beam deflection devices and methods using piezoelectric tube resonance. A beam deflection device may include a laser that produces a beam of light. The beam of light may then be directed through a piezoelectric tube that includes a light guide and one or more piezoelectric elements. The device may also have an optical tip that extends axially from the end of the piezoelectric tube. The piezoelectric tube is coupled with the light source, such that the beam of light is conducted through the light guide and optionally the optical tip. A controller may be communicatively coupled with the light source and the piezoelectric tube. The controller may include instructions to activate the piezoelectric tube at a resonant frequency of the piezoelectric tube, the light guide, and/or the optical tip. The controller may include instructions to activate one or more of the piezoelectric elements at a different power level.
|
24. A method of beam deflection comprising:
directing a beam of light toward a first end of a piezoelectric tube such that at least a portion of the beam of light is conducted through a light guide at least partially housed in the piezoelectric tube;
activating a first piezoelectric element coupled with the piezoelectric tube with a first activation signal having a first amplitude; and
activating a second piezoelectric element coupled with the piezoelectric tube with a second activation signal having a second amplitude.
22. A method of beam deflection comprising:
directing a beam of light toward a first end of a light guide at least partially housed in a piezoelectric tube such that at least a portion of the beam of light is conducted through the light guide;
activating one or more piezoelectric elements coupled with the piezoelectric tube at a resonant frequency; and
configuring the light guide such that a second end portion of the light guide extends axially from the piezoelectric tube;
wherein the resonant frequency is a resonant frequency of the second end portion of the light guide.
1. A beam deflection system comprising:
a light source providing a beam of light;
a piezoelectric tube including a light guide and a plurality of piezoelectric elements, wherein a first end of the piezoelectric tube is coupled with the light source such that at least a portion of the beam of light is conducted through the light guide; and
a controller communicatively coupled with the plurality of piezoelectric elements, wherein:
the controller includes instructions to deflect the beam of light with the light guide by activating more than one of the plurality of piezoelectric elements using more than one activation signals.
19. A beam deflection system comprising:
a light source providing a beam of light;
a piezoelectric tube including a first piezoelectric element, a second piezoelectric element and a light guide, wherein a first end of the piezoelectric tube is coupled with the light source, such that at least a portion of the beam of light is conducted through the light guide; and
a controller communicatively coupled with the first and second piezoelectric elements, wherein:
the controller includes instructions to deflect the beam of light by activating the piezoelectric elements,
the controller includes instructions to activate the first piezoelectric element with a first activation signal having a first amplitude, and
the controller includes instructions to activate the second piezoelectric element with a second activation signal having a second amplitude.
16. A beam deflection system comprising:
light generating means for providing a beam of light;
light directing means for directing the beam of light;
a first directional force applying means for applying a first directional force in conjunction with the light directing means; and
a second directional force applying means for applying a second directional force in conjunction with the light directing means, said light directing means responsive to the first and second directional force applying means such that the direction of the beam of light is altered by the light directing means when either or both of the first and second directional force applying means are activated; and
activating means for activating the first and second directional force means, wherein the activating means is adapted to activate either or both of the first and second directional force applying means at a resonant frequency.
12. A beam deflection system comprising:
a fiber-optic light guide including a first end portion and a second end portion;
a light source providing a beam of light, wherein the beam of light is incident on the first end portion of the fiber-optic light guide, such that at least a portion of the beam of light is conducted through the fiber-optic light guide;
a piezoelectric tube including one or more piezoelectric elements, the piezoelectric tube coupled with the fiber-optic light guide such that at least a portion of the fiber-optic light guide is housed in the piezoelectric tube and the second end portion extends axially from the piezoelectric tube;
a controller communicatively coupled with the piezoelectric tube, wherein the controller includes instructions to deflect the beam of light by activating the piezoelectric elements at a resonant frequency of the second end portion of the fiber-optic light guide.
2. The beam deflection system according to
3. The beam deflection system according to
wherein the controller includes instructions to deflect the beam of light with the optical tip at a resonant frequency of the optical tip.
4. The beam deflection system according to
5. The beam deflection system according to
6. The beam deflection system according to
7. The beam deflection system according to
10. The beam deflection system according to
11. The beam deflection system according to
13. The beam deflection system according to
14. The beam deflection system according to
17. The beam deflection system according to
18. The beam deflection system according to
at least an end portion of the light directing means is unsupported such that said end portion vibrates in response to activation of the directional force means; and
the activating means is adapted to activate the directional force applying means at a resonant frequency of the unsupported end portion of the light directing means.
20. The beam deflection system according to
21. The beam deflection system according to
23. The method of
|
This application is a continuation-in-part, and claims the benefit of commonly assigned U.S. patent application Ser. No. 12/142,661, filed Jun. 19, 2008, entitled “Combinational PZT And MEMS Beam Steering,” which is a non-provisional of U.S. Provisional Patent Application No. 60/945,302, filed Jun. 20, 2007, entitled “Combinational PZT And MEMS Beam Steering,” the entirety of each of which is herein incorporated by reference for all purposes.
This disclosure relates in general to piezoelectric light guides and, but not by way of limitation, to piezoelectric light guides as a dithering tool in a beam steering application among other things.
Atmospheric conditions often cause beam spreading and/or beam wander in a light beam. In some applications, light beams are used to communicate between a transmitter and a receiver. Due to such atmospheric affects, communication signals directed toward a receiver may be off target. Moreover, because these atmospheric affects are often transient, transmitters often employ beam steering and/or beam dithering protocols to track a receiver and/or adjust the beams transmission.
In one embodiment, the present disclosure provides for a beam steering system that includes an illumination means, a dithering means, and a scanning means. The illumination means provides a beam of light and may comprise a laser, a laser diode, or another light source. The dithering means, for example, a light guide and at least one piezoelectric element, may be used to dither the beam of light. The scanning means, for example, a microelectromechanical mirror, may be independent from said dithering means and may scan the dithered beam of light toward a target. Moreover, the scanning means may scan at a frequency lower than the frequency of the dithering means. For example, the dithering means may dither the beam of light at a frequency greater than about 10 KHz. In another embodiment the dithering means may dither the beam of light at a frequency between 5 KHz and 50 KHz. As another example, the scanning means may scan the beam of light at a frequency between 50 Khz and 100 KHz. In another embodiment, the scanning means may scan the beam of light at a frequency between 100 KHz and 1 MHz.
In another embodiment, the disclosure provides for another beam steering system comprising a light source that provides a beam of light, a piezoelectric tube, a scanning optical element, and a controller. The light source may be a laser. The piezoelectric tube may include a light guide and one or more piezoelectric elements. The piezoelectric tube may be coupled with the light source, such that at least a portion of the beam of light is conducted through the light guide. The scanning optical element may be coupled with the piezoelectric tube. The scanning optical element may include an optical element and a steering device. The controller may be communicatively coupled with the light source, the piezoelectric tube and the scanning optical element; and may include instructions to dither the beam of light with the piezoelectric tube and/or instructions to steer the beam of light with the scanning optical element.
In various embodiments, the steering device may include a microelectromechanical device. In various other embodiments, the optical element may include a mirror. The light source may include a laser or laser diode. In some embodiments, the light guide is cylindrical and/or comprises fiber optics. In some embodiments the light guide may include four piezoelectric elements distributed radially about the light guide and/or substantially equidistant from one another. The instructions to dither the beam of light may include instructions to deflect the beam of light such that the beam of light maps out a substantially circular pattern.
Another beam steering system is also provided according to another embodiment. The beam steering system may include a laser that provides a beam of laser light, a piezoelectric tube, a scanning microelectromechanical mirror, and a controller. The piezoelectric tube may be cylindrically shaped. The light guide may be housed within the piezoelectric tube and at least four piezoelectric elements may be coupled radially around the piezoelectric tube. The piezoelectric tube may be coupled with the laser such that at least a portion of a beam of laser light from the laser may be conducted through the light guide. The scanning microelectromechanical mirror may include a steering device coupled with the piezoelectric tube. The beam of light may be incident on the scanning microelectromechanical mirror after exiting the piezoelectric tube. The controller may be communicatively coupled with and control the operation of the light source, the piezoelectric tube, and the scanning microelectromechanical mirror. The controller may includes instructions to dither the beam of light with the piezoelectric tube and/or instructions to steer the beam of light with the scanning microelectromechanical mirror.
A beam steering method is also provided according to another embodiment. A beam of light is directed toward a light guide. One or more piezoelectric elements coupled with the light guide is activated. The activating dithers the beam of light according to a dither pattern. The dithered light may then be directed toward a steering optical element. The beam of light may then be steered toward a target with the steering optical element.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments, are intended for purposes of illustration only and do not limit the scope of the disclosure. In one embodiment, the present disclosure provides for a beam deflection device comprising a light source that provides a beam of light, a piezoelectric tube, and a controller. The light source may be a laser, a laser diode, or another light source. The piezoelectric tube may include a light guide and one or more piezoelectric elements. The controller may be communicatively coupled with the light source, the piezoelectric tube and the scanning optical element; and may include instructions to activate one or more of the piezoelectric elements at a resonant frequency of the piezoelectric tube and/or the light guide.
In another embodiment the beam deflection device may include an optical tip. For example, the light guide may have a portion thereof that extends axially from an end of a piezoelectric tube. The controller may activate one or more of the piezoelectric elements at a resonant frequency of the optical tip. The optical tip may be a fiber-optic. The length of the optical tip may be selected such that the optical tip resonates at a desired frequency.
In various embodiments, the controller may activate one or more of the piezoelectric elements at a different activation voltage amplitude, current amplitude, and/or power level. For example, a piezoelectric tube including a light guide, one or more piezoelectric elements, and an optical tip may produce an elliptical deflection pattern when all the piezoelectric elements are activated with equal amplitude signals. The amplitudes of one or more of the activation signals may be increased or decreased to produce a circular deflection pattern.
A beam deflection method is also provided according to another embodiment. A beam of light is directed toward a light guide at least partially housed in a piezoelectric tube. A first piezoelectric element coupled with the piezoelectric tube is activated with a first activation signal having a first amplitude, for example, a sinusoidal voltage signal of a certain amplitude. A second piezoelectric element coupled with the piezoelectric tube is activated with a second activation signal having a second amplitude, for example, a sinusoidal voltage signal of a different amplitude.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments, are intended for purposes of illustration only and do not limit the scope of the disclosure.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
The ensuing description provides various embodiment(s) only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the various embodiment(s) will provide those skilled in the art with an enabling description for implementing various embodiments. It should be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope as set forth in the appended claims.
Various embodiments of the invention provide for a decoupled beam dithering and beam steering device. That is, the dithering mechanism and the beam steering mechanisms are separated and can be independently controlled. This decoupling may allow for high frequency dithering with lower frequency steering, and/or provide low beam deviation dithering with higher beam deviation steering. A piezoelectric light guide may be used as the dithering mechanism. Such devices may have quick response times and may operate at high frequencies. One or more piezoelectric elements, for example, may provide a directional force on the light guide that deviates the beam of light. A microelectromechanical mirror, for example, may be used to steer the dithered beam of light.
Referring first to
When a beam of light is conducted through the piezoelectric tube 150, the piezoelectric elements 140 may be activated to deflect the light guide in any direction depending on the placement of the piezoelectric elements 140 about the light guide and/or depending on the applied voltage on the piezoelectric elements 140. In some embodiments, the piezoelectric elements 140 may be used to deflect the light guide small distances at high frequencies. For example, in one embodiment, the piezoelectric elements 140 may deflect the light guide about ±5 μm. In another embodiment, the piezoelectric elements 140 may deflect the light guide between about ±1 μm and ±10 μm. As another example, in another embodiment, piezoelectric elements 140 may deflect the light guide between about ±10 μm and ±100 μm. In another embodiment, the piezoelectric elements 140 may deflect the light guide at a frequency greater than 1 kHz. In another embodiment, the piezoelectric elements 140 may deflect the light guide at a frequency between 10 kHz and 100 kHz. In another embodiment, the piezoelectric elements 140 may deflect the light guide at a frequency between about 100 kHz and 1 MHz. In another embodiment the piezoelectric elements 140 may deflect the light guide at a frequency greater than 1 MHz.
The piezoelectric tube 150 may dither the beam of light according to various dithering patterns. For example, the piezoelectric tube 150 may dither the beam of light in a circular, oval, polygon-shaped and/or rectangular pattern.
Returning to
In some embodiments, beam steering system 100 may incorporate beam deflection device 600 as shown in
According to some embodiments,
The resonant frequencies of the piezoelectric tube 150, the light guide 605, and/or the optical tip 610 may be dependent on the length of the unsupported portion of the piezoelectric tube 150, the length of the light guide 605, and/or the length of the optical tip 610. Additionally, the resonant frequencies may be dependent on the diameter and/or material composition of the piezoelectric tube 150, the light guide 605, and/or the optical tip 610. Moreover, resonance may also be dependant on the atmospheric conditions where the device is located. For example, an optical tip made of fiber-optic material with a tip length of 1.37 mm was found to resonate at a frequency of 38 kHz. As another example, an optical tip made of fiber-optic material with a tip length of 1.25 mm was found to resonate at a frequency of 40 kHz. The amplitude of the deflection may be dependent on the length, diameter, and/or material composition of the piezoelectric tube 150, the light guide 605, and/or the optical tip 610. In some embodiments, properties such as length, cross-section, diameter, and/or material composition of the piezoelectric tube 150, the light guide 605, and/or the optical tip 610 may be selected such that at least one of the components resonates at a desired frequency. The desired resonant frequency for a component may be chosen to be above the frequency of external effects on a light beam such as beam wandering caused by varying atmospheric conditions. In some embodiments, the above properties may be selected to achieve a desired amplitude of deflection with a particular activation voltage amplitude, current amplitude, or power level. For example, a deflection pattern of a given amplitude may be achieved with a lower power level than otherwise required by activating the piezoelectric elements at a resonant frequency.
While optical tip 610 is shown by
Depending on a desired dither pattern and characteristics of the piezoelectric tube 150, the light guide 605, and/or the optical tip 610, it may be desirable to drive one or several of the piezoelectric elements 140 at a different voltage amplitude, current amplitude, and/or power level to achieve the desired pattern.
According to one embodiment, a piezoelectric tube with four piezoelectric elements arrayed radially around a light guide and an optical tip made of fiber-optic extending out from the piezoelectric tube a distance of 1.37 mm was tested. The four piezoelectric elements were driven with channels A+, A−, B+, and B− comprising quadrature sinusoidal voltage signals such that piezoelectric elements opposite of each other (e. g. A+ and A−) were activated at a phase angle of 180°, and adjacent piezoelectric elements (e.g. A+ and B+) were activated at a 90° phase angle at a resonant frequency of the optical tip of 38 kHz. A circular deflection pattern was achieved with an optical tip deflection of 42 μm by activating channels A+ and A− with a voltage amplitude of 17.6 V peak-to-peak and activating channels B+ and B− with a voltage amplitude of 12.8 V peak-to-peak.
Operation of a beam steering device may be coordinated with a computational system like that shown schematically in
The computational device 400 also comprises software elements, shown as being currently located within working memory 420, including an operating system 424 and other code 422, such as a program designed to implement methods of the invention. It will be apparent to those skilled in the art that substantial variations may be used in accordance with specific requirements. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.
Specific details are given in the above description to provide a thorough understanding of the embodiments. However, it is understood that the embodiments may be practiced without these specific details. For example, circuits, structures, and/or components may be shown in block diagrams in order not to obscure the embodiments in unnecessary detail. In other instances, well-known circuits, processes, algorithms, structures, components, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.
Implementation of the techniques, blocks, steps and means described above may be done in various ways. For example, these techniques, blocks, steps and means may be implemented in hardware, software, or a combination thereof. For a hardware implementation, the processing units may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described above and/or a combination thereof.
Also, it is noted that the embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process is terminated when its operations are completed, but could have additional steps not included in the figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
Furthermore, embodiments may be implemented by hardware, software, scripting languages, firmware, middleware, microcode, hardware description languages and/or any combination thereof. When implemented in software, firmware, middleware, scripting language and/or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine readable medium, such as a storage medium. A code segment or machine-executable instruction may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a script, a class, or any combination of instructions, data structures and/or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters and/or memory contents. Information, arguments, parameters, data, etc., may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. Any machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a memory. Memory may be implemented within the processor or external to the processor. As used herein the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other storage medium and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
Moreover, as disclosed herein, the term “storage medium” may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information. The term “machine-readable medium” includes, but is not limited to portable or fixed storage devices, optical storage devices, wireless channels and/or various other mediums capable of storing, containing or carrying instruction(s) and/or data.
While the principles of the disclosure have been described above in connection with specific apparatuses and methods this description is made only by way of example and not as limitation on the scope of the disclosure.
Dadkhah, Mahyar, Maryfield, Tony
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6140979, | Aug 05 1998 | Microvision, Inc.; Microvision, Inc | Scanned display with pinch, timing, and distortion correction |
6265718, | Mar 13 1992 | BRUKER NANO, INC | Scanning probe microscope with scan correction |
20040151466, | |||
20060284790, | |||
20080143979, | |||
EP1626292, | |||
WO9602823, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 08 2008 | Cubic Corporation | (assignment on the face of the patent) | / | |||
Dec 17 2008 | DADKHAH, MAHYAR | Cubic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022156 | /0587 | |
Dec 18 2008 | MARYFIELD, TONY | Cubic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022156 | /0587 | |
May 25 2021 | Cubic Corporation | BARCLAYS BANK PLC | FIRST LIEN SECURITY AGREEMENT | 056393 | /0281 | |
May 25 2021 | PIXIA CORP | BARCLAYS BANK PLC | FIRST LIEN SECURITY AGREEMENT | 056393 | /0281 | |
May 25 2021 | Nuvotronics, Inc | BARCLAYS BANK PLC | FIRST LIEN SECURITY AGREEMENT | 056393 | /0281 | |
May 25 2021 | Cubic Corporation | ALTER DOMUS US LLC | SECOND LIEN SECURITY AGREEMENT | 056393 | /0314 | |
May 25 2021 | PIXIA CORP | ALTER DOMUS US LLC | SECOND LIEN SECURITY AGREEMENT | 056393 | /0314 | |
May 25 2021 | Nuvotronics, Inc | ALTER DOMUS US LLC | SECOND LIEN SECURITY AGREEMENT | 056393 | /0314 |
Date | Maintenance Fee Events |
Jul 04 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 05 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 05 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 04 2014 | 4 years fee payment window open |
Jul 04 2014 | 6 months grace period start (w surcharge) |
Jan 04 2015 | patent expiry (for year 4) |
Jan 04 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 04 2018 | 8 years fee payment window open |
Jul 04 2018 | 6 months grace period start (w surcharge) |
Jan 04 2019 | patent expiry (for year 8) |
Jan 04 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 04 2022 | 12 years fee payment window open |
Jul 04 2022 | 6 months grace period start (w surcharge) |
Jan 04 2023 | patent expiry (for year 12) |
Jan 04 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |