A fixation plate includes a set of threaded peg holes adapted to individually receive fixation pegs therethrough and non-threaded alignment holes having a relatively smaller diameter than the peg holes and preferably sized to closely receive a K-wire. The alignment holes are located between the peg holes. One peg hole is configured for aligning the plate during an osteotomy procedure, while other peg holes are configured for use after fracture reduction and receive K-wires to temporarily secure the plate to the bone and determine whether pegs inserted through adjacent respective peg holes will be properly located before drilling relatively larger holes for such pegs.

Patent
   7857838
Priority
Mar 27 2003
Filed
Sep 17 2003
Issued
Dec 28 2010
Expiry
Mar 07 2026

TERM.DISCL.
Extension
1076 days
Assg.orig
Entity
Large
77
248
all paid
1. A fixation plate for use with a plurality of fixation pegs having threaded heads and a K-wire, comprising:
a substantially rigid plate having an elongate body and a head, with said head angled upward relative to a plane containing said body, said head of said plate defining,
a first set of at least three peg holes which are obliquely oriented relative to each other and substantially arranged along a first line and a second set of peg holes substantially arranged along a second line, said first and second lines being longitudinally displaced, said peg holes each structurally adapted to engage the threaded head of one of the fixation pegs, wherein said peg holes of said first set laterally alternate with said peg holes of said second set, and
a non-threaded alignment hole having a substantially smaller diameter than any of said peg holes and sized to closely receive the K-wire, said non-threaded alignment hole sized to closely receive the K-wire in a predetermined fixed axial orientation which is oblique relative to a bone contacting surface of said plate and to said first set of peg holes, said non-threaded alignment hole located within the proximal-distal and medial-lateral boundaries defined between the edges of two adjacent peg holes of said first set of peg holes.

This application is a continuation-in-part of U.S. Ser. No. 10/401,089, filed Mar. 27, 2003, which was issued as U.S. Pat. No. 6,866,665, on Mar. 15, 2005, and which is hereby incorporated by reference herein in its entirety.

1. Field of the Invention

This invention relates broadly to surgical implants. More particularly, this invention relates to a bone fracture fixation system for distal radius fractures.

2. State of the Art

Fracture to the metaphyseal portion of a long bone can be difficult to treat. Improper treatment can result in deformity and long-term discomfort.

By way of example, a Colles' fracture is a fracture resulting from compressive forces being placed on the distal radius, and which causes backward or dorsal displacement of the distal fragment and radial deviation of the hand at the wrist. Often, a Colles' fracture will result in multiple bone fragments which are movable and out of alignment relative to each other. If not properly treated, such fractures may result in permanent wrist deformity and limited articulation of the wrist. It is therefore important to align the fracture and fixate the bones relative to each other so that proper healing may occur.

Alignment and fixation of a metaphyseal fracture (occurring at the extremity of a shaft of a long bone) are typically performed by one of several methods: casting, external fixation, interosseous wiring, and plating. Casting is non-invasive, but may not be able to maintain alignment of the fracture where many bone fragments exist. Therefore, as an alternative, external fixators may be used. External fixators utilize a method known as ligamentotaxis, which provides distraction forces across the joint and permits the fracture to be aligned based upon the tension placed on the surrounding ligaments. However, while external fixators can maintain the position of the wrist bones, it may nevertheless be difficult in certain fractures to first provide the bones in proper alignment. In addition, external fixators are often not suitable for fractures resulting in multiple bone fragments. Interosseous wiring is an invasive procedure whereby screws are positioned into the various fragments and the screws are then wired together as bracing. This is a difficult and time-consuming procedure. Moreover, unless the bracing is quite complex, the fracture may not be properly stabilized. Plating utilizes a stabilizing metal plate typically against the dorsal side of the bones, and a set of parallel pins extending from the plate into holes drilled in the bone fragments to provide stabilized fixation of the fragments. However, many currently available plate systems fail to provide desirable alignment and stabilization.

In particular, with a distal radius fracture the complex shape of the distal radius, including the bulky volar rim of the lunate fossa, relatively flat volar rim of the scaphoid fossa, and volar marginal fragment from the lunate fossa should be accommodated. A fixation plate should provide desirable alignment and stabilization of both the subchondral bone and the articular surfaces of the distal radius.

It is therefore an object of the invention to provide an improved fixation system for distal radius fractures.

It is another object of the invention to provide a distal radius volar fixation system that desirably aligns and stabilizes multiple bone fragments in a fracture to permit proper healing.

It is also an object of the invention to provide a distal radius volar plate system which provides support for articular and subchondral surfaces.

It is an additional object of the invention to provide a distal radius volar plate system which accommodates the anatomical structure of the metaphysis of the distal radius.

It is a further object of the invention to provide a distal radius volar plate system which provides support without interfering with ligaments and soft tissues near the edge of the articular surface.

In accord with these and other objects, which will be discussed in detail below, a distal radius volar fixation system is provided. The system generally includes a plate intended to be positioned against the volar side of the radius, a plurality of bone screws for securing the plate along a non-fractured portion of the radius bone, a plurality of bone pegs sized to extend from the plate and into bone fragments at the metaphysis of a radius bone, and one or more K-wires to facilitate alignment and fixation of the plate over the bone and guide the process of application.

The plate is generally T-shaped, defining an elongate body and a generally transverse head angled upward relative to the body, and includes a first side which is intended to contact the bone, and a second side opposite the first side. The body includes a plurality of countersunk screw holes for the extension of the bone screws therethrough, and optionally one or more substantially smaller alignment holes. The lower surfaces of the radial and ulnar side portions of the head are contoured upward (in a Z direction) relative to the remainder of the head to accommodate the lunate and scaphoid processes. An extension is provided at the head portion along the distal ulnar side of the head to buttress the volar lip (marginal fragment) of the lunate fossa of the radius bone, thereby providing support to maintain the wrist within the articular socket. Moreover, the contoured shape provides a stable shape that prevents rocking of the plate on the bone. The upper and lower surfaces are chamfered to have a reduced profile that limits potential interface with the ligaments and soft tissue near the edge of the lunate fossa. The head includes a plurality of threaded peg holes for receiving the pegs therethrough. The peg holes are arranged into a first set provided in a proximal portion of the head, and a second relatively distal set preferably provided in the tapered portion of the head.

The first set of the peg holes is substantially linearly arranged generally laterally across the head. The line of pegs is preferably slightly oblique relative to a longitudinal axis through the body of the plate. Axes through the first set of holes are preferably oblique relative to each other, and are preferably angled relative to each other in two dimensions such that pegs inserted therethrough are similarly obliquely angled relative to each other. The pegs in the first set of peg holes provide support for the dorsal aspect of the subchondral bone fragments.

The second set of peg holes is provided relatively distal of the first set. The holes of the second set, if more than one are provided, are slightly out of alignment but generally linearly arranged. The pegs in the second set of peg holes provide support for the volar aspect of the subchondral bone, behind and substantially parallel to the articular bone surface.

A distal alignment hole is provided generally between two peg holes of the second set of peg holes. At the upper surface of the plate, the distal alignment hole is substantially cylindrical, while at the lower surface, the hole is laterally oblong. One or more proximal alignment holes of a size substantially smaller than the peg holes are provided substantially along a distal edge defined by a tangent line to shafts of pegs inserted in the first set of peg holes, and facilitate temporary fixation of the plate to the bone with K-wires. Furthermore, along the body two longitudinally displaced alignment holes are also provided. All of the alignment holes are sized to closely receive individual K-wires.

The plate may be used in at least two different manners. According to a first use, the surgeon reduces a fracture and aligns the plate thereover. The surgeon then drills K-wires through the proximal alignment holes to temporarily fix the orientation of the head of the plate to the distal fragment. Once the alignment is so fixed, the fracture is examined, e.g., under fluoroscopy, to determine whether the K-wires are properly aligned relative to the articular surface. As the axes of the proximal alignment holes correspond to axes of adjacent peg holes, the fluoroscopically viewed K-wires provide an indication as to whether the pegs will be properly oriented. If the placement is correct, the K-wires maintain the position of the plate over the fracture. The peg holes may then be drilled with confidence that their locations and orientations are proper. If placement is not optimal, the K-wires can be removed and the surgeon has an opportunity to relocate and/or reorient the K-wires and drill again. Since each K-wire is of relatively small diameter, the bone is not significantly damaged by the drilling process and the surgeon is not committed to the initial drill location and/or orientation.

According to a second use, the plate may be used to correct a metaphyseal deformity (such as malformed fracture or congenital deformity). For such purposes, a K-wire is drilled into the bone parallel to the articular surface in the lateral view under fluoroscopy until one end of the K-wire is located within or through the bone and the other end is free. The free end of the K-wire is guided through the distal oblong alignment hole of the head of the plate, and the plate is slid down over the K-wire into position against the bone. The oblong alignment hole permits the plate to tilt laterally over the K-wire to sit flat on the bone, but does not permit movement of the plate over the K-wire in the anterior-posterior plane. The surgeon drills holes in the bone in alignment with the peg holes and then fixes the plate relative the bone with pegs. The bone is then cut, and the body of the plate is levered toward the shaft of the bone to re-orient the bone. The body of the plate is then fixed to the shaft to correct the anatomical defect.

Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.

FIG. 1 is a radial side elevation of a right-hand volar plate according to the invention, shown with pegs coupled thereto;

FIG. 2 is an ulnar side elevation of a right-hand volar plate according to the invention, shown with pegs coupled thereto;

FIG. 3 is top view of a right-hand volar plate according to the invention, shown with pegs and screws;

FIG. 4 is bottom view of a right-hand volar plate according to the invention, shown with pegs coupled thereto;

FIG. 5 is a perspective view of a right-hand volar plate according to the invention, shown with pegs coupled thereto and K-wires extending through body and proximal head alignment holes;

FIG. 6 is a front end view of a right-hand volar plate according to the invention, shown with pegs coupled thereto and K-wires extending through alignment holes; and

FIGS. 7 through 12 illustrate a method of performing an osteotomy of the distal radius according to the invention.

Turning now to FIGS. 1 through 6, a fracture fixation system 100 according to the invention is shown. The system 100 is particularly adapted for aligning and stabilizing multiple bone fragments in a dorsally displaced distal radius fracture (or Colles' fracture). The system 100 generally includes a substantially rigid T-shaped plate 102, commonly called a volar plate, bone screws 104 (FIG. 3), pegs 106, 108, and K-wires 110 (FIGS. 5 and 6). Pegs 106 have a threaded head and a non-threaded shaft, and pegs 108 have both a threaded head and a threaded shaft. Either pegs 106 or 108, or a combination thereof may be used at the discretion of the surgeon. Exemplar pegs are described in more detail in U.S. Pat. No. 6,364,882, which is hereby incorporated by reference herein in its entirety.

The volar plate 102 shown in the figures is a right-hand plate intended to be positioned against the volar side of a fractured radius bone of the right arm. It is appreciated that a left-hand volar plate is substantially a mirror image of the plate shown and now described. The T-shaped plate 102 defines an elongate body 116, and a head 118 angled upward (in the Z-direction) relative to the head. The angle α between the head 118 and the body 116 is preferably approximately 25°. The head 118 includes a distal buttress 120 (i.e., the portion of the head distal a first set of peg holes 134, discussed below). The plate 102 has a thickness of preferably approximately 0.1 inch, and is preferably made from a titanium alloy, such as Ti-6Al-4V.

Referring to FIG. 4, the body 116 includes four preferably countersunk screw holes 124, 125, 126, 127 for the extension of bone screws 104 therethrough (FIG. 2). One of the screw holes, 127, is preferably generally oval in shape permitting longitudinal movement of the plate 102 relative to the shaft of a bone screw when the screw is not tightly clamped against the plate.

Referring to FIGS. 3 and 4, according to one preferred aspect of the plate 102, the head portion 118 includes a first set of threaded peg holes 134 (for placement of pegs 106 and/or 108 therein) and a second set of threaded peg holes 138 (for placement of pegs 106 and/or 108 therein). The peg holes 134 of the first set are arranged substantially parallel to a line L1 that is preferably slightly skewed (e.g., by 5°-10°) relative to a perpendicular P to the axis A of the body portion 116. Axes through the first set of peg holes (indicated by the pegs 106 extending therethrough) are preferably oblique relative to each other, and are preferably angled relative to each other in two dimensions, generally as described in commonly-owned U.S. Pat. No. 6,364,882, which is hereby incorporated by reference herein in its entirety. This orientation of the pegs operates to stabilize and secure the head 118 of the plate 102 on the bone even where such pegs 106 do not have threaded shafts.

The second set of peg holes 138 is provided relatively distal of the first set of peg holes 134 and is most preferably primarily located in the buttress 120. Each of the peg holes 138 preferably defines an axis that is oblique relative to the other of peg holes 136 and 138. Thus, each and every peg 106, 108 when positioned within respective peg holes 134, 138 defines a distinct axis relative to the other pegs. Moreover, the axes of the peg holes 138 are preferably oriented relative to the axes of peg holes 134 such that pegs 106, 108 within peg holes 138 extend (or define axes which extend) between pegs (or axes thereof) within peg holes 134 in an interleaved manner.

Referring specifically to FIGS. 1, 2, 5 and 6, according to another preferred aspect of the plate 102, in order to approximate the anatomy for ideal fracture support and maintain a low profile, the upper and lower surfaces 140, 142, respectively of the buttress 120 are chamfered, with the chamfer of the lower surface 142 being contoured for the anatomical structure that it will overlie. In particular, the lower surface 142 at an ulnar-side portion 144 of the head portion 118 is contoured upward (in a Z direction) both distally and laterally to accommodate the bulky volar rim of the lunate fossa, and the lower surface 142 at a radial side portion 146 of the head 118 is contoured upward laterally relative to the remainder of the head to accommodate a prominence at the radial aspect of the bone, as indicated by the visibility of these lower surfaces in the side views of FIGS. 1 and 2 and head-on view of FIG. 6. The contoured shape (with generally three defined planes) provides a stable shape that prevents rocking of the plate on the bone. In addition, the upper and lower surfaces 140, 142 are chamfered to have a reduced profile that limits potential interface with the ligaments and soft tissue near the edge of the articular surface. A distal extension 148 is also provided at the ulnar side portion 146 to further buttress the volar lip (volar marginal fragment of the lunate fossa) of the articular socket of the radius bone, thereby providing support to maintain the wrist within the articular socket.

Referring specifically to FIGS. 3 and 4, according to a further preferred aspect of the invention, the plate 102 is provided with body alignment holes 150, proximal head alignment holes 152a, 152b, 152c (generally 152), and a distal head alignment hole 154, each sized to closely accept standard Kirschner wires (K-wires), e.g., 0.7-1.2 mm in diameter. All the alignment holes 150, 152, 154 are substantially smaller in diameter (e.g., by thirty to fifty percent) than the shafts of screws 104 (approximately 3.15 mm in diameter) and the shafts of pegs 106, 108 (approximately 2.25 mm in diameter). The body alignment holes 150 are longitudinally displaced along the body portion 116 and provided at an oblique angle (preferably approximately 70°, as shown in FIG. 5) relative to the lower surface 158 of the body portion 116. The proximal head alignment holes 152 alternate with the peg holes 134 along line L1 in a medial-lateral direction transverse to the proximal-distal orientation of the axis A extending through the body portion. In the embodiment shown, for n peg holes 134 (e.g., four) in said first set, a substantially linear arrangement of n−1 proximal head alignment holes (i.e., three) is provided. Referring particularly to FIG. 4, a tangent line H to the distalmost points of the head alignment holes 152 is preferably substantially coincident or closely parallel with a line tangent to points on the circumferences of the shafts of pegs 106 inserted through holes 134 adjacent the head portion 118 of the plate 102. The tangent line H is not distally displaced relative to a tangent line defined along distalmost points of two adjacent peg holes. Referring to FIGS. 3 and 4, with respect to the proximal head alignment holes, it is appreciated that a shaft 106a of a peg is generally smaller in diameter than a head 106b of a peg (FIG. 6). Thus, a line tangent to the peg holes 134 (each sized for receiving the head 106b of peg 106) will be closely located, but parallel, to a line tangent to a distalmost point on the respective alignment hole 152. Nevertheless, for purposes of the claims, both (i) a tangent line which is preferably substantially coincident with a line tangent to points on the circumferences of the shafts of pegs and (ii) a tangent line to a set of peg holes shall be considered to be “substantially coincident” with a line tangent to a distalmost point of an alignment hole 152. Axes through alignment holes 152 preferably generally approximate (within, e.g., 3°) the angle of an axis of an adjacent peg hole 134. Distal head alignment hole 154 is provided between the central and radial-side peg holes 138, and has a circular upper opening, and a laterally oblong lower opening, as shown best in FIG. 6.

The plate may be used in at least two different applications: fracture fixation and correction of a metaphyseal deformity. In either application, an incision is first made over the distal radius, and the pronator quadratus is reflected from its radial insertion exposing the entire distal radius ulnarly to the distal radioulnar joint. For fracture fixation, the surgeon reduces the fracture and aligns the plate 102 thereover. The surgeon then drills preferably two K-wires 110 through respective body alignment holes 150, and one or more K-wires through selected proximal head alignment holes 152 at the location at which the surgeon believes the pegs 106, 108 should be placed based on anatomical landmarks and/or fluoroscopic guidance. The K-wires temporarily fix the orientation of the plate to the distal fragment. While the fixation is temporary, it is relatively secure in view of the fact that the body alignment holes 150, proximal head alignment holes 152, and K-wires 110 therethrough are angled in different orientations relative to the lower surface of the plate. Once the alignment is so fixed, the fracture is examined, e.g., under fluoroscopy, to determine whether the K-wires 10 are properly aligned relative to the articular surface. As the axes of the proximal head alignment holes 152 correspond to axes of the adjacent peg holes 134, the fluoroscopically viewed K-wires 110 provide an indication as to whether the pegs 106, 108 will be properly oriented. If the placement is correct, the K-wires 10 maintain the position of the plate 102 over the fracture while holes in the bone are drilled through the screw holes 124, 125, 126, 127 for the screws 104 and peg holes 134, 138 for pegs 106, 108, with confidence that the locations and orientation of the screws and pegs inserted therein are anatomically appropriate. The K-wires can then be removed.

If fluoroscopic examination indicates that placement of the K-wires 110 is not optimal, the K-wires can be removed and the surgeon has an opportunity to relocate and/or reorient the K-wires and drill again. Since each K-wire is of relatively small diameter, the bone is not significantly damaged by the drilling process and the surgeon is not committed to the initial drill location and/or orientation.

The pegs 106 within peg holes 138 define projections that provide support at the volar aspect behind the articular surface of the bone surface. The sets of pegs 106, 108 through peg holes 134, 138 preferably laterally alternate to provide tangential cradling of the subchondral bone. A preferred degree of subchondral support is provided with four peg holes 134 (and associated pegs) through the proximal portion of the head 118 of the plate, and three peg holes 138 (and associated pegs) through the distal portion of the head 118. The fracture fixation system thereby defines a framework which substantially tangentially supports the bone fragments in their proper orientation. In accord with an alternate less preferred embodiment, suitable support may also be provided where the pegs 106 and 108 are parallel to each other or in another relative orientation or with fewer peg holes and/or pegs.

According to a second use, the plate may be used to correct a metaphyseal deformity 200 (such as malformed fracture or congenital deformity), as shown in FIG. 7. For such purposes, a K-wire 110 is drilled into the bone parallel to the articular surface S in the lateral view under fluoroscopy (FIG. 8). The free end of the K-wire 110 is guided through the oblong distal head alignment hole 154, and the plate 102 is slid down over the K-wire into position against the bone (FIG. 9). The oblong alignment hole 154 permits the plate 102 to tilt laterally over the K-wire 110 to sit flat on the bone, but does not permit tilting of plate relative to the K-wire in the anterior-posterior plane. Once the plate 102 is seated against the bone, the surgeon drills holes in the bone in alignment with the peg holes 134, 138 (FIG. 3) and then fixes the plate relative the bone with pegs 106, 108 (FIG. 10). The K-wire 110 is removed. The bone is then saw cut at 202 proximal the location of the head 118 of the plate 102 (FIG. 11), and the body 116 of the plate is levered toward the proximal diaphyseal bone 204, creating an open wedge 206 at the deformity (FIG. 12). When the body 116 of the plate 102 is in contact and longitudinal alignment with the diaphysis of the bone, the bone distal of the cut has been repositioned into the anatomically correct orientation relative to the shaft of the bone. The body 116 of the plate 102 is then secured to the bone with screws 104. Post-operatively, the open wedge in the bone heals resulting in an anatomically correct distal radius.

While fixed single-angle pegs have been disclosed for use with the plate (i.e., the pegs may be fixed in respective threaded peg holes 134, 136 only coaxial with an axis defined by the respective peg holes), it is appreciated that an articulating peg system, such as that disclosed in co-owned U.S. Pat. No. 6,440,135 or co-owned and co-pending U.S. Ser. No. 10/1059,612, both of which are hereby incorporated by reference herein in their entireties, may also be used. In such articulating peg systems, the peg holes and pegs are structurally adapted such that individual pegs may be fixed at any angle within a range of angles. In addition, while less preferable, one or both sets of the pegs may be replaced by preferably blunt tines which are integrated into the plate such that the plate and tines are unitary in construct. Similarly, other elongate projections may be coupled to the plate to define the desired support.

There have been described and illustrated herein embodiments of a fixation plate, and particularly plates for fixation of distal radius fractures, as well as a method of aligning and stabilizing a distal radius fracture and performing an osteotomy. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular materials, dimensions, and relative angles for particular elements of the system have been disclosed, it will be appreciated that other materials, dimensions, and relative angles may be used as well. In addition, while a particular number of screw holes in the volar plate and bone screws have been described, it will be understood another number of screw holes and screws may be provided. Further, fewer screws than the number of screw holes may be used to secure to the plate to the bone. Also, fewer or more peg holes and bone pegs may be used, preferably such that at least two pegs angled in two dimensions relative to each other are provided. In addition, while a particular preferred angle between the head and body has been disclosed, other angles can also be used. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope.

Orbay, Jorge L.

Patent Priority Assignee Title
10111688, May 07 2010 McGinley Engineered Solutions, LLC System for treating bone fractures
10117689, Sep 19 2013 McGinley Engineered Solutions, LLC Variable angle blade plate system and method
10231768, May 30 2003 DePuy Synthes Products, Inc. Methods for implanting bone plates
10335211, Jan 26 2004 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
10342586, Aug 26 2003 DePuy Synthes Products, Inc. Bone plate
10368928, Mar 13 2017 Globus Medical, Inc Bone stabilization systems
10383668, Aug 17 2016 Globus Medical, Inc Volar distal radius stabilization system
10420596, Aug 17 2016 Globus Medical, Inc.; Globus Medical, Inc Volar distal radius stabilization system
10575884, Aug 17 2016 Globus Medical, Inc.; Globus Medical, Inc Fracture plates, systems, and methods
10624686, Sep 08 2016 Depuy Synthes Products, LLC; DEPUY SYNTHES PRODUCTS, INC Variable angel bone plate
10631903, Mar 10 2017 Globus Medical Inc. Clavicle fixation system
10653466, May 30 2003 DePuy Synthes Products, Inc. Bone plate
10687873, Aug 17 2016 Globus Medical, Inc Stabilization systems
10687874, Aug 17 2016 Globus Medical, Inc Proximal humeral stabilization system
10751098, Aug 17 2016 Globus Medical Inc. Stabilization systems
10772665, Mar 29 2018 DEPUY SYNTHES PRODUCTS, INC Locking structures for affixing bone anchors to a bone plate, and related systems and methods
10820930, Sep 08 2016 Depuy Synthes Products, LLC; DEPUY SYNTHES PRODUCTS, INC Variable angle bone plate
10828074, Nov 20 2015 Globus Medical, Inc. Expandalbe intramedullary systems and methods of using the same
10828075, Sep 25 2015 Globus Medical Inc. Bone fixation devices having a locking feature
10856920, Sep 13 2017 Globus Medical Inc. Bone stabilization systems
10881438, Mar 10 2017 Globus Medical, Inc. Clavicle fixation system
10905476, Sep 08 2016 Depuy Synthes Products, LLC; DEPUY SYNTHES PRODUCTS, INC Variable angle bone plate
10905477, Mar 13 2017 Globus Medical, Inc Bone stabilization systems
10925651, Dec 21 2018 DEPUY SYNTHES PRODUCTS, INC Implant having locking holes with collection cavity for shavings
11013541, Apr 30 2018 DEPUY SYNTHES PRODUCTS, INC Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
11026727, Mar 20 2018 DEPUY SYNTHES PRODUCTS, INC Bone plate with form-fitting variable-angle locking hole
11058467, Mar 13 2017 Globus Medical, Inc. Bone stabilization systems
11071570, Mar 02 2018 Globus Medical, Inc Distal tibial plating system
11076898, Aug 27 2015 Globus Medical, Inc Proximal humeral stabilization system
11096730, Sep 13 2017 Globus Medical Inc.; Globus Medical, Inc Bone stabilization systems
11129627, Oct 30 2019 Globus Medical, Inc Method and apparatus for inserting a bone plate
11141172, Apr 11 2018 Globus Medical, Inc Method and apparatus for locking a drill guide in a polyaxial hole
11141204, Aug 17 2016 Globus Medical Inc. Wrist stabilization systems
11147599, Aug 17 2016 Globus Medical Inc.; Globus Medical, Inc Systems and methods for bone fixation anchor, plate, and spacer devices
11160590, Aug 17 2016 Globus Medical, Inc. Volar distal radius stabilization system
11197682, Aug 27 2015 Globus Medical, Inc.; Globus Medical, Inc Proximal humeral stabilization system
11197701, Aug 17 2016 Globus Medical, Inc Stabilization systems
11197704, Apr 19 2016 Globus Medical, Inc. Implantable compression screws
11202663, Feb 13 2019 Globus Medical, Inc.; Globus Medical, Inc Proximal humeral stabilization systems and methods thereof
11213327, Aug 17 2016 Globus Medical, Inc. Fracture plates, systems, and methods
11219527, Feb 16 2011 Genesis Medical Devices LLC Combination intra-medullary and extra-medullary fracture stabilization with aligning arm
11224468, Mar 02 2018 Globus Medical, Inc. Distal tibial plating system
11259848, Feb 13 2019 Globus Medical, Inc. Proximal humeral stabilization systems and methods thereof
11259851, Aug 26 2003 DePuy Synthes Products, Inc. Bone plate
11278332, Aug 17 2016 Globus Medical, Inc Distal radius stabilization system
11284920, Mar 02 2016 Globus Medical Inc. Fixators for bone stabilization and associated systems and methods
11291484, Jan 26 2004 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
11331128, Aug 17 2016 Globus Medical Inc. Distal radius stabilization system
11357554, Mar 10 2017 Globus Medical Inc. Clavicle fixation system
11419647, May 30 2003 DePuy Synthes Products, Inc. Bone plate
11432857, Aug 17 2016 Globus Medical, Inc Stabilization systems
11529176, Sep 08 2016 DePuy Synthes Products, Inc. Variable angle bone plate
11607254, Sep 13 2017 Globus Medical, Inc. Bone stabilization systems
11612422, Aug 17 2016 Globus Medical Inc. Stabilization systems
11617606, Aug 27 2015 Globus Medical Inc. Proximal humeral stabilization system
11723647, Dec 17 2019 Globus Medical, Inc Syndesmosis fixation assembly
11771480, Mar 02 2018 Globus Medical, Inc. Distal tibial plating system
11779354, Apr 11 2018 Globus Medical Inc. Method and apparatus for locking a drill guide in a polyaxial hole
11826060, Oct 30 2019 Globus Medical Inc. Method and apparatus for inserting a bone plate
11832857, Aug 17 2016 Globus Medical, Inc. Fracture plates, systems, and methods
11857229, Mar 10 2017 Globus Medical, Inc. Clavicle fixation system
11871970, Sep 13 2017 Globus Medical, Inc Bone stabilization systems
11896271, Aug 17 2016 Globus Medical, Inc. Stabilization systems
8419776, Mar 08 2010 STRYKER EUROPEAN HOLDINGS III, LLC Radius-plate assembly
8579898, Mar 08 2010 STRYKER EUROPEAN HOLDINGS III, LLC Adjustable-angle radius plate
8814918, Feb 14 2011 DORADO DEVELOPMENT LLC Fracture fixation plate
8894650, Mar 08 2010 STRYKER EUROPEAN HOLDINGS III, LLC Radius plate assembly
9072558, Sep 17 2003 Biomet C.V. Distal radius fracture fixation plate with ulnar buttress
9370376, Dec 14 2004 Biomet C.V. Drill guides and extension therefor for simultaneous use on a bone plate
9408647, Feb 27 2014 BioMedical Enterprises, Inc. Method and apparatus for use of a compressing plate
9480512, Feb 01 2000 Biomet C.V. Volar fixation system with fixed-angle multi-hole drill guide
9492213, Feb 01 2000 Biomet C.V. Volar fixation system
9510880, Aug 13 2013 ZIMMER, INC Polyaxial locking mechanism
9649141, May 07 2010 McGinley Engineered Solutions, LLC System for treating bone fractures
9833270, Sep 19 2013 McGinley Engineered Solutions, LLC Variable angle blade plate system and method
9867643, Aug 13 2013 Zimmer, Inc. Polyaxial locking mechanism
9883897, Sep 25 2014 BioMedical Enterprises, Inc. Method and apparatus for a compressing plate
Patent Priority Assignee Title
1151861,
2056688,
2500370,
2526959,
3025853,
3236141,
3561437,
3645161,
3707107,
3709218,
3717146,
3741205,
3842825,
388000,
3939498, May 29 1974 National Research Development Corporation Endoprosthetic femoral head
4011863, Jul 19 1976 Supracondylar prosthetic nail
4119092, Apr 22 1977 Methods of reduction of bone fractures
4135507, May 20 1977 Condylocephalic nail for fixation of pertrochanteric fractures
4153953, Apr 14 1978 Prosthetic hip joint
4169470, Oct 19 1977 Surgical nail for use in setting bone fractures, and tool for emplacing same
4172452, May 15 1978 HOWMEDICA INC Fracture nail plate assembly
4408601, Apr 14 1980 Wilh, Wenk AG Bone compression plate
4467793, Dec 14 1979 Instrumentarium for reducing and fixing of pertrochanterous and subtrochanterous fractures as well as insert member forming part of this instrumentarium
4473069, Jul 17 1981 Device for interconnecting an elastic nail and a cross screw
4483335, Jun 02 1982 TORNIER S A CHEMIN DOYEN GOSSE A FRENCH SOCIETE ANONYME Nails for femoral fractures
4484570, May 28 1980 SYNTHES U S A Device comprising an implant and screws for fastening said implant to a bone, and a device for connecting two separated pieces of bone
4488543, Jan 19 1982 TORNIER S A FRANCE; BUTEL, JEAN Device for osteosynthesis of fractures of the extremities of the femur
4493317, Nov 20 1980 SYNTHES U S A Surgical compression plate and drill guide
4506662, Jun 18 1981 Johnson & Johnson Medical GMBH Nail for fixing a fracture of the femur
4565193, Sep 13 1982 Pronged plate for resetting fractured bones
4651724, May 16 1984 Technomed Gmk Bone joining plate
4712541, May 18 1982 Howmedica International, Inc. Bone nail and instruments for the treatment of fractures
472913,
4733654, May 29 1986 Intramedullar nailing assembly
4776330, Jun 23 1986 HOWMEDICA OSTEONICS CORP Modular femoral fixation system
4794919, Jan 31 1986 Eureka AB Fixating device
4800874, Jul 15 1986 FORSCHUNGSSTELLE FUR HUFTDYSPLASIE GES M B H Anatomical bone plate and/or transfixion plate
4867144, Apr 14 1986 , Plate for connecting base splinters with bone shafts
4915092, Nov 05 1985 INTERPRINDEREA INDUSTRIA TEHNICO-MEDICALA, SOS Flexible implants for stable flexible osteosynthesis of femoral tibia fractures and working instrumentation
4923471, Oct 17 1989 SOFAMOR DANEK PROPERTIES, INC Bone fracture reduction and fixation devices with identity tags
4955886, Apr 01 1988 TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE, 116TH STREET, NEW YORK, NEW YORK 10027, A CORP OF NY Dual-taper, asymmetric hole placement in reconstruction and fracture plates
4988350, Jun 24 1988 Device for reconnecting a broken bone
5002544, Dec 02 1987 Synthes (U.S.A.) Osteosynthetic pressure plate osteosynthetic compression plate
5006120, Oct 10 1989 ZIMMER TECHNOLOGY, INC Distal radial fracture set and method for repairing distal radial fractures
5013313, May 30 1988 NEWDEAL TECHNOLOGIES Device for fixation of part on a support, especially of an implant on a bone
5013314, Nov 05 1985 Intreprinderea Industria Tehnico-Medicala Instrumentation and method for inserting flexible implants into fractured bones
5015248, Jun 11 1990 New York Society for the Relief of the Ruptured & Crippled, Maintaining Bone fracture fixation device
5035697, Mar 20 1990 Synthes USA, LLC Orthopedic medullary nail
5041113, Jul 20 1989 Stabilization member for stabilizing bones
5057110, Dec 01 1988 Johnson & Johnson Intramedullar nail
5085660, Nov 19 1990 Innovative locking plate system
5108399, Sep 17 1988 Boehringer Ingelheim GmbH Device for osteosynthesis and process for producing it
5127912, Oct 05 1990 SDGI Holdings, Inc Sacral implant system
5151103, Nov 03 1987 Synthes USA, LLC Point contact bone compression plate
5190544, Jun 23 1986 HOWMEDICA OSTEONICS CORP Modular femoral fixation system
5197966, May 22 1992 Radiodorsal buttress blade plate implant for repairing distal radius fractures
5201733, Jan 21 1992 Method and apparatus for internal fixation of fractures
5261910, Feb 19 1992 DEPUY ACROMED, INC Apparatus for maintaining spinal elements in a desired spatial relationship
5275601, Sep 03 1991 Synthes USA, LLC Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment
5304180, Jan 17 1992 D BARCLAY SLOCUM TRUST AGREEMENT Tibial osteotomy fixation plate
5352228, May 10 1993 KUMMER, FREDERICK,; DR KENNETH KOVAL Apparatus and method to provide compression for a locked intramedullary nail
5352229, May 12 1993 ZIMMER TECHNOLOGY, INC Arbor press staple and washer and method for its use
5356253, Apr 29 1992 Sheet metal screw
5356410, Dec 13 1991 Adjuvant for osteosynthesis in the case of pertrochanteric fracture of the neck of the femur
5364399, Feb 05 1993 SDGI Holdings, Inc Anterior cervical plating system
5382248, Sep 10 1992 JACOBSON, ROBERT E ; MIRSON, BRIAN System and method for stabilizing bone segments
5437667, Nov 11 1992 Innovative Orthopaedics, Manufacturing, Inc. Dynamic external fixator for the wrist
5443509, Dec 10 1992 Linvatec Corporation Interference bone-fixation screw with multiple interleaved threads
5458654, Jul 14 1993 Scyon Orthopaedics AG Screw-fixed femoral component for hip joint prosthesis
5462547, May 30 1991 Synthes USA, LLC Trochanter stabilization device
5472444, May 13 1994 Acumed LLC Humeral nail for fixation of proximal humeral fractures
5484438, Feb 13 1992 Intramedullary nail with screw-receiving solid insert
5486176, Mar 27 1991 VERTEBRAL SYSTEMS, LLC Angled bone fixation apparatus
5527311, Nov 13 1991 STRYKER TRAUMA GMBH, CORPORATION OF REPUBLIC OF GERMANY Support for the human spine
5531745, Mar 11 1993 SALUT, LTD System for stabilizing the spine and reducing spondylolisthesis
5531746, Apr 13 1995 Warsaw Orthopedic, Inc Posterior spinal polyaxial locking lateral mass screw plate assembly
5536127, Oct 13 1994 Headed screw construction for use in fixing the position of an intramedullary nail
5549612, Nov 25 1992 DePuy Orthopaedics, Inc Osteosynthesis plate system
5558674, Dec 17 1993 DOHERTY, BRIAN; HEGGENESS, MICHAEL Devices and methods for posterior spinal fixation
5578035, May 16 1995 Expandable bone marrow cavity fixation device
5586985, Oct 26 1994 MINNESOTA, UNIVERSITY OF, REGENTS OF THE Method and apparatus for fixation of distal radius fractures
5591168, Oct 25 1993 Tornier S.A. Device for stabilizing fractures of the upper end of the femur
5601553, Oct 03 1994 Synthes USA, LLC Locking plate and bone screw
5603715, Sep 16 1994 Medullary pin
5607426, Apr 13 1995 Warsaw Orthopedic, Inc Threaded polyaxial locking screw plate assembly
5616144, Nov 25 1992 Codman & Shurtleff, Inc. Osteosynthesis plate system
5662655, Jul 24 1992 Osteosynthesis plate-staple
5665086, May 20 1994 Asahi Kogaku Kogyo Kabushiki Kaisha Instrument for inserting an intramedullary nail in a bone
5665087, Mar 26 1996 Acumed LLC Method and screw for repair of olecranon fractures
5665088, Oct 06 1993 Smith & Nephew Richards Inc. Bone section reattachment apparatus and method
5665089, Mar 19 1992 STRYKER EUROPEAN HOLDINGS III, LLC Bone fixation system
5669915, Mar 22 1995 Aesculap AG Drilling jig for surgical drilling tools
5676667, Dec 08 1995 Bone fixation apparatus and method
5709682, Nov 30 1994 MEDOFF, ROBERT J ; TELLMAN, LARS G ; MEDOFF, DAVID Surgical clamp for fixation of bone fragments
5709686, Mar 27 1995 Synthes USA, LLC Bone plate
5718705, Jul 16 1996 Internal fixation plate
5728099, Feb 21 1994 Collux A.B. Implant
5733287, May 24 1994 Synthes USA, LLC Bone plate
5749872, Sep 08 1995 BIOMET C V Keyed/keyless barrel for bone plates
5766174, Sep 26 1995 DJO, LLC Intramedullary bone fixation device
5772662, Jun 23 1986 HOWMEDICA OSTEONICS CORP Femoral fixation system
5776194, Apr 25 1996 Nuvana Medical Innovations, LLC Intermedullary rod apparatus and methods of repairing proximal humerus fractures
5807396, Dec 22 1995 STRYKER EUROPEAN HOLDINGS III, LLC Bone plate with conical holes
5851207, Jul 01 1997 Synthes USA, LLC Freely separable surgical drill guide and plate
5853413, Apr 18 1997 ZIMMER TECHNOLOGY, INC Wrist fusion plate
5879350, Sep 24 1996 Warsaw Orthopedic, Inc Multi-axial bone screw assembly
5931839, Jan 27 1995 TRIMED, INC; TRIMED INC Pin plate for fixation of bone fractures
5935128, Apr 18 1997 ZIMMER TECHNOLOGY, INC Orthopaedic template system including a joint locator
5938664, Mar 31 1998 ZIMMER TECHNOLOGY, INC Orthopaedic bone plate
5941878, Jan 24 1996 MEDOFF, ROBERT J ; TELLMAN, LARS G ; MEDOFF, DAVID Implantable, surgical buttressing device
5951557, Dec 30 1997 Bone plate
5954722, Jul 29 1997 DEPUY ACROMED, INC Polyaxial locking plate
5964763, Feb 14 1997 ORTHOPAEDICS DESIGN, L L C Incrementally adjustable tibial osteotomy fixation device and method
5967046, May 03 1996 Heidelberger Druckmaschinen AG Printing machine cylinder with an anti-corrosion protective layer, and method for producing such a cylinder
5968046, Jun 04 1998 Smith & Nephew, Inc. Provisional fixation pin
5968047, Apr 05 1996 Solana Surgical, LLC Fixation devices
5989254, May 20 1997 Pedicle screw assembly
6007535, Jan 03 1996 WRIGHT MEDICAL TECHNOLOGY, INC Multi-plane bone distraction system
6010503, Apr 03 1998 AESCULAP II, INC Locking mechanism
6010505, Sep 05 1996 STRYKER EUROPEAN HOLDINGS III, LLC Supra condylus bone nail
6022350, May 13 1996 STRYKER EUROPEAN HOLDINGS III, LLC Bone fixing device, in particular for fixing to the sacrum during osteosynthesis of the backbone
6053917, Sep 24 1996 SDGI Holdings, Inc. Multi-axial bone screw assembly
6093201, Jan 19 1999 Ethicon, Inc Biocompatible absorbable polymer plating system for tissue fixation
6096040, Jun 14 1996 BIOMET C V Upper extremity bone plates
6123709, Jul 25 1997 Bone buttress plate and method of using same
6129730, Feb 10 1999 Depuy Acromed, Inc. Bi-fed offset pitch bone screw
6146384, Oct 13 1995 Warsaw Orthopedic, Inc Orthopedic fixation device and method of implantation
6152927, May 15 1997 SDGI Holdings, Inc. Anterior cervical plating system
6183475, Dec 18 1998 ZIMMER, INC Distal femoral osteotomy system and method
6197028, Oct 05 1990 SDGI Holdings, Inc. Sacral implant system
6206881, Sep 06 1995 Synthes USA, LLC Bone plate
6221073, Aug 20 1999 INTEGRA LIFESCIENCES CORPORATION Wrist fusion apparatus and method
6228285, Jun 04 1997 SYSCOM TECHNOLOGY INC Method for processing rigid-chain polymers into structural materials
6231576, Dec 02 1996 Synthes USA, LLC Flat intramedullary nail
6235033, Apr 19 2000 Synthes USA, LLC Bone fixation assembly
6235034, Oct 24 1997 RSB Spine LLC Bone plate and bone screw guide mechanism
6238395, Feb 06 1998 Bonutti Skeletal Innovations LLC Method of treating a fractured bone
6241736, May 12 1998 Boston Scientific Scimed, Inc Manual bone anchor placement devices
6248109, Jul 30 1998 Waldemar Link (GmbH & Co.) Implant for interconnecting two bone fragments
6258089, May 19 1998 Alphatec Spine, Inc Anterior cervical plate and fixation system
6270499, Oct 20 1997 Synthes USA, LLC Bone fixation device
6283969, Mar 10 2000 Wright Medical Technology, Inc. Bone plating system
6290703, May 13 1996 STRYKER EUROPEAN HOLDINGS III, LLC Device for fixing the sacral bone to adjacent vertebrae during osteosynthesis of the backbone
6322562, Dec 19 1998 Fixation system for bones
6355041, Jan 30 2001 Board of Supervisors of Louisiana State University and Agricultural and Mechanical College Bone pin-plate surgical device and method for promoting athrodesis of the equine fetlock joint
6355042, Mar 31 1998 ZIMMER TECHNOLOGY, INC Orthopaedic bone plate
6355043, Mar 01 1999 Sulzer Orthopedics Ltd. Bone screw for anchoring a marrow nail
6358250, Feb 01 2000 BIOMET C V Volar fixation system
6364882, Feb 01 2000 BIOMET C V Volar fixation system
6379359, May 05 2000 NORTH CAROLINA AT CHAPEL HILL, UNIVERSITY OF Percutaneous intrafocal plate system
6383186, Feb 11 1997 Warsaw Orthopedic, Inc; SDGI Holdings, Inc Single-lock skeletal plating system
6409768, Mar 16 2000 Scyon Orthopaedics AG Screw anchored joint prosthesis
6440135, Feb 01 2000 BIOMET C V Volar fixation system with articulating stabilization pegs
6454769, Aug 04 1997 ZIMMER SPINE, INC System and method for stabilizing the human spine with a bone plate
6454770, Sep 04 1997 Synthes USA, LLC Symmetrical bone plate
6458133, Dec 19 2000 Spinal fixation and retrieval device
6468278, Nov 14 1997 HELMUT MUCKTER Implant for the stabilization of a fracture
6508819, Aug 28 2001 BIOMET C V Method of dorsal wrist fracture fixation
6527775, Sep 22 2000 WRIGHT MEDICAL TECHNOLOGY, INC Intramedullary interlocking fixation device for the distal radius
6540748, Sep 27 1999 BLACKSTONE MEDICAL, INC. Surgical screw system and method of use
6595993, May 12 2000 Zimmer GmbH Connection of a bone screw to a bone plate
6599290, Apr 17 2001 ZIMMER BIOMET SPINE, INC Anterior cervical plating system and associated method
6602255, Jun 26 2000 STRYKER EUROPEAN HOLDINGS III, LLC Bone screw retaining system
6623486, Sep 13 1999 DEPUY SYNTHES PRODUCTS, INC bone plating system
6626908, Jul 22 2000 Corin Spinal Systems Limited Pedicle attachment assembly
6645212, Apr 20 2000 SYNTHES USA Device for fixing implants on or in a bone
6652525, Apr 30 1998 Warsaw Orthopedic, Inc Anterior implant for the spine
6669700, May 15 1997 SDGI Holdings, Inc. Anterior cervical plating system
6679883, Oct 31 2001 Ortho Development Corporation Cervical plate for stabilizing the human spine
6692503, Oct 13 1999 Warsaw Orthopedic, Inc System and method for securing a plate to the spinal column
6706046, Feb 01 2000 BIOMET C V Intramedullary fixation device for metaphyseal long bone fractures and methods of using the same
6712820, Feb 01 2000 BIOMET C V Fixation plate system for dorsal wrist fracture fixation
6719758, Jan 19 2001 Aesculap AG Kirschner wire with a holding device for surgical procedures
6719759, Mar 09 1999 Synthes USA, LLC Bone plate
6730090, Feb 01 2000 BIOMET C V Fixation device for metaphyseal long bone fractures
6730091, May 03 1999 Medartis AG Blockable bone plate
6755831, Nov 30 2001 Regents of the University of Minnesota Wrist surgery devices and techniques
6761719, Mar 01 2000 Warsaw Orthopedic, Inc Superelastic spinal stabilization system and method
6767351, Feb 01 2000 BIOMET C V Fixation system with multidirectional stabilization pegs
6780186, Apr 13 1995 Warsaw Orthopedic, Inc Anterior cervical plate having polyaxial locking screws and sliding coupling elements
6821278, Jun 26 2000 Synthes USA, LLC Bone plate
6866665, Mar 27 2003 BIOMET C V Bone fracture fixation system with subchondral and articular surface support
6926720, Oct 15 2003 BIOMET C V Jig assembly for implantation of a fracture fixation device
6955677, Oct 15 2002 The University of North Carolina at Chapel Hill Multi-angular fastening apparatus and method for surgical bone screw/plate systems
6974461, Sep 14 1999 Fixation system for bones
7044951, Feb 12 2001 TRIMED INC Fracture fixation device in which a fixation pin is axially restrained
7090676, Nov 19 2002 Acumed LLC Adjustable bone plates
7153309, Nov 19 2002 Acumed LLC Guide system for bone-repair devices
7207993, Feb 03 2000 RTI SURGICAL, LLC; RTI Surgical, Inc; PIONEER SURGICAL TECHNOLOGY, INC Apparatus and method for repairing the femur
20010001119,
20010011172,
20010021851,
20020032446,
20020049445,
20020058939,
20020058941,
20020111629,
20020147452,
20020151899,
20020156474,
20030045880,
20030073999,
20030078583,
20030083661,
20030105461,
20030135212,
20030153918,
20030153919,
20030216735,
20040030339,
20040059334,
20040059335,
20040068319,
20040073218,
20040097934,
20040097937,
20040102778,
20040111090,
20040167522,
20040260291,
20050004574,
20050010226,
20050085818,
20050131413,
20050154392,
20050165400,
CA2174293,
CH675531,
D443060, Jun 01 2000 ZIMMER TECHNOLOGY, INC Bone plate
DE19542116,
DE19629011,
DE3301298,
DE4004941,
DE4343117,
DE9321544,
EP451427,
EP556548,
EP1250892,
RE28841, Jun 22 1966 Synthes A.G. Osteosynthetic pressure plate construction
WO4836,
WO36984,
WO112081,
WO119267,
WO2096309,
WO2004032751,
WO2004096067,
WO9747251,
WO9956653,
////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 17 2003DePuy Products, Inc.(assignment on the face of the patent)
Sep 25 2003ORBAY, JORGE L HAND INNOVATIONS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0140240253 pdf
Sep 25 2003ORBAY, JORGE L HAND INNOVATIONS, INC CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 014024 FRAME 0253 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNOR S INTEREST 0172890405 pdf
Jun 23 2004HAND INNOVATIONS, INC HAND INNOVATIONS LLCCORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNEE FROM HAND INNOVATIONS, LLC TO HAND INNOVATIONS LLC PREVIOUSLY RECORDED ON REEL 015083 FRAME 0019 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST 0298370878 pdf
Jun 23 2004HAND INNOVATIONS, INC Hand Innovations, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0150830019 pdf
Mar 23 2007HAND INNOVATIONS LLCDEPUY PRODUCTS, INC CORRECTIVE ASSIGNMENT TO CORRECT THE THE NAME OF THE ASSIGNOR FROM HAND INNOVATIONS, LLC TO HAND INNOVATIONS LLC PREVIOUSLY RECORDED ON REEL 019077 FRAME 0775 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST 0298390484 pdf
Mar 23 2007Hand Innovations, LLCDEPUY PRODUCTS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0190770775 pdf
Jun 12 2012DEPUY PRODUCTS, INC BIOMET C V ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0296830912 pdf
Date Maintenance Fee Events
Dec 16 2010ASPN: Payor Number Assigned.
Dec 16 2010RMPN: Payer Number De-assigned.
Jun 16 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 14 2018M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
May 18 2022M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 28 20134 years fee payment window open
Jun 28 20146 months grace period start (w surcharge)
Dec 28 2014patent expiry (for year 4)
Dec 28 20162 years to revive unintentionally abandoned end. (for year 4)
Dec 28 20178 years fee payment window open
Jun 28 20186 months grace period start (w surcharge)
Dec 28 2018patent expiry (for year 8)
Dec 28 20202 years to revive unintentionally abandoned end. (for year 8)
Dec 28 202112 years fee payment window open
Jun 28 20226 months grace period start (w surcharge)
Dec 28 2022patent expiry (for year 12)
Dec 28 20242 years to revive unintentionally abandoned end. (for year 12)