed by the ASIC 31 on the main substrate 30. By use of the digitized information, information on the set voltage of the DC/DC converter 50 held in the ROM 32 is referred to. The information on the set voltage read from the ROM 32 is output from the ASIC 31 toward the DC/DC converter 50.
In the information on the set voltage held in the ROM 32, information on the nozzle rank is a parameter. Therefore, even if there are variations in the ejection characteristics of the nozzles of the recording head 2, accurate correction can be performed.
The voltage VH of the DC/DC converter 50 is controlled in such a way that the voltage VH is modulated when the temperature of the recording head 2 changes by a predetermined fixed value of ±ΔT° C. (e.g., 5° C.) or more relative to the base temperature T0. If the temperature does not change by ±ΔT or more relative to the base temperature T0, the VH modulation operation is not performed, and the DC/DC converter 50 is driven with the unmodulated VH voltage.
In an example illustrated in
By this series of operations, after a temperature detection timing of Tn-1, a section a2 in
In the case in which, at a timing of Tn-1 the temperature changes by predetermined ±ΔT° C. or more relative to the base temperature T0 and the voltage VH is modulated, the base temperature information stored in the controller is rewritten to temperature information at Tn-1 as new base information, and the next VH modulation is performed for a temperature change of ±ΔT or more relative to the temperature at Tn-1.
In
In
Since the temperature of the recording head 2 at a temperature detection timing of Tm-1 changes by −ΔT° C. relative to the base temperature at Tn-1, after a temperature detection timing of Tm-1, predetermined-VH-voltage mapping information for the temperature of the recording head to the set voltage of the DC/DC converter 50 is referred to, the voltage control signal C is transmitted to the D/A converter 211, and then the DCHRG signal is transmitted to the discharge circuit 301.
By this series of operations, after a temperature detection timing of Tm-1 in
If the value of the voltage VH decreases from VHx to VHx1, a period of time during which the voltage is modulated after Tm-1 is represented by the following expression:
where C101 represents an output capacitance of the capacitor C101 in the DC/DC converter 50 and R6 represents a resistance of the resistor R6. In
In the present embodiment, the modulation of the voltage VH is completed before the recording head 2 starts a printing operation both for modulation of increasing voltage VH and modulation of reducing the voltage VH. This is because, if printing starts before the completion of the VH modulation operation, the amount of ink ejection would vary, and the image quality would be degraded. As a result, a period of time during which the discharge circuit 301 performs discharge for a width of voltage modulation (control width) is shorter than a pause period of recording (pause timing), which is an interval between a scan and a next scan.
In
In
Turning to
In step S2, the VH_ENB signal of the DC/DC converter 50 is shifted to the H level. Then, in step S3, the DCHRG signal is shifted to the L level. Therefore, the level of the voltage VH of the DC/DC converter 50 is shifted to VHmax (first voltage).
In step S4, the base temperature T0 of the recording head 2 is acquired. Next, in step S5, the base temperature T0 is stored in the RAM. In step S6, a table of the head rank and the temperature is referred to. In step S7, the referred voltage set value is transmitted to the D/A converter 211 in the form of a digital signal.
Flow proceeds to step S8, where a predetermined time period is waited, so that the output of the D/A converter 211 is changed by this waiting. When the predetermined time period has been exceeded, in step S9, the DCHRG signal is shifted to the H level, thereby causing the discharge circuit to operate. Next, in step S10, if it is determined that the DCHRG signal has been output for more than a fixed time period, the DCHRG signal is shifted to the L level in step S11, thereby stopping conduction of the discharge circuit. Then, in step S12, the VH voltage changes to a preset voltage (second voltage), and the printer is in a standby state.
Therefore, in an interval between a scan in the forward direction (step S15) and a scan in the return direction (step S19), at which the recording head does not perform a print operation, or in an interval between a scan in the return direction and a scan in the forward direction, the temperature of the recording head 2 is reflected and the VH modulation control is performed. That is, the VH modulation control is performed in a period of time (timing) corresponding to an acceleration/deceleration range and a stop range, at which printing performed by the reciprocating motion of the recording head 2 is not performed.
The execution of the VH modulation control is determined by whether the difference between the temperature of the recording head 2 acquired in step S24 and the base temperature T0 is equal to or larger than a predetermined value. In
By this series of operations, using temperature information detected at a timing at which the recording head 2 does not eject ink, the recording-head driving voltage VH is also modulated at a timing at which the recording head 2 does not eject ink.
The temperature data is processed by the digital filter in the ASIC. Additionally, the VH modulation control can be performed more precisely by use of information from the carriage encoder 403, which detects the position of the recording head 2. The more precise VH modulation control in an acceleration range, a deceleration range, and a stop range in the reciprocating motion of the head carriage unit is described below with reference to
In sections A or B illustrated in
In the case of
Since the operation of the discharge circuit and the preliminary ejection overlap one another, power consumed by the preliminary ejection processing is employed as a discharge current of output of the DC/DC converter 50. As a result, the time required for the VH modulation can be reduced.
VH modulation control that uses position information from the carriage encoder 403 can perform modulation every one scan of the head carriage unit, not for a change of a predetermined fixed value of ±ΔT° C. In this case, more precise VH modulation control can be realized.
Processing occurring when the recording head 2 does not move has been described with reference to
Alternatively, in
Alternatively, in
As described above, even when the temperature of the recording head 2 varies, the voltage for driving the recording head 2 can be adjusted at a timing at which the recording head 2 does not perform a printing operation. Therefore, the amount of ink ejected from the recording head 2 can be stabilized and image recording with high image quality can be realized.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures and functions.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6652057, | Jan 31 2001 | Canon Kabushiki Kaisha | Printing apparatus |
6880904, | May 15 2001 | Canon Kabushiki Kaisha | Ink jet recording apparatus |
20020186276, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 27 2009 | Canon Kabushiki Kaisha | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 11 2011 | ASPN: Payor Number Assigned. |
May 14 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 30 2018 | REM: Maintenance Fee Reminder Mailed. |
Jan 21 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 14 2013 | 4 years fee payment window open |
Jun 14 2014 | 6 months grace period start (w surcharge) |
Dec 14 2014 | patent expiry (for year 4) |
Dec 14 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 14 2017 | 8 years fee payment window open |
Jun 14 2018 | 6 months grace period start (w surcharge) |
Dec 14 2018 | patent expiry (for year 8) |
Dec 14 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 14 2021 | 12 years fee payment window open |
Jun 14 2022 | 6 months grace period start (w surcharge) |
Dec 14 2022 | patent expiry (for year 12) |
Dec 14 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |