An efficient software download to a configurable communication device is disclosed herein. The method of efficiently downloading software begins with a step of receiving a request to configure a communication device to run a communication application. The communication device being configured has a plurality of function blocks with a fixed portion of hardware and a flexible portion of hardware, wherein the same plurality of function blocks is capable of operating a plurality of communication applications. In a next step, the capability of the fixed portion and the flexible portion of hardware of the communication device is evaluated for a capability of implementing the communication application. Next, configuration information only for the flexible portion of hardware of the communication device is transmitted to the communication device to enable it to operate the communication application. An identification of the communication application is also transmitted to the communication device for purposes of tracking its implementation.
|
1. A configurable hardware kernel plane for a reconfigurable communication device comprising:
a plurality of hardware kernels coupled to a reconfigurable interconnect, said interconnect operable to route data and control information between said hardware kernels; and
a data bus operable to receive data from the plurality of hardware kernels, said data bus comprising an input data line portion coupled to a first side of the reconfigurable interconnect and an output data line portion coupled to a second side of the reconfigurable interconnect;
wherein at least one of the plurality of hardware kernels includes a configuration information block and a satellite kernel block, the configuration information block and the satellite kernel block coupled to each other by another interconnect; and
the satellite kernel block includes an input/output data line for providing communication with the reconfigurable interconnect; and
the configuration information block is coupled with a reconfiguration bus via a configuration line, said configuration line being a bus into the configuration information block or a single line with multiplexed data.
2. The configurable hardware kernel plane of
3. The configurable hardware kernel plane of
4. The configurable hardware kernel plane of
5. The configurable hardware kernel plane of
6. The configurable hardware kernel plane of
7. The configurable hardware kernel plane of
8. The configurable hardware kernel plane of
9. The configurable hardware kernel plane of
10. The configurable hardware kernel plane of
11. The configurable hardware kernel plane of
|
This application is a continuation of application Ser. No. 09/928,273 filed on Aug. 9, 2001, now U.S. Pat. No. 7,188,159, which claims priority to the provisional patent application with the following Ser. No. 60/224,172 filed on Aug. 9, 2000.
Related applications, which are incorporated herein by reference, are:
The present invention relates generally to wireless communication systems. In particular, the present claimed invention relates to a method of configuring a reconfigurable communication device.
Existing communication devices are “static” devices. That is, they are designed to support a specific wireless communications standard and/or to support a data transmission at a specific data rate. Typically, different wireless communications standards are used in different wireless networks, both within a geographic locality and worldwide. Thus, an individual traveling between different regions is required to use a separate wireless communications device in each region.
In addition, data transmission at a variety of data rates often requires different devices. Thus, an individual who wants to switch the rate of data transmission is required to use a separate wireless communications device for different sets of data rates. In view of the foregoing, a need arises to overcome the limitations of a communication device with fixed data rates and fixed wireless communication standards.
Existing communication standards continue to evolve while new communication standards continue to arise. Both of which can translate into the demise of a given fixed ASIC communication device. Furthermore, new services are continuously being offered, e.g., GPS, map location and direction services, wideband data transmissions, etc. However, these new services typically require new functions in a communication device. For a legacy fixed-function ASIC device, the new services are unavailable. Thus, either a user is limited in the availability of services with a legacy communication device, or the communication device must be replaced every time a desired service or communication standard is developed. This can be costly and counterproductive in terms of infrastructure, design, and consumer resources. Consequently, a need arises for a communication device that can overcome the limitations of fixed application architecture.
If a communication device has a general-purpose microprocessor or a digital signal processor, then some changes to the software may be implemented over the life of the device. However, if the software programs are required to be downloaded for execution by the digital signal processor or processors in the device, then a significant amount of time can be consumed. This time duration can translate into user dissatisfaction, inability to modify the device within the allotted time, e.g., for a handoff situation, and an increase in errors over time due to channel degradation. Furthermore, the quantity and degree of functions that can be affected by a software download to a DSP might only be a fraction of the functions that need to be changed for a quality of service change, a new service, or a new communication protocol. Consequently, a need arises for a device and a method to overcome the limitation of a large and slow software download. Furthermore, a need arises to overcome the limitation of the narrow scope of the changes available from a software download to a DSP.
Given the high demand for a wide variety of services and communication applications, a shortage of resources sometimes exists within a given sector. If a system uses a first come fist serve basis, then subsequent potential users are simply denied access. However, the need of a subsequent potential user for a communication application or of bandwidth for a base station may far exceed the need or urgency of an active user. Thus, a need exists to overcome the limitation of providing resources, and the configurations to use them, to users simply on a first come first serve basis.
The present invention overcomes the limitations of a communication device with fixed data rates and fixed wireless communication standards. The present invention also overcomes the limitations of a fixed application architecture for the communication device. Beneficially, the present invention provides an architecture and a method that overcomes the limitation of a large and slow software download. Furthermore, the present invention overcomes the limitation of the narrow scope of changes capable from a software download to a DSP. The present invention also overcomes the limitation of providing resources, and the configurations to use them, to users simply on a first come first serve basis.
A first embodiment of the present invention provides a method of efficiently downloading software to a configurable communication device. The method of efficiently downloading software begins with a step of receiving a request to configure a communication device to run a communication application. The communication device being configured has a plurality of function blocks with a fixed portion of hardware and a flexible portion of hardware, wherein the same plurality of function blocks is capable of operating a plurality of communication applications. In a next step, the capability of the fixed portion and the flexible portion of hardware of the communication device is evaluated for a capability of implementing the communication application. Next, configuration information only for the flexible portion of hardware of the communication device is transmitted to the communication device to enable it to operate the communication application. An identification of the communication application is also transmitted to the communication device for purposes of tracking its implementation.
A wireless communication device on which the configurations can be implemented includes a heterogeneous set of modules for processing signals and performing device control functions. The communication device as a whole is reconfigurable with respect to the communication protocol used, the type of data (e.g., voice or voice and data) to be transmitted and received, the data rates for transmission and receipt, the quality of service provided (e.g., the maximum allowed error rate), as well as other functional aspects of the device. Reconfiguration of the device is achieved by reconfiguration of the individual modules. More specifically, many of the modules are reconfigurable with respect to their mode of operation by downloading a relatively small set of control parameters. The control parameters for each respective module are used to configure the respective module and thereby control its mode of operation. For some modules, some or all of the control parameters control the operation of software procedures of modules. By reconfiguring the operation of various modules by downloading control parameters instead of by downloading complete new software procedures, the volume of reconfiguration information is greatly reduced, making dynamic reconfiguration of the communication device fast and practical.
For a better understanding of the invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings, in which:
Like reference numerals refer to corresponding parts throughout the drawings.
Reference will now be made in detail to the preferred embodiments of the invention. Examples of the preferred embodiment are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it is understood that they are not intended to limit the invention to these embodiments. Rather, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention, as defined by the appended claims. Additionally, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
The present invention can be implemented in a wide variety of digital communication systems including direct sequence spread-spectrum (DSSS), time division multiple access (TDMA), frequency division multiple access (FDMA) or orthogonal frequency division multiplexing (OFDM) in both wired and wireless applications, as well as other techniques that utilize data processing such as global position satellite (GPS) systems. Data processing is utilized in wireless communications for many functions including, but not limited to: filtering, searching, modulation, demodulation, encoding, decoding, estimating, etc. The systems or techniques which utilize data processing include, but are not limited to, fixed wireless, unlicensed Federal Communications Commission (FCC) wireless systems, wireless local area network (W-LAN), cordless telephony, cellular telephony, personal base station, telemetry, and other digital data processing applications. The present invention can be applied to both transmitters, e.g., a base station, and to receivers, e.g., a terminal, for fixed wireless, W-LAN, cellular telephony, and personal base station applications.
In particular, the present invention is applicable to the following exemplary list of digital direct sequence spread spectrum communication applications. One fixed wireless application to which the present invention may be applied is a metropolitan multipoint distribution system (MMDS). Examples include wireless cable broadcast, or two-way wireless local loop (WLL) systems. Some examples of a W-LAN, that can communicate digitized audio and data packets, for which the present invention can be applied, include Open Air and the Institute of Electrical and Electronics Engineers (IEEE) specification 802.11b. In yet another application, a specific example of an unlicensed FCC application to which the present invention may be applied include the Industrial, Scientific, and Medical band (ISM) devices, which can include cordless telephony products. Personal base stations can utilize either cordless or cellular telephony wireless communication standards. Lastly, the cellular telephony systems in which the present invention can be applied includes, but is not limited to, IS-95, IS2000, ARIB, 3GPP-FDD, 3GPP-TDD, 3GPP2, 1EXTREME, or other user-defined protocols. The range of code sequences utilized in the exemplary spread spectrum applications disclosed herein, are useful to define the class of functions for which the present configurable code generator unit is applicable. The present invention can also be utilized in any electronic device needing to reconfigure hardware resources.
The digital signal is then processed by a digital front-end processing circuit 30, which performs modulation-specific, channel-specific, and standard-specific bandwidth-selection and filtering and sampling-rate control. The signal from the digital front-end processing circuit 30 is then passed to a detection and demodulation circuit 32, which performs signal detection and demodulation operations. The detection and demodulation circuit 32 also interacts with a parameter estimation circuit 34. The output from the detection and demodulating circuit 32 is subsequently processed by a symbol decoder 36 and then a source decoder 38.
The digital functions (30, 32, 34, 36, and 38) of the device 20 are typically implemented on a software-programmable digital signal processor (DSP), or as a fully hardwired, application-specific integrated circuit (ASIC). For lower bandwidth applications (tens of kbps), software-programmable digital signal processors are typically used. For high bandwidth applications (tens of Mbps), a fully hardwired approach is typically employed. This partitioning has and will change over time as the performance of microprocessors and digital signal processors improves.
In accordance with the present invention, the mode of operation of either the DSP or the ASIC may be determined through the use of a set of control parameters. The mode of operation of each such component may be dynamically changed by downloading a new set of control parameters, such as from a remote host, and loading the new control parameters into the component.
The standard functions of the digital communications modem 20 may be mapped to a new architecture, as shown in
The device 50 of
Device 50 has several inputs in the present embodiment, including input 24a quantity of hardware resources required, input 24b control and parameter information, input 24c coupling arrangement, and input 24d functionality. These inputs are provided in the present embodiment from device 22, e.g., a base transceiver station (BTS), via communication link 24 to configure programmable logic 59 portion of reconfigurable baseband processor. This information is also provided to configure the multiple kernels 60a thorough 60c of parameter estimator processor 60 that can have programmable logic, e.g. dedicated and distributed DSP architecture. The method in which these configuration information inputs are provided to a communication device are described in subsequent flowchart
The criteria used to map the functions of the circuit of
As in the case of the device of
The parameter estimation processor 60 performs traditional inner receiver functions via kernels (K1, K2 . . . ), which can be called via software routines from an instruction set processor. Thus, the parameter estimation processor 60 is primarily software-programmable with a limited amount of hardware reconfigurability, primarily with respect to dataflow between estimators and signal conditioning elements. The parameter estimation processor 60 performs channel estimation, correlation, pilot-signal searching, frequency-offset estimation, phase-offset estimation, and timing-error estimation.
The output from the parameter estimation processor 60 is fed to the bus 55, which interfaces with the digital signal processor 62, the microprocessor 64, and memory 66. The digital signal processor 62 and the microprocessor 64 are completely software programmable, and offer the most flexibility with respect to which applications can be executed on the architecture.
Those skilled in the art will appreciate that the hardware-reconfigurable, software-programmable wireless communication device 50 allows for the implementation of multiple standards and services on a single product platform.
Referring now to
Reconfigurable baseband processor 56b includes filter block (or modules) 80 coupled to finger block 82 that is in turn coupled to combiner block 84. Searcher block is coupled to finger block 82. Each block has a fixed core, e.g., filter core 80a finger core 82a, combiner core 84 and searcher core 86a, respectively. These core portions of the function blocks are implemented in fixed type of hardware that is not reconfigurable or has very limited reconfigurability or programmability in the present embodiment.
Reconfigurable baseband processor 56b also includes flexible portions of functional blocks having flexible coupling hardware block 80b, flexible quantity of hardware 80c, and flexible parameters block 80d coupled to each other in the filter block 80. The flexible portions shown for finger block 82 are flexible coupling 82b, flexible quantity 82c, and flexible parameters 82d coupled to each other. Similarly, flexible coupling 84b, flexible quantity 84c, and flexible parameter 84d blocks coupled to each other, are provided for combiner block 84. And searcher block 86 has flexible coupling 86b, flexible quantity 86c and flexible parameters 86d coupled to each other.
The flexible portions of any functional block can be tailored to the flexibility required for the range of applications. For example, the flexible quantity 82c for finger block 82 can refer to the number of fingers provided for a number of multipaths for a given mobile, while the flexible parameters 82d can be used for flexibly generating symbols from chips to achieve better signal to noise rations (SNR), and the flexible coupling 82b can be provided to satisfy the different demodulating or descrambling operations between different codes and input streams, as required for different communication protocols for which the device is designed to communicate.
In contrast, the commonality of the core for a given functional block is appropriate for the range of communication applications for which the communication device has been designed to implement. By providing a substantial portion of most functions in a fixed core with little or no reconfigurability, improvements in speed and efficiency are obtained. For example, configuration information is not needed in the present embodiment of the core hardware provided for a function block, primarily because it is not configurable. Furthermore, the reconfigurable information required to reconfigure the device is limited to the flexible portions of the function blocks.
The general functions needed by a communication application are known to those skilled in the art. However the specific architecture, e.g., from
Although not shown, another function block could be provided in a communication device for transmitter functions. One embodiment of a configurable transmitter function block with fixed and flexible portions is provided in co-pending U.S. patent application Ser. No. 09/922,484, entitled “DYNAMICALLY RECONFIGURABLE UNIVERSAL TRANSMITTER SYSTEM” by Medlock et al., filed Dec. 29, 2000. This related application is also commonly assigned and is hereby incorporated by reference. The benefit of each of these related patent applications is that the fixed portion of the function block for each instance allows operation without configuration information while the flexible portion of the function block allows accommodation of various communication protocols, with only minimal amount of information to reprogram or reconfigure them. Thus, the function block accommodates a variety of applications while only requiring a small amount of configuration information to effectuate the change in communication applications or quality of service.
In one embodiment, the present invention can be implemented for a communication device without time-sharing of function blocks among multiple users, e.g., mobiles. However in another embodiment, the present invention can be implemented in a time sharing model, details of which are available in co-pending U.S. patent application Ser. No. 09/492,634, entitled “IMPROVED APPARATUS AND METHOD FOR MULTI-THREADED SIGNAL PROCESSING” by Subrarnanian et al. This related application is commonly assigned, and is hereby incorporated by reference. Additional information is available in co-pending U.S. patent application Ser. No. 09/920,093, entitled “METHOD AND APPARATUS FOR TIME-SLICED AND MULTI-THREADED Data PROCESSING IN A COMMUNICATION SYSTEM,” by Rieken et al., filed Jul. 31, 2001, This related application is commonly assigned, and is hereby incorporated by reference.
While the present embodiment provides certain flexibility in certain areas, e.g., parameters and coupling, for noted function blocks, e.g., filters 80 and combiners 84, the present invention is well suited to having more or less configurabiltiy in the function blocks shown or in additional function blocks. The function blocks will have a non-configurable core to the extent permissible by the range of communication applications desired for a given communication device design.
Referring now to
A first architecture format is referred to as reconfigurable logic 211. Reconfigurable logic 211 uses multiple processing islands, also referred to as a configurable logic block (CLB), e.g., 210a coupled by an interconnect 214 with reconfigurability, via bus lines, e.g., 212a, 212b, 213a, and 213b. The reconfigurable logic type of engine relies almost exclusively on bit-level mesh networks in the present embodiment. In the present embodiment, interconnect 214 provides all possible coupling arrangements between the bus of data liens 212a and 212b. In this manner, independent blocks 210a-210d can communicate with one another in any desired manner. That is, they are not restricted to communicating with less than all existing kernels due to limited hardware wiring. In another embodiment, interconnect 214 can provide only a limited amount of interconnectabiltiy, based upon perceived needs and capabilities of each kernel for a given application. Reconfigurable logic 211 uses bit-level operations such as encoding. By itself, reconfigurable logic provides significant benefits of flexibility. However, the flexibility comes at a trade-off of inefficiency in chip area and in power consumption. In one embodiment processing islands have unrestricted reconfigurability of its component logic devices.
A second architecture format is referred to as reconfigurable datapath 221. The interconnect network of the reconfigurable datapath exploits the bit-sliced structure and predominantly one-dimensional flow of data by using asymmetric network-reconfigurable buses in one direction and bit-level mesh in the other direction. That is, reconfigurable datapath 221 uses dedicated datapaths to transmit data between electronic components, such as mux 220 and adder 226. For example, multiplex (Mux) block 220 can multiplex data from multiple data lines onto a single data line, thus changing the data path. Additionally, data may be directed along one of multiple paths to an appropriate storage register, e.g., register 0 (Reg0) or register 1 (Reg1). From an appropriate storage register, data may be directed along a path to a given function block, e.g., adder 226 or buffer 228. Reconfigurable datapath 221 can efficiently move data, but it lacks flexibility that is not built into the original architecture. Thus, for example, the data path is limited to the data lines built between components, e.g., 220 through 228.
A third architecture format is referred to as reconfigurable dataflow 231. With reconfigurable dataflow, control exists over the type of arithmetic used in a processing unit (i.e. dataflow process). The reconfigurable dataflow architecture uses a program and data bus that feeds data and control instructions to a computation unit. In particular, block 232a and 232b generate addresses to get data from memory, e.g. 234a and 234b, to be sent to a multiply —accumulate (MAC) block 236 for processing.
A fourth architecture format is referred to as reconfigurable logic 241. Reconfigurable logic 241 refers to a real-time operating system (RTOS) where the outside source controls the type of state machines that control the dataflow process (i.e. controlflow process). With reconfigurable logic 241, the stored-instruction engines rely on shared buses for the transfer of data and instructions. Block 240 is the data memory storage of data to be processed, while block 242 is the program memory for storing program instructions used to run on instruction decoder and controller 246. Block 394 is the datapath block, which contains the arithmetic operations for processing the data. Memory block 390b is a second bank of data memory for interfacing data with data path block 394.
By combining these four types of architecture, as described hereinafter, in a manner that matches the programming, function, or temporal granularity needed for a given algorithm, function, application, and/or classes thereof, the present invention provides a hybrid architecture and system. This hybrid architecture and system provides substantial improvements in performance over previously irreconcilable tradeoffs of speed, flexibility, and efficiency. Examples of these four types of architecture can be found in different aspects of the U.S. patent applications incorporated by reference hereinabove.
Referring now to
Kernel plane 201a includes multiple hardware kernels K1 261a through K6 266a that are coupled to a reconfigurable interconnect 204a. Data is passed between kernels K1 261a through K6 266a via reconfigurable interconnect 204a. Control information, such as handshake protocol signals, can also be routed through reconfigurable interconnect 204a. Hardware kernel, e.g., K1 261a, is described in detail in a following figure. Interconnect architecture supports sufficient concurrency within each of the hardware kernels K1 261a through K6 266a. In the present embodiment, reconfigurable interconnect 204a utilizes a hierarchical structure that can support the required interconnect patterns (as described by the dataflow in following flowchart figures), as well as provide good performance and energy efficiency for every configuration. While the present embodiment uses six hardware kernels, the present invention is well suited to using any quantity of kernels in kernel plane 201a. Kernels in
In the present embodiment, hardware kernels K1 261a through K6 266a kernels are specific to the types of data processing found in wireless communication applications, such as CDMA. However, at the same time, hardware kernels K1 261a through K6 266a are heterogeneous with respect to one or more of each other, in terms of programmability, algorithmic-capability, performance-level, and/or math-logic. However, two or more kernels within kernel plane 201a can be homogeneous with respect to each in another embodiment. The specific composition and relationship between hardware kernels depends upon the specific application. Examples of these levels of programmability are provided in a subsequent figure. One or more of hardware kernels K1 261a through K6 266a are also autonomous with respect to each other, thus allowing parallel processing of data, on a kernel-by-kernel basis, or on a kernel-group by kernel-group basis. Because of this autonomy, and local control, the individual hardware kernels as well as the hardware kernel plane is data-rate scalable to a range of system clock rates.
Kernels K1 261a, K4 264a, and K5 265a are grouped together in hardware kernel group A 268a. Similarly, hardware kernel K3 263a is identified as a sole kernel within hardware kernel group B 268b. These two exemplary kernel groupings provide a class of functions for the present host communication device which applies them to a wireless communication protocol application, as will be described in a subsequent flowchart figure.
Hardware kernels, e.g., kernel K1 261a are coupled to a configuration (or reconfiguration) bus 206a, e.g., via line 274. Configuration, status, and control information are passed to kernels K1 261a through K6 266a via reconfiguration bus 206a, in the present embodiment. However, the present invention is well suited to passing different types of data and information using a wide variety of data lines and data bus configurations. Configuration information from input 24a through 24d of
Reconfigurable interconnect 204a has an architecture that is primarily a reconfigurable logic 211, as described in
In one embodiment, reconfigurable interconnect 204a has only a limited amount of reconfigurability based upon the specific needs identified for a class of protocols in a given application, or for a class of applications. That is, based on an application, algorithm, function, operation, or class thereof, not all kernels will be required to have full interconnectabiltiy with all other kernels. Consequently, the present embodiment provides limited reconfigurability of interconnect 204a between kernels depending upon the needs of the application, function, algorithm, etc. for which a kernel is designed. The limitation on interconnectabiltiy provides the benefit of reconfigurability where it is needed, and restricts interconnectabiltiy where it is not needed. Thus, the inefficiently of a totally reconfigurable interconnect is tempered by identifying strategic cases where reconfigurability is appropriate. The strategic scenarios involve the class of functions to be performed, the design of individual kernels K1 261a through K6 266a to accommodate the class of functions, and the level of programmability provided for outside control. The common ground between the class of functions, operations, or algorithms is a case-by-case basis requiring analysis of variables such as mathematical basis, signal processing operations, algorithmic patterns, and silicon implementation.
Data is provided and received from kernel plane via data bus 122 or data line 130a. In the present embodiment, an input data line portion of data bus 122 is coupled to one side of reconfigurable interconnect 204a to provide data input to kernel plane 201a. Similarly, an output data line portion of data bus 122 is coupled to the other side of reconfigurable interconnect 204a to receive data from kernel plane 201a. Data that is provided to reconfigurable interconnect 204a is then routed to appropriate kernels K1 261a through K6 266a per configuration information provided to communication device. Alternatively, an input line portion of data bus 122 can be directly coupled to one or more of kernels K1 261a through K6 266a, e.g., if this functionality of a particular kernel is consistent across a range of spread spectrum applications. For example, if a kernel plane for a modem operation always initially performs an interpolation filter operation on input data regardless of the applications within a class of spread spectrum communications, then input data line may be routed directly to the kernel responsible for this function. The same coupling arrangement can be provided for data line 130a with respect to reconfigurable interconnect 204a and kernels K1 261a through K6 266a. While the present embodiment provides for less than full interconnectability, the present invention is well suited to providing the full interconnectability between all kernels.
The modem signal processor is one instance of the heterogeneous reconfigurable architecture, which can be configured to provide a complete signal path for multichannel operation of a CDMA base-station. The hardware kernel processors were designed with a strong focus on applying the flexibility vs. computational efficiency trade-off to the specific needs of an application. As such, a rank ordering of the dominant computation-intensive kernels found in the algorithms is identified. For example, in a typical WCDMA application, the dominant computations are centered around five major signal processing functions: chip matched filtering, code-epoch search, chip demodulation/despreading, channel decoding, and inter-path (IPI) equalization (optional). While the present invention provides an enumerated list of computational categories for a hardware kernel, the present invention is well suited to using specific quantities and types of categories as is appropriate for a given application.
Bus 206a of
Referring now to
Kernel K1 261a includes a configuration information block 272 and a satellite kernel block 270, coupled to each other by interconnect 276. Satellite kernel 270 has an input/output data line 278, which is a bus in the present embodiment, that provides communication with reconfigurable interconnect 204a of
Configuration information block 272 is random access memory (RAM) in the present embodiment. However, the present invention is well suited to using any medium for configuration information block 272 that can preserve and communicate a state condition for electronic devices. For example, configuration information block 272 can be registers, flash memory, or a state machine, e.g., using reconfigurable logic, that provides bit stream of states to satellite kernel block 270. By having configuration information block 272 as a local dedicated source, that can also be controlled local to satellite kernel 270, this arrangement provides a very quick and efficient changing of configuration data for algorithmic satellite kernel 270. Consequently, time-sharing of a hardware kernel is feasible and practical in the present embodiment.
In the present embodiment, hardware kernels e.g., K1 261a through K6 266a of
The kernel processors cover the multi-standard CDMA signal processing requirements, and can be categorized corresponding to classes of MOPS. In the present embodiment, signal processing for a wireless communication application includes the following classes of MOPS: 1) Code Demodulation/Dechannelization; 2) Code Generation; 3) Parameter Estimation; 4) Sequence Alignment and Combining; 5) Equalization (optional); and 6) Front-end Processing.
Satellite kernel 270 includes a controller 271 and a configurable computation kernel (or algorithmic-specific computing element) 273a, coupled to each other via a clock line 279 and a control line 284. Configurable computation kernel 273a is also referred to as a computing element or a processing engine.
Controller 271 includes a state machine with memory, in the present embodiment, that is capable of controlling configurable computing element 273a. In another embodiment, controller 271 includes only memory that is capable of preserving state conditions of at least one configuration of configurable computing kernel 273a. To achieve distributed control, kernel K1 261a is equipped with an interface that enables it to exchange data streams with other kernels efficiently, without the help of a global controller. Hardware kernel K1 261a uses a distributed control and configuration via local controller 271, which effectively reduces overhead in terms of instruction fetch and global control. Kernel K1 261a also includes an interface, e.g., in configurable computation kernel 273a, that enables it to exchange data streams, e.g., data line 278, with other kernels efficiently, without the help of a global controller. The communication mechanism between each kernel is dataflow driven in the present embodiment. Local controller 271 can provide local control signals for initiation, reset, and interrupt for configurable computation kernel 273a, as well as scaled clock rates.
In the present embodiment, configurable computation kernel 273a is designed specifically to perform a given algorithm, function, operation, or class thereof. Therefore, satellite kernel 270 has flexibility, e.g., reconfigurability, within the class of functions, operations, or algorithms to which it has been designed. By virtue of the fact that configurable computation kernel 273a is designed for a relatively narrow application in the present embodiment, it is consequently very energy efficient. Thus, it meets the needs of a wide range of communication protocols within a spread spectrum category, while being very efficient. Additionally, because satellite kernel 270 has its own local controller 271, it operates autonomously with respect to the balance of the kernels in a hardware kernel plane, and to the balance of the communication device. Thus, satellite kernel 270 can be activated or bypassed for a given function of an application, depending on the needs and protocol chosen for the application. A description of the configuration and operation of a satellite kernel 270 is presented in a subsequent flowchart. The present architecture is well suited to a wide range of data processing functions, operations, and applications besides spread spectrum communication applications.
In the present embodiment, computing element 273a includes an architecture of electronic devices with coupling arrangements, from one or more of the possible techniques described in
Because the computing element 273a is function (or algorithmic) specific each of the techniques used is subsequently function specific. Thus, the electronic devices and their interconnections can utilize function-specific reconfigurable logic 211, function specific reconfigurable datapath 221, function-specific reconfigurable dataflow 231 and/or function specific reconfigurable logic 241 techniques as shown in
Electronic devices refer to the basic building blocks of electronic circuits such as transistors, diodes, resistors, conductors, and other elements that are well known in the art. The collection of electronic devices and interconnects can be figuratively divided into a fixed grouping 275a and a flexible grouping 275b, intercoupled to each other on a device level, as required by the function implemented therein. For example, in one embodiment, flexible architecture can be used to selectively group and couple registers to implement a class of functions whose math operations vary by their bit length, depending on the protocol used.
Thus, each of the multiple hardware kernels described in
Resultantly, a channel element can be built-up from the set of configurable hardware kernels to realize a reconfigurable multi-channel digital base band modem signal path that performs all the digital modulation-demodulation as well as channel encoding-decoding required per logical channel for all narrowband and wideband telecommunication standards. In the present embodiment, kernel plane can form a modem card in a systematic and modular fashion in modules of multiple channels per card, depending on their radio (cell-site) system planning. The present invention can be adapted to accommodate a wide range of channels.
In the present embodiment, two or more types of configurable architecture techniques are used in a given hardware kernel. However, the present invention is well suited to using a single type of configurable architecture is used in a given hardware kernel. Additionally, the kernel compositions can vary within a hardware kernel plane, and between hardware kernel planes. Multiple types of architecture can be strategically located and coupled within a hardware kernel to accommodate the particular variation in the function/sub function desired. For example, if the variation for sample select sub function over IS2000, and 3GPP, 3GPP-FDD, 3GPP-TDD, and 1Xtreme protocols includes the number of bits selected, then the hardware kernel includes a reconfigurable logic for the interconnect bus and the storage location associated with the range of bits and a reconfigurable datapath for the balance of the circuit.
The present invention is well suited to using a wide range of architectural techniques shown in
Several exemplary hardware kernels have been defined in related co-pending patent applications and are applicable in the present communication device, e.g., 100 of
Referring now to
By comparing all the rectangular blocks, and their implicit details, for each desired communication application on a function-by-function basis, a resultant definition of the flexible and fixed portions of the functional block can be chosen, e.g., resultant kernel 306. There are significant potential tradeoffs in the actual decision as to which functional features are accommodated in fixed or flexible logic. Because flexible logic, such as field programmable gate arrays, multiplexers, mask circuits, etc. can be expensive in terms of power, control logic, and other overhead requirements, they are implemented as infrequently as possible in one embodiment while still maintaining the desired flexibility across multiple communication applications.
Additional information on one embodiment of a flexible and core portion of a finger function block 82 is provided in U.S. patent application Ser. No 09/565,654 entitled “METHOD OF PROFILING DISPARATE COMMUNICATIONS AND SIGNAL PROCESSING STANDARDS AND SERVICES” by Sabramanian, now U.S. Pat. No. 6,807,155. This related application is commonly assigned, and is hereby incorporated by reference.
Referring now to
For example, a GPS position request could require changes to the function blocks of finger, combiner, searcher, estimator, timing and codec in aspects shown in table, e.g., connectivity, and parameters, and quantity. While the present invention provides exemplary specific changes to specific flexible portions of the function blocks of a communication device to accommodate the changes in communication application, the present invention is well suited to a wide range of factors that will or will not change in the functional block, depending upon the fixed and flexible portions designed in the communication device.
These scenarios can be provided manually in one embodiment, or automatically without user involvement in another embodiment. The automatic implementation could depend upon performance of a communication device, e.g., poor reception forces space and/or time diversity communication, or some other factor that would necessitate the use of a new or different communication application, e.g., a call to 9-1-1 would implement the GPS function to automatically transmit the location of the mobile unit.
The dynamic reconfiguration of a communication devices is useful for situations in which a device is “roaming” between communication systems that utilize different communication protocols, signal encoding methods and the like. That is, it would be beneficial for a mobile communication device to be dynamically reconfigured so as to be compatible with whatever wireless communication system it comes into contact with.
A wireless communication terminal is implemented using a heterogeneous set of modules for processing signals and performing device control functions, e.g., as shown in
Reconfiguration of the device is achieved by reconfiguration of the individual modules. More specifically, many of the modules are reconfigurable with respect to their mode of operation by downloading a relatively small set of control parameters (also called configuration parameters). The control parameters for each respective module are used to configure the respective module and thereby control its mode of operation. For some modules, some or all of the control parameters control the operation of software procedures of modules, while for other modules the control parameters determine hardware functions.
To change the mode of operation of the wireless communication terminal control parameters are downloaded from a host system, typically via a telephone network base station, e.g., as shown by device 22 in
Referring now to
In the present embodiment the table is provided for two communication protocols, namely TDMA and CDMA, similarly to the diagram in
Referring now to
Flowchart 5000 starts with step 5002, wherein a request is received to configure a communication device. The request can be received at a host communication device, e.g., a base station 22, from a remote device, e.g., modem mobile unit 20, in one embodiment. Alternatively, host communication device 22 can also provide the configuration as a default transmission in another case, e.g., for a new mobile. In one embodiment, the communication device being considered for configuration has a default communication application thereon. In another embodiment, the communication device is inoperable to a class of communication applications without receiving configuration information first. Following step 5002, flowchart 5000 proceeds to step 5004.
In step 5004 of the present embodiment, the capability of the communication device is evaluated for the requested configuration. Step 5004 is implemented in one embodiment by having communication device, e.g., 20, provide a signal with its capability, e.g., in terms of applications capacity or identification such as model number of the device itself, etc. The host unit can either evaluate the communications applications details sent or use a look up table in memory to cross-reference an identification with a capability. Step 5004 provides the benefit of ensuring appropriate configuration information be sent to the configurable communication device. Following step 5004, flowchart 5000 proceeds to step 5006.
In step 5006 of the present embodiment, an inquiry determines if subscription is valid for the requested configuration (for a communication application). Step 5006 is implemented in one embodiment by using a look up table to cross reference an identification of a user, e.g., a user serial number, with their subscription details to a given communication application. A user may subscribe to a new communication application in real time in another embodiment, given the appropriate billing information. Step 5006 may include free services such as GPS or map location information in one embodiment. In another embodiment, high data rate transmissions over a wide bandwidth can command premium revenue in another embodiment. If the subscription is valid for the requested communication application, then flowchart 5000 proceeds to step 5008. However if the subscription is not valid for the requested communication application, then flowchart 5000 proceeds to step 5007.
In step 5007 of the present embodiment, a message is generated and provided to the requester for the communication application. The message can provide the failed results of the subscription, or an offer to add the subscription. Following step 5007, flowchart 5000 returns to step 5002.
In step 5008 of the present embodiment configuration information is downloaded for the requested communication application. The configuration information is limited to that required to configure the flexible portions of the function blocks required for a given communication application. Thus, in lieu of communicating configuration information for the entire profile of a communication application, the present invention only sends the configuration information that is necessary to distinguish the given communication application from the core of functionality, e.g. 82a, already provided by the function block, e.g., finger function 82, of a communication device. Configuration information can be generated apriori for a given capability of a communication device and the given communication application. Additional information on configuring of hardware resources is described in U.S. patent application Ser. No. 09/772,582 entitled “METHOD OF GENERATING A CONFIGURATION FOR A CONFIGURABLE SPREAD SPECTRUM COMMUNICATION DEVICE” by Subramanian et al., now U.S. Pat. No. 6,701,431. This related application is commonly assigned, and is hereby incorporated by reference. Following step 5008, flowchart 5000 proceeds to step 5010.
In step 5010 of the present embodiment, an identifier is transmitted that links the configuration information with an application. Step 5010 is an optional step that can be provided for several purposes. In one case, the configuration information can be archived on the receiving communication device, assuming sufficient memory. In another embodiment, multiple communication applications will be swapped intermittently on the communication device. Thus an identifier is necessary to enable its proper implementation. Step 5010 is implemented in the present embodiment by sending a signal separate from, or integrated into, the configuration information. Following step 5010, flowchart 5000 proceeds to step 5012.
In step 5012 of the present embodiment, an inquiry determines whether additional applications are desired. If additional applications are desired, then flowchart 5000 returns to step 5002. However, if additional applications are not desired, then flowchart 5000 ends.
Referring now to
Flowchart 5100 begins with step 5102, wherein a request is received for quality of service options. Step 5102 is implemented in the present embodiment by receiving a request from a mobile device for a change in quality of service. The quality of service can be an increase or decrease in bandwidth. Quality of service can include features such as data rate of transmissions, e.g., enabling differing grades of still pictures or video or videoconferencing, diversity antenna transmission for better reception, or algorithmic complexity for improved performance, e.g. lower power or higher fidelity. Following step 5102, flowchart 5100 proceeds to step 5104.
In step 5104 of the present embodiment, information is transmitted on the cost and the quality of service options available. Logic is utilized in communication device 22, e.g., memory 42 and up 44, to determine consumption of a given resource, e.g., bandwidth. If bandwidth is consumed, then the message may indicate this status. In another embodiment, the options for different bandwidth services can be with associated pricing can be transmitted. In another embodiment, advertising revenue can be utilized as an offset to the pricing associated with a given bandwidth resource. Following step 5104, flowchart 5100 proceeds to step 5106.
In step 5106 of the present embodiment, a bid is received for the quality of services. Step 5106 is accommodated in one embodiment by receiving a signal from a mobile that indicates a binary ‘yes’ or ‘no’ response. Alternatively, another embodiment will receive a price or a level of cost that the user is willing to pay of the quality of service. Following step 5106, flowchart 5100 proceeds to step 5108.
In step 5108, an inquiry determines whether the bid satisfies the cost. If the bid does satisfy the cost, then flowchart 5100 proceeds to step 5112. However, if the bid does not satisfy the cost, then flowchart 5100 proceeds to step 5110.
In step 5110 of the present embodiment, an inquiry determines whether resources are available at the bid price. Step 5110 can be implemented in one embodiment, along with steps 5106 and 5108, in a Dutch auction style. However, the present invention is well suited to any kind of preset pricing structure, bidding, or auction model.
In step 5112 of the present embodiment, the user is billed for the quality of service granted. In lieu of billing, some other form of exchange may be used of the quality of service, e.g., advertising. Following step 5112, flowchart 5100 proceeds to step 5114.
In step 5114, the configuration information necessary to implement the granted quality of service is transmitted to the communication device. Step 5114 is implemented in one embodiment in flowchart 5000. Following step 5114, flowchart 5100 ends.
While the present embodiment applies flowcharts 5000 and 5100 to a digital wireless communication system, the present invention can be applied to any electronic device for any type of application. Within the wireless communication system described in the present embodiment, the present invention is applicable to mobile units, base stations, and test platforms. Furthermore, while flowcharts 5000 and 5100 of the present embodiment show a specific sequence and quantity of steps, the present invention is suitable to alternative embodiments. For example, not all the steps provided in the aforementioned flowcharts are required for the present invention. Similarly, other steps may be omitted depending upon the application. In contrast, the present invention is well suited to incorporating additional steps to those presented, as required by an application, or as desired for permutations in the process. Lastly, the sequence of the steps for flowcharts 5000 and 5100 can be modified depending upon the application. Thus, while the present flowcharts are shown as a single serial process, they can also be implemented as a continuous or parallel process.
Many of the instructions for the steps, as well as the data input and output from the steps of flowcharts 5000 and 5100 utilize memory and processor hardware components, e.g. system memory 42 and processor 44 in
Some portions of the detailed description, e.g., the processes, are presented in terms of procedures, logic blocks, processing, and other symbolic representations of operations on data bits within a computer or digital system memory or on signals within a communication device. These descriptions and representations are the means used by those skilled in the digital communication arts to most effectively convey the substance of their work to others skilled in the art. A procedure, logic block, process, etc., is herein, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these physical manipulations take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a communication device or a processor. For reasons of convenience, and with reference to common usage, these signals are referred to as bits, values, elements, symbols, characters, terms, numbers, or the like with reference to the present invention.
It should be borne in mind, however, that all of these terms are to be interpreted as referencing physical manipulations and quantities and are merely convenient labels to be interpreted further in view of terms commonly used in the art. Unless specifically stated otherwise as apparent from the following discussions, it is understood that throughout discussions of the present invention, terms such as “receiving,” “evaluating,” “transmitting,” “repeating,” or the like, refer to the action and processes of a communication device or a similar electronic computing device, that manipulates and transforms data. The data is represented as physical (electronic) quantities within the communication devices components, or the computer system's registers and memories, and is transformed into other data similarly represented as physical quantities within the communication device components, or computer system memories or registers, or other such information storage, transmission or display devices.
In view of the embodiments described herein, the present invention has been shown to overcome the limitations of a communication device with fixed data rates and fixed wireless communication standards. The present invention has also been shown to overcome the limitations of a fixed application architecture for the communication device. Beneficially, the present invention provides an architecture and a method that overcomes the limitation of a large and slow software download. Furthermore, the present invention overcomes the limitation of the narrow scope of changes capable from a software download to a DSP. The present invention also overcomes the limitation of providing resources, and the configurations to use them, to users simply on a first come first serve basis.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. In other instances, well-known circuits and devices are shown in block diagram form in order to avoid unnecessary distraction from the underlying invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, obviously many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, the thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Chen, Song, Subramanian, Ravi, Ralston, John D., Williams, Ted E.
Patent | Priority | Assignee | Title |
11411593, | Apr 29 2020 | EAGLE TECHNOLOGY, LLC | Radio frequency (RF) system including programmable processing circuit performing butterfly computations and related methods |
11502715, | Apr 29 2020 | EAGLE TECHNOLOGY, LLC | Radio frequency (RF) system including programmable processing circuit performing block coding computations and related methods |
Patent | Priority | Assignee | Title |
5838907, | Feb 20 1996 | Hewlett Packard Enterprise Development LP | Configuration manager for network devices and an associated method for providing configuration information thereto |
5867713, | Apr 05 1995 | International Business Machines Corporation | Committing an install plan object for the network installation of application programs |
5974322, | Dec 04 1995 | Unwired Planet, LLC | Method and apparatus for placing a fixed-site transceiver into service in a wireless communication network |
6097950, | Dec 27 1996 | Telefonaktiebolaget LM Ericsson (publ) | Method and system for global roaming in a cellular telecommunications system |
6161133, | Oct 19 1998 | Rovi Technologies Corporation | Method and apparatus for configuration of an internet appliance |
6167445, | Oct 26 1998 | Cisco Technology, Inc. | Method and apparatus for defining and implementing high-level quality of service policies in computer networks |
6188898, | Dec 23 1996 | Apple Inc | Mobile communications network |
6223222, | May 14 1998 | Hewlett Packard Enterprise Development LP | Method and system for providing quality-of-service in a data-over-cable system using configuration protocol messaging |
6263382, | Jul 29 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Sizer for interactive computer system configuration |
6282575, | Dec 11 1997 | Intel Corporation | Routing mechanism for networks with separate upstream and downstream traffic |
6286038, | Aug 03 1998 | CIENA LUXEMBOURG S A R L ; Ciena Corporation | Method and apparatus for remotely configuring a network device |
6411603, | Jul 23 1998 | WSOU Investments, LLC | Method and apparatus for pricing links/paths based on a requested amount of bandwidth wherein links can be load balanced by varying their costs |
6519570, | Oct 08 1999 | THRYV, INC | System and method for conducting a time auction |
6651155, | Jul 28 2000 | Altera Corporation | Apparatus and method for translating a programmable logic device programmer object file |
6684241, | Sep 29 1999 | RPX CLEARINGHOUSE LLC | Apparatus and method of configuring a network device |
6775267, | Dec 30 1999 | AT&T Corp | Method for billing IP broadband subscribers |
7230978, | Dec 29 2000 | Intel Corporation | Channel CODEC processor configurable for multiple wireless communications standards |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 15 2007 | Infineon Technologies AG | (assignment on the face of the patent) | / | |||
Jan 31 2011 | Infineon Technologies AG | Intel Mobile Communications Technology GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027548 | /0623 | |
Oct 31 2011 | Intel Mobile Communications Technology GmbH | Intel Mobile Communications GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027556 | /0709 | |
May 07 2015 | Intel Mobile Communications GmbH | INTEL DEUTSCHLAND GMBH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 037057 | /0061 | |
Nov 30 2019 | Intel Corporation | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053518 | /0586 | |
Jun 15 2020 | INTEL DEUTSCHLAND GMBH | Intel Corporation | CONFIRMATORY ASSIGNMENT EFFECTIVE AS OF JANUARY 1, 2018 | 053477 | /0001 |
Date | Maintenance Fee Events |
Jan 24 2011 | ASPN: Payor Number Assigned. |
Jun 18 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 28 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 29 2022 | REM: Maintenance Fee Reminder Mailed. |
Feb 13 2023 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 11 2014 | 4 years fee payment window open |
Jul 11 2014 | 6 months grace period start (w surcharge) |
Jan 11 2015 | patent expiry (for year 4) |
Jan 11 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 11 2018 | 8 years fee payment window open |
Jul 11 2018 | 6 months grace period start (w surcharge) |
Jan 11 2019 | patent expiry (for year 8) |
Jan 11 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 11 2022 | 12 years fee payment window open |
Jul 11 2022 | 6 months grace period start (w surcharge) |
Jan 11 2023 | patent expiry (for year 12) |
Jan 11 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |