A wireless multi-cell communication system and method of controlling the distribution of multimedia broadcast services (mbms). The system includes at least one network, e.g., a Universal Terrestrial Radio Access Network (UTRAN), which distributes the mbms to one or more wireless receive/transmit units (WTRUs). In one embodiment, the mbms are activated and deactivated based on whether periodic cell updates are provided for a particular cell. In another embodiment, mbms transmission is terminated when receipt of the mbms are confirmed. In yet another embodiment, the mbms are segmented to reduce the resources used by the network and/or the WTRUs during mbms distribution.
|
12. A wireless time division duplex (TDD) network comprising:
circuitry configured for a group of cells, to assign a first cell of the group to a first time slot (ts) for an mbms transmission and to assign a second cell of the group to a second ts for the mbms transmission; and
wherein the first ts and the second ts are different TSs in a frame,
wherein the mbms transmission includes mbms information including a mbms combining schedule from a network, the combining of retransmitted segments is based on the mbms combining schedule.
11. A wireless transmit/received unit (WTRU) comprising:
circuitry configured to receive at least one block of multimedia broadcast/multicast service (mbms) data over a secondary common control physical channel (S-CCPCH) from a first node-B;
the circuitry further configured to receive mbms information indicating at least one time interval;
wherein the circuitry is further configured to receive a first block of mbms data over the S-CCPCH from the first node-B and at the indicated time interval combine a second block of mbms data received over a different S-CCPCH from a different node-B with the first segment from the first node-B,
wherein the received mbms information includes a mbms combining schedule from a network, the combining of retransmitted segments is based on the mbms combining schedule.
1. A method performed in a wireless transmit/receive unit (WTRU), the method comprising:
receiving a multimedia broadcast/multicast service (mbms) transmission from a first cell wherein the mbms transmission includes one or more data segments of an mbms;
storing received data segments from the mbms transmission;
combining received data segments from the mbms transmission and from at least one other mbms transmission from a different cell that was transmitted at a different transmission time in response to received information,
wherein the received information includes a mbms combining schedule from a network, the combining of retransmitted segments is based on the mbms combining schedule, and the received information indicates a transmission time difference between the first cell and the different cell time.
6. A wireless transmit/receive unit (WTRU) comprising:
a receiver configured to receive a multimedia broadcast/multicast service (mbms) transmission from a first cell, wherein the mbms transmission includes one or more data segments of an mbms;
wherein the WTRU is further configured to:
store received data segments from the mbms transmission, and
combine data segments from the mbms transmission and at least one other mbms transmission from a different cell that was transmitted at a different transmission time in response to received information,
wherein the received information includes a mbms combining schedule from a network, the combining of retransmitted segments is based on the mbms combining schedule and the received information indicates a transmission time difference between the first cell and the different cell.
2. The method of
receiving a missing data segment; and
storing the missing data segment.
3. The method of
4. The method of
scheduling reception of a missing data segment based on mbms information;
receiving the missing data segment; and
storing the missing data segment.
5. The method of
receiving an indication of when data segments will be transmitted.
7. The WTRU of
8. The WTRU of
9. The WTRU of
the receiver is further configured to receive the missing data segment, and the WTRU is further configured to store the missing data segment.
10. The WTRU of
13. The method of
14. The WTRU of
|
This application claims priority from U.S. provisional application Ser. No. 60/438,569, filed Jan. 6, 2003; U.S. provisional application Ser. No. 60/452,642, filed Mar. 6, 2003; and U.S. provisional application Ser. No. 60/469,957, filed May 13, 2003, which are incorporated by reference as if fully set forth.
This application is also related to co-pending U.S. application Ser. No. 10/740,259, filed on Dec. 18, 2003.
The present invention generally relates to wireless communications. More particularly, the present invention is directed to providing at least one or more Multimedia Broadcast Services (MBMS) in a wireless communication system, such as Time Division Duplex (TDD), Frequency Division Duplex (FDD), code division multiple access (CDMA) and/or Universal Mobile Telecommunications System (UMTS).
The third generation partnership project (3GPP) wideband CDMA (W-CDMA) system is outlined in the operational scenarios for UMTS releases R99/R4 and R5. This system utilizes TDD and FDD modes and employs multiple common and dedicated channels for establishing a communications link. The Downlink (DL) common channels include at least one primary common control physical channel (P-CCPCH) containing the BCH (broadcast channel) and/or at least one secondary common control physical channel (S-CCPCH) containing a forward access channel (FACH).
The communications link is typically established using a wireless transmit/receive unit (WTRU). A WTRU includes but is not limited to a user equipment, mobile station, fixed or mobile subscriber unit, pager, or any other type of device capable of operating in a wireless environment. These exemplary types of wireless environments include, but are not limited to, wireless local area networks and public land mobile networks. The WTRUs described herein are capable of operating in a time slotted mode or a frequency divided mode such as TDD and FDD respectively. A “base station” includes but is not limited to a Node B, site controller, access point or other interfacing device in a wireless environment.
It is known that link performance at the cell edge of a multi-cell wireless communication system has long been a concern, particularly for common channels. Link analyses have shown that a wireless WTRU on the cell edge will have block error rates (BLERs) above 10% or even higher under certain fading conditions. In addition, for optimization of capacity, it might be desirable to locate an S-CCPCH in the same slot as the P-CCPCH.
A special class of services offered by network operators and carried by S-CCPCHs will be MBMS. In wireless communication systems, MBMS are used to efficiently distribute a common data service to multiple subscribers.
MBMS differ from classic point-to-point (PtP) services such as speech or bi-directional video-conferencing, in that a group of users are intended receivers of the same message sent by the network. Realization of MBMS therefore differs from PtP services in that the latter are usually sent over user-dedicated physical channels, whereas the former are more appropriate to be sent on common physical channels to be received by multiple WTRUs. The requirements for MBMS in terms of data rate vary in the range of up to around 100 kbps, but the most common requirement indicates demand for MBMS at around 64 kbps per cell, and 90% of users in the cell covered by the MBMS.
The fundamental problem with providing MBMS in a CDMA system is that unless dedicated channels are used, it is difficult to subject the physical channel carrying MBMS to power control. Accordingly, the base station transmit power must be set such that the user of the MBMS located most distant from the base station in the serviced group can reliably receive the physical channel. In essence, the base station must support the possibility that some user in the group of N MBMS users is at the cell edge and, therefore, the transmit power is set according to that user's needs. However, for most of the users this power is far more than sufficient. This creates a disproportionate amount of interference to other users in the same and neighboring cells.
By way of example, preliminary studies for wideband W-CDMA FDD show that in order to achieve coverage of more than 90% of the WTRUs in a representative FDD cell with the 64 kbit/second MBMS, typically around 30% of the base station power would be required with MBMS sent on the physical channel. Also, it is noted that it is extremely difficult to service MBMS users at cell edge at sustainable data rates.
Therefore, there is need for reducing such a large resource demand. To this end, several schemes for reducing the required power fraction for the MBMS have been discussed to improve link performance of the MBMS channel. These include: 1) longer interleaving, i.e., longer transmission time intervals (TTIs) with better time diversity, 2) transmit diversity for the MBMS channel, and 3) improved channel coding. Using such techniques, the power fraction of an FDD base station required for supporting the example 64 kbit/sec MBMS could be reduced from 30% to around 10-20%.
For UMTS narrowband TDD (NTDD) (1.28 Mcps option), the high interference levels created by the MBMS may be mitigated in the physical channel timeslots (TS) by exploiting frequency reuse. This is possible in principle because of the smaller bandwidth per NTDD carrier. For example, three narrowband carriers can be supported within the 5 MHz spectrum allocation of FDD or wideband TDD (WTDD).
Using this scheme, some cells would transmit MBMS in a particular timeslot, TSn, on a frequency f1, a second group in TSn but on a frequency f2, and a third group in TSn but on a frequency f3. Because of the longer distance between two base stations sending MBMS in the same TS on the same frequency, more spatial separation is achieved, and therefore, less interference coming from the MBMS TS is created to other cells. However, an operator must have these three frequencies available in the deployment area. Techniques to reduce transmit (Tx) power requirements include, for example, usage of longer TTI lengths, soft handover and Tx diversity.
As a result of the previous discussions for universal terrestrial radio access (UTRA) FDD, a reduction down to some 15-20% base station DL Tx power is indicated for supporting 64 kbit/sec reference MBMS on S-CCPCH.
Previous systems disclose the implementation of an R4-based LCR TDD system in a deployment area with 3 low chip rate (LCR) carriers in a 5 MHz bandwidth and mapping the MBMS in this system onto an S-CCPCH contained in a single timeslot and assuming a frequency reuse factor 3 for this timeslot. These results show that LCR TDD can provide MBMS up to 64 kbps at a block error rate=10% (BLER=10%) or around 16-32 kbps at BLER=1% could be supported when using full base station Tx power in the S-CCPCH timeslot.
Furthermore, in a prior art communication system using a time-domain reuse factor of 3, cells in set 1 would transmit their MBMS in TSn, cells in set 2 would transmit their MBMS in TSn+1 and sets in cells in set 3 would transmit their MBMS in TSn+2. Cells in set 1 do not use TS+1 and TS+2 for any transmission, both uplink (UL) and DL, cells in set 2 do not use TSn and TSn+2 for any transmission and so on. This method works irrespective of the duration of the MBMS data block, (i.e., is independent from its TTI). The average MBMS data rate yielded per cell with this method is 170 kbps/cell and the timeslot efficiency on MBMS TSs in the system is 170 kbps/3 TSs=56 kbps/TS.
To illustrate, WTRU M1 in TS1 is assigned codes corresponding to cells in a first set (set 1). WTRU M2 in TS 2 is assigned codes corresponding to cells in a second set (set 2), and WTRU M3 in TS 3 is assigned codes corresponding to cells in a third set (set 3). This appears in Frame A and repeats for subsequent frames until one or more of the assignments are changed.
Still referring to
Note that the drawback of the above-mentioned prior art communication system is that the timeslots TS1, TS2 and TS3 cannot be used for other transmissions. Thus, if a timeslot is used for cells in one set, that timeslot may not be used for cells in another set. It would be desirable to have a set of TDD cells that are able to share a time-domain reuse pattern.
For proper application of radio resources, the Universal Terrestrial Radio Access Network (UTRAN) tracks the number of active MBMS users. Within each cell, for each MBMS the number of active users is used to determine the type of transport and physical resources applied to the MBMS, and when to initiate and terminate the MBMS in each cell.
Services are established as a result of MBMS activation and subscriber mobility. The mechanism envisioned to track MBMS users incorporates Radio Resource Control (RRC) layer 3 signaling for MBMS “joining” (service activation) and cell update procedures to maintain the subscribers location. With these tools it is possible to know which users have activated the service and in which cell the service needs to be distributed.
Due to application of closed loop power control and transmit diversity, dedicated channels are more efficient when the number of users of a particular one of MBMS is small. When the number of users increases, the dedicated channel efficiency gains do not compensate for the duplication of each data stream, and common channels that provide a single data stream to multiple subscribers are used. This method is known as transport/physical channel switching and may be applied at anytime during an MBMS transmission.
When common channels are used, it is not practical to apply ARQ techniques ensure successful delivery. Therefore each MBMS transmission is repeated to increase the probability of successful delivery. The number of retransmissions takes into account the expected BLER of the transport and physical resources applied to the service.
MBMS are transmitted several times to better ensure successful delivery. The number to retransmissions is relative to the expected channel quality. This number will take into account a worst case scenario to achieve an expected Quality of Service (QoS). One example of this is when subscribers are located at the cell edge and as a result there is a high BLER. Often subscribers will experience better radio propagation conditions and will achieve successful delivery well before the retransmissions complete.
In summary, several improvements are desired to overcome deficiencies associated with conventional MBMS are desired. Firstly, there is a need for a new scheme which supports UMTS WTDD and NTDD, and also increases the capacity of common channels for offering MBMS. Secondly, a system for improving resource efficiency using performance enhancing techniques is desired whereby a set of TDD cells are configured to share a time-domain reuse pattern. Thirdly, no explicate service delivery indication exists so that any subscriber that has activated the MBMS will be billed for reception. Therefore, it would be desired for the UTRAN to provide a sufficient number of retransmissions to ensure reliable reception.
The present invention is implemented in a wireless multi-cell communication system which includes at least one network in communication with one or more WTRUs. The communication system controls the distribution of MBMS from the network to the WTRU. The communication system may be an FDD or TDD communication system.
In one embodiment, the at least one WTRU activates the MBMS. The WTRU provides a periodic update to the network indicating a first one of the cells of the communication system that the WTRU is operating in. The network distributes the MBMS to the WTRU. The network terminates the MBMS at the WTRU when the WTRU either ceases to provide the periodic update or operates in a cell of the communication system that is different than the first cell.
In another embodiment, the network distributes the MBMS to the WTRU by transmitting a plurality of MBMS data transmissions. The WTRU indicates to the network that all of the MBMS data transmissions have been received. The network then terminates the MBMS data transmissions.
In yet another embodiment, the network segments the MBMS into a plurality of individual data segments and transmits each of the MBMS data segments to the WTRU. The WTRU stores in a memory therein each MBMS data segment that is properly received by the WTRU. The WTRU identifies to the network at least one MBMS data segment that was not properly received by the WTRU. The network only retransmits the identified MBMS data segment to the WTRU.
Prior to transmitting the MBMS data segments, the network may indicate to the WTRU when each of the MBMS data segments is to be transmitted to the WTRU and how many data segments the MBMS comprise. Each MBMS data segment may include at least one cyclic redundancy check (CRC) used to validate the successful delivery of the MBMS data segment by the WTRU. An operator of the network may determine whether or not the WTRU has received all of the data segments of the MBMS so as to facilitate billing.
In yet another embodiment, the network segments the MBMS into a plurality of individual MBMS data segments scheduled to be transmitted at different times to the WTRU. The network indicates to the WTRU the different scheduled times and how many data segments the MBMS comprise. The network transmits the MBMS data segments to the WTRU at the different scheduled times. The WTRU activates a receiver therein at the different scheduled times to receive the MBMS data segments transmitted by the network. The WTRU identifies to the network at least one MBMS data segment that was not properly received by the WTRU. The network indicates to the WTRU an allocated time when the identified MBMS data segment is to be transmitted to the WTRU. The network only retransmits the identified MBMS data segment to the WTRU. The WTRU activates the receiver therein at the allocated time to receive the retransmitted MBMS data segment.
In yet another embodiment, the WTRUs, operating in a specific one of the cells of the communication system, activates the MBMS. The network determines the number of WTRUs operating in the specific cell that activated the MBMS. The network allocates resources to the specific cell based on the determined number of WTRUs. The network distributes the MBMS to the WTRUs using the allocated resources. The network terminates the MBMS at the WTRUs and reallocates the resources of the network when all of the WTRUs deactivate the MBMS.
A more detailed understanding of the invention may be had from the following description of preferred embodiments, given by way of example and to be understood in conjunction with the accompanying drawings wherein:
The present invention will be described with reference to the drawing figures wherein like numerals represents like elements.
Although the present invention has been described in conjunction with TDD and FDD type wireless communication systems, it is important to note that the present invention may be implemented in any type of wireless communication system including TD-SCDMA and CDMA 2000.
In step 310, the required resource units for each cell in the communication system are determined based on their availability to be allocated to the MBMS. For a TDD communication system, the resource units may include physical channels which are defined by a specific carrier frequency, scrambling code, an optional channelization code and a set of frames. As specified by TS25.221, a physical channel in TDD is a burst, which is transmitted in a particular timeslot within allocated radio frames. The allocation can be continuous, (i.e., the time slot in every frame is allocated to the physical channel), or the allocation can be discontinuous (i.e., the time slot in a subset of all frames is allocated only. For an FDD communication system, the resource units may include physical channels which are defined by a specific carrier frequency, scrambling code, an optional channelization code and a start and stop time for a given duration. In step 315, the cells are organized into a plurality of sets (i.e., groups) of one or more cells in order to guarantee a certain level of the MBMS. In step 320, the resource units are assigned to each set of cells in the communication system.
In step 325, if an FDD communication system is used to perform the process 300, then multi-frame allocations are used in step 335. If a TDD communication system is selected to perform the process 300, a determination of whether to use multi-frame allocations is made in step 330. The use of multi-frame allocations may be based on the spatial separation (i.e., distance) between the cells. When multi-frame allocations are used in either an FDD communication system (step 335) or in a TDD communication system (as indicated by the YES output of step 330), interference in the communication system is minimized such that a certain service level of MBMS may be guaranteed by establishing a repetition period for all of the cells and a subset of the frames to be used for MBMS transmission per repetition period for each set of cells (step 340). If, in the TDD communication system, it is determined not to use multi-frame allocations, different combinations of TSs are provided for each set of cells, using the same combination of TSs in each frame (step 345). It should be understood that the decision of step 330 may be implemented independently or in conjunction with any one of the previous steps 305, 310, 315, 320.
In step 350, the assigned resource units are allocated in each cell in the communication system for MBMS transmission. In step 355, the WTRUs receive information indicating how to access the resource units allocated for MBMS transmission. In step 360, the WTRUs receive MBMS from one or more of the cells. In step 365, a determination is made as to whether the MBMS requirements determined in step 305 are unchanged and still fulfilled. If the MBMS requirements have not change and are still fulfilled, the process 300 loops back to step 360 where the WTRUs continue to receive MBMS. If the MBMS requirements change or are not fulfilled, the process 300 loops back to the beginning of process 300 at step 305, such that new MBMS requirements can be established.
According to the present invention, timeslot management is used to reduce inter-cell interference, whereby timeslots are assigned to particular frames and frames are assigned to cells in an advantageous manner. The timeslot management allows each set of cells within a group of cells to maintain optimum power. For TDD, the timeslot management insures that WTRUs receiving DL signals experience minimum interference from other cells in these timeslots. They can successfully decode received DL data on these channels, minimizing a need for retransmissions and insuring coverage for high data rates on these channels in the cell area. This is accomplished by assigning channel assignments and timeslots to the WTRU in such a manner that sets of cells are divided into groups, and each set of cells has a unique set of timeslot assignments.
The present invention implements a time-domain reuse pattern on a wireless communication system having a plurality of cells to support MBMS services. The effect of time-domain reuse and frequency reuse to improve reception quality are the same. In accordance with the present invention, the time-domain reuse pattern ensures that some cells in the TDD deployment area will transmit their MBMS services in certain timeslots, which are left unused by other cells.
The TDD aspect of the present invention applies to the case of conventional S-CCPCHs or DL shared channels in UMTS TDD R99 (3.84 Mcps and 1.28 Mcps option) and beyond independent of a specific content (such as MBMS) carried by it, but reliable service for MBMS is regarded as a very important special case. Even without MBMS, the inventive techniques will improve data rates and coverage achievable at cell edge. Without loss of generality, the case of MBMS sent on S-CCPCH is considered; even if the applicability of the method extends to any kind of service sent on any form of DL common channel, (such as a DL Shared Channel). R5 introduces another type of DL common channel for both FDD and TDD, i.e., the HS-DSCH.
The effect of implementing the inventive channel assignment techniques can be demonstrated by results derived from WTDD simulations. A data rate of approximately 2 Mbps per WTRU in the DL can is achieved by sending it data in 12 DL timeslots each filled with 16 spreading codes of SF=16. A single timeslot, using all 16 SF=16 spreading codes yields therefore a data rate of around 170 kbps if continuously sent every frame. In all the following examples, it is presumed for simplicity that 1 full timeslot per frame is assigned to the S-CCPCH or, equivalently to the MBMS. Also, 170 kbps per slot is presumed.
In accordance with the present invention, the timeslots are assigned in a manner which reduces interference which may occur when broadcasting MBMS broadcasts and other broadcasts in overlapping coverage areas. Timeslots are reused according to the requirements of MBMS within the cells. This is performed irrespective of the duration of the MBMS data block and is independent from TTIs.
In accordance with the present invention, if the same TS is used by all cells, the use of multi-frame allocations and TTIs can be exploited successfully. Within each predetermined group of sets of cells, the cells in each set are assigned unique sets of S-CCPCHs.
In accordance with the present invention, possible combinations of timeslots are reused, in accordance with their repetition periods. This establishes a time-domain reuse pattern. If the same TS is to be used by all cells, the use of multi-frame allocations and TTIs can be exploited successfully. With a TTI=20 ms (2 frames) per MBMS data block, a S-CCPCH per cell can be allocated with repetition period of 80 ms (8 frames).
A first set of cells would transmit its MBMS in a given timeslot n in frame m and m+1 and not transmit anything in timeslot n in frames m+2, . . . , m+7. A second set of cells would transmit its MBMS in the same timeslot n, but in frame m+2 and m+3, but not transmit anything in timeslot n in frames m, m+1 and m+4, . . . , m+7. A third set of cells would transmit its MBMS in the same timeslot n, but in frame m+4 and m+5, but not transmit anything in timeslot n in frames m, . . . , m+3 and m+6, . . . , m+7. Finally, a fourth set of cells would transmit its MBMS in still the same timeslot n in frames m+6 and m+7, but nothing in frames m, . . . , m+5.
The average MBMS data rate yielded per cell with this method is 170 kbps/4=42 kbps/cell and the efficiency of MBMS TSs in the system is 170 kbps/1 TS=170 kbps/TS. The system will experience an effective time-domain reuse factor of 4 and practically no interference on the MBMS TSs. In Table 1 below, “n” denotes “a cell sends a S-CCPCH carrying MBMS in timeslot n in this frame”. No “n” implies that the cell sends nothing in this frame in this timeslot n.
TABLE 1
Frame number
m +
m +
m +
m +
m +
m
m + 1
m + 2
3
4
5
6
7
Cells in set 1
n
n
Cells in set 2
n
n
Cells in set 3
n
n
Cells in set 4
n
n
This process generalizes to other possible combinations like 1 MBMS TS, repetition period 40 ms with TTI=10 ms or 1 MBMS TS, repetition period 160 ms and TTI=40 ms.
Note that a time-domain reuse factor of 3 is frequently used in prior art communication systems and may be a highly attractive choice. This is achievable in this concept by using a repetition period 60 ms with TTI=20 ms. From the perspective of the physical layer, this is a straightforward variation. There is a minor modification to the higher layer protocols, which currently only support standardized repetition periods of 10, 20, 40, 80, 160, 320 and 640 ms. This time-domain reuse pattern would potentially yield an average MBMS data rate per cell of 170 kbps/3=56 kbps/cell. Only one “free” TS is necessary to accommodate the MBMS with this process.
In accordance with the present invention, a time-domain reuse of 2 is achieved, with a potential for 170/2=85 kbps. If the same single TS is to be used by all cells for MBMS, then with a repetition period of 40 ms, but a varying TTI per cell set, the use of multi-frame allocations and TTIs can be exploited successfully. In the Table 2 below, ‘n’ denotes that a cell set sends an S-CCPCH carrying MBMS in timeslot n in this frame. No ‘n’ means that the cell set sends nothing in this frame in this timeslot n.
TABLE 2
Frame number
m
m + 1
m + 3
m + 4
Cells in set 1
n
n
Cells in set 2
n
n
Cells in set 3
n
n
Cells in set 4
n
n
Cells in set 5
n
n
Cells in set 6
n
n
Note that cells in sets 1-4 allow for TTI=20 ms (achieved by means of using the “offset” parameter when doing the multi-frame allocations). Cells in sets 5 and 6 do not support transmission in two consecutive slots. As a result, cells in sets 5 and 6 are assigned time-separated TSs. It can be seen that each set of cells has at least one slot where there is no intercell interference from any particular other set. Furthermore, three pairs can operate with one another with no intercell interference:
Taking advantage of the redundancy in forward error correction (FEC), successful operation is possible over most regions, while supporting up to 85 kbps and requiring only one slot per frame.
Node B sync is handled by assigning fractional usage of the time slots. In this way, it is possible to support Node B sync using the sync bursts. This approach was originally rejected using prior art methods because of concerns that interference levels would prevent reliable detection. However, with the present invention, it is now much more feasible for a cell to listen to neighboring cells' sync bursts during slots in which the cell is not transmitting.
As shown in
Referring still to
During the timeslots, communications are allowed to overlap with the timeslots and frames assigned to multiple sets of cells. The combinations are such that there are no identical sets of overlapping timeslots or frames between any two sets of cells, giving each set of cells its own unique combination of timeslots and frames assigned to it.
Referring to
Referring still to
During the frames, communications are allowed to overlap with frames assigned to multiple sets of cells. The combinations are such that there are no identical sets of overlapping frames between any two sets of cells, giving each set of cells its own unique combination of frames assigned to it.
Referring to
According to the present invention, a time-domain reuse factor is provided for FDD transmissions. The time-domain reuse factor is introduced for DL common channels, with special significance for the case of shared transmissions, such as MBMS on S-CCPCHs or DL shared channels. The principle is in analogy to time-domain use for TDD, but with continuous transmissions in a particular frame rather than a particular TS per frame, such as in TDD.
In FDD, because of a continuous transmission of S-CCPCH or downlink shared channel (DL DSCH) in a particular frame is required rather than a particular TS per frame like in TDD, a straightforward extension of the conventional process (equivalent to prior art for TDD) is not possible.
Even though an equivalent to multi-frame allocation like in TDD does not exist for FDD, the same can be achieved by allocating the channel continuously, i.e., every frame, but not sending it in some particular frames if not desired by the base station. The S-CCPCH does not need to contain pilot bits, because the P-CCPCH is usually taken as phase reference and that other control bits like TFCI need not be sent when no data is present. Therefore, nothing is unnecessarily transmitted in these idle periods. The use of the different channel assignments in association with the P-CCPCH channel assignments provides an equivalent of TDD technique used for FDD.
The present invention may be uses with voice as well as data using regular and High Speed Downlink Packet Access (HSDPA) transmissions according to the 3GPP W-CDMA communication system. The 3GPP system is used only as an example and the invention can be applied to other code division multiple access communication systems. It is also to be noted that the FDD part of the invention applies to the case of conventional S-CCPCHs or DL Shared Channels in UMTS FDD R99 and beyond (e.g., HS-DSCH in R5), independent of a specific content.
In accordance with the present invention, it is necessary to know when subscribers terminate the service or have successfully received the service in order to efficiently release physical and transport resources assigned to the MBMS. Subscriber generation of an explicate MBMS deactivation message can be used to reduce MBMS transmissions. This may either be an L3 RRC procedure or an NAS signaling procedure. Upon reception of the deactivation message, the MBMS context of the subscribers is removed from the current active subscribers associated with the particular MBMS.
Referring to
The deactivation is used for transport switching to determine the current number of users (WTRUs) that are receiving the MBMS, such that the channels of the communication system 600 may be reconfigured for better performance. Furthermore, the number of retransmissions may be reduced.
In one embodiment, the WTRUs 605 of
Based on the number of active subscribers, UTRAN 610 configures transport and physical channels to achieve maximum radio resource efficiency. The MBMS deactivation signaling message is used as an explicate indication that reduces the subscriber count for each service to which the user is subscribed. When the number of subscribers of a particular service reaches a predetermined limit, the transport/physical channel switching is performed. When all subscribers have deactivated, the MBMS transmission is terminated in that cell.
In step 615, subscribers activate the MBMS by signaling UTRAN 610 with their WTRUs 605. The MBMS are distributed by the UTRAN 610 to the WTRUs 605 (step 620). As subscribers are removed from the active users for those MBMS (steps 625, 635), the UTRAN 610 may as a result either evoke MBMS transport/physical channel switching (step 630) or discontinue distribution of the service within that cell (step 640).
Referring to
In one embodiment, at least one of the WTRUs 605 of
In one embodiment, the UTRAN 810 of
Service confirmation may not always be justified. For example some services may have very little data per transmission. Therefore, the cost of retransmission is very small. One option to allow for this further optimization is to identify which services receive transmission confirmation during the activation procedure.
An additional method of achieving successful delivery of the MBMS with reduced retransmissions is to receive and store individual data segments from each transmission and then combine these blocks from each retransmission until the MBMS service transmission is complete. The MBMS transmission comprises several data segments, each of which contains one or more cyclic redundancy checks (CRCs) used to validate successful delivery.
MBMS segmentation is implemented by a wireless communication system 900 shown in
In one embodiment, the UTRAN 910 of
Prior to transmitting the MBMS data segments, the UTRAN 910 may indicate to the WTRU 905 when each of the MBMS data segments is to be transmitted to the WTRU 905 and how many data segments the MBMS comprise. Each MBMS data segment may include at least one cyclic redundancy check (CRC) used to validate the successful delivery of the MBMS data segment by the WTRU 905. An operator of the UTRAN 910 may determine whether or not the WTRU 905 has received all of the data segments of the MBMS so as to facilitate billing.
In another embodiment, the UTRAN 910 segments the MBMS into a plurality of individual MBMS data segments scheduled to be transmitted at different times to the WTRU 905. The UTRAN 910 indicates to the WTRU 905 the different scheduled times and how many data segments the MBMS comprise. The UTRAN 910 transmits the MBMS data segments to the WTRU 905 at the different scheduled times. The WTRU 905 activates a receiver therein (not shown) at the different scheduled times to receive the MBMS data segments transmitted by the UTRAN 910. The WTRU 905 identifies to the UTRAN 910 at least one MBMS data segment that was not properly received by the WTRU 905. The UTRAN 910 indicates to the WTRU 905 an allocated time when the identified data segment is to be retransmitted to the WTRU 905. The UTRAN 910 only retransmits the identified MBMS data segment to the WTRU. The WTRU 905 activates the receiver therein at the allocated time to receive the retransmitted MBMS data segment.
While this invention has been particularly shown and described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention as described above.
Patent | Priority | Assignee | Title |
10652214, | Dec 22 2010 | May Patents Ltd. | System and method for routing-based internet security |
11303612, | Jan 06 2011 | May Patents Ltd. | System and method for routing-based internet security |
11876785, | Dec 22 2010 | May Patents Ltd. | System and method for routing-based internet security |
8320834, | Oct 21 2008 | Fujitsu Limited | Inter-cell interference mitigation signalling methods and apparatus |
8493848, | Aug 17 2007 | Fujitsu Limited | Resource allocation method in wireless base station device, and wireless base station device |
8861417, | Aug 25 2005 | LG Electronics Inc | Method of providing a service on a downlink shared channel |
8958373, | Jan 06 2003 | InterDigital Technology Corporation | Method and system for controlling the distribution of multimedia broadcast service |
9144105, | Sep 10 2004 | Nokia Technologies Oy | Deactivation method of multimedia broadcast multicast service and related device |
9177157, | Dec 22 2010 | MAY PATENTS LTD | System and method for routing-based internet security |
9554357, | Aug 25 2005 | LG Electronics Inc. | Method of providing a service on a downlink shared channel |
9634995, | Dec 22 2010 | Mat Patents Ltd. | System and method for routing-based internet security |
9762547, | Dec 22 2010 | May Patents Ltd. | System and method for routing-based internet security |
Patent | Priority | Assignee | Title |
5768531, | Mar 27 1995 | Toshiba America Information Systems | Apparatus and method for using multiple communication paths in a wireless LAN |
5793983, | Jan 22 1996 | International Business Machines Corp.; IBM Corporation | Input/output channel interface which automatically deallocates failed subchannel and re-segments data block for transmitting over a reassigned subchannel |
6031827, | Oct 25 1996 | Nokia Technologies Oy | Method for radio resource control |
6128483, | Nov 19 1996 | Ericsson, Inc. | Simultaneous over the air data download to multiple radios |
6249810, | Feb 19 1999 | HOO, SIM WONG; NG, KAI WA; SIM, WONG HOO | Method and system for implementing an internet radio device for receiving and/or transmitting media information |
6317436, | Apr 30 1999 | Rockwell Collins, Inc | Method and apparatus for managing communication resources using an adaptive broadcast cycle (ABC) |
6370391, | Sep 06 1996 | Nokia Mobile Phones, Ltd | Mobile station and network having hierarchical index for cell broadcast service |
6519223, | Apr 06 1999 | HIGHBRIDGE PRINCIPAL STRATEGIES, LLC, AS COLLATERAL AGENT | System and method for implementing a semi reliable retransmission protocol |
6519461, | Oct 29 1999 | Telefonaktiebolaget LM Ericsson | Channel-type switching from a common channel to a dedicated channel based on common channel load |
6594241, | Dec 08 1999 | Telefonaktiebolaget LM Ericsson | Channel-type switching control |
6594252, | Mar 01 1999 | Nortel Networks Limited | Locating control signals in a mobile communications system |
6633564, | Sep 22 1999 | Apple Inc | Method and apparatus for inserting packets into a data stream |
6684081, | May 10 2002 | HMD Global Oy | Method and system for separating control information and user data from multicast and broadcast services |
6721315, | Sep 30 1999 | WSOU Investments, LLC | Control architecture in optical burst-switched networks |
6760303, | Mar 29 2000 | TELEFONAKTIEBOLAGET LM ERICSSON PUBL | Channel-type switching based on cell load |
6781999, | Jul 23 2001 | ERICSSON EVDO INC | Broadcasting and multicasting in wireless communication |
6795419, | Mar 13 2002 | WSOU INVESTMENTS LLC | Wireless telecommunications system using multislot channel allocation for multimedia broadcast/multicast service |
6925096, | Sep 22 2000 | TELEFONAKTIEBOLAGET LM ERICSSON PUBL | Method and apparatus for managing traffic flows |
6940844, | Oct 17 2003 | InterDigital Technology Corporation | Method and apparatus for reporting WLAN capabilities of a dual mode GPRS/WLAN or UMTS/WLAN WTRU |
6987764, | Nov 05 2001 | Qualcomm, Incorporated; Qualcomm Incorporated | Method and apparatus for selecting a packet data serving node for multi-cast/broadcast services |
7031694, | Nov 05 2001 | WSOU Investments, LLC | Method and system for providing a service |
7047473, | May 14 2001 | LG Electronics Inc. | Method for controlling data transmission in a radio communications system |
7164654, | Mar 09 2001 | Denso Corporation | ARQ parameter retransmission control for variable data rate channels |
7177658, | May 06 2002 | Qualcomm Incorporated | Multi-media broadcast and multicast service (MBMS) in a wireless communications system |
7180885, | Aug 07 2002 | Intel Corporation | Receiving point-to-point and point-to-point multipoint multimedia broadcasts/multicast services |
7181759, | May 26 2000 | ARRIS ENTERPRISES LLC | System and method for providing interactivity for end-users over digital broadcast channels |
7184789, | Oct 03 2001 | Qualcomm, Incorporated; Qualcomm Incorporated | Method and apparatus for data packet transport in a wireless communication system using an internet protocol |
7187665, | Jul 23 2001 | NEC Corporation | Apparatus and method of scheduling channel allocation in dynamic TDMA frame |
7212824, | Aug 07 2002 | Intel Corporation | Channel switching for support of multimedia broadcast and multicast services |
7313593, | Oct 24 2000 | GOOGLE LLC | Method and apparatus for providing full duplex and multipoint IP audio streaming |
7536622, | Mar 29 2004 | Nokia Technologies Oy | Data repair enhancements for multicast/broadcast data distribution |
7558262, | Nov 29 2002 | TELEFONAKTIEBOLAGET LM ERICSSON PUBL | Group hopping and channel zapping during transmission of multicast applications |
7567793, | Nov 22 1999 | NTT DoCoMo, Inc | Information system, mobile communication terminal, and information method |
7590922, | Jul 30 2004 | Nokia Technologies Oy | Point-to-point repair request mechanism for point-to-multipoint transmission systems |
7594152, | Jan 09 2004 | LG Electronics Inc | Repairing errors in data of MBMS service |
7599655, | Jan 02 2003 | Qualcomm Incorporated | Method and apparatus for broadcast services in a communication system |
7606587, | Sep 20 2002 | Nokia Corporation | Multicast transmission in a cellular network |
7630725, | Oct 20 2001 | SAMSUNG ELECTRONICS CO , LTD | Paging apparatus and method in a mobile communication system providing multimedia broadcast multicast service |
7764642, | Feb 11 2003 | InterDigital Technology Corporation | Method for distribution of wireless transmit/receive unit (WTRU) capability between point to point and point to multipoint services |
20020002064, | |||
20020028687, | |||
20020080888, | |||
20020116520, | |||
20020141447, | |||
20030092376, | |||
20030099201, | |||
20030134653, | |||
20030157949, | |||
20030174645, | |||
20030174678, | |||
20030194992, | |||
20030207696, | |||
20030211855, | |||
20030217362, | |||
20030223394, | |||
20030224794, | |||
20030231612, | |||
20030232594, | |||
20040180675, | |||
20040184471, | |||
20050010774, | |||
20050070256, | |||
20060166653, | |||
20070162810, | |||
EP1077539, | |||
EP1122962, | |||
EP1249959, | |||
EP1781051, | |||
FR2729812, | |||
JP2006074815, | |||
JP2006081201, | |||
JP2007312421, | |||
JP2009153222, | |||
JP2010035211, | |||
JP8084111, | |||
JP9139727, | |||
WO7386, | |||
WO199454, | |||
WO9825422, | |||
WO2004015876, | |||
WO2004064270, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 18 2003 | InterDigital Technology Corporation | (assignment on the face of the patent) | / | |||
Mar 22 2004 | TERRY, STEPHEN E | InterDigital Technology Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014673 | /0261 |
Date | Maintenance Fee Events |
Jun 11 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 21 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 29 2022 | REM: Maintenance Fee Reminder Mailed. |
Feb 13 2023 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 11 2014 | 4 years fee payment window open |
Jul 11 2014 | 6 months grace period start (w surcharge) |
Jan 11 2015 | patent expiry (for year 4) |
Jan 11 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 11 2018 | 8 years fee payment window open |
Jul 11 2018 | 6 months grace period start (w surcharge) |
Jan 11 2019 | patent expiry (for year 8) |
Jan 11 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 11 2022 | 12 years fee payment window open |
Jul 11 2022 | 6 months grace period start (w surcharge) |
Jan 11 2023 | patent expiry (for year 12) |
Jan 11 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |