A head includes a transducer and a slider having an air bearing surface (ABS) and a trailing face. The slider has an overcoat layer that includes the trailing face and that overcoats the transducer. The ABS includes a trailing pad having a major surface adjacent the transducer, with the major surface lying in a primary plane. The ABS also includes a sub-ambient pressure cavity disposed upstream of the overcoat layer and being recessed from the primary plane by a cavity depth in the range 0.8 to 2 microns. The overcoat layer includes a trailing air flow dam being recessed from the primary plane by a step depth in the range 0.05 to 0.5 microns. The overcoat layer also includes a corner region recessed from the primary plane by at least the cavity depth.

Patent
   7872833
Priority
Apr 17 2007
Filed
Sep 25 2007
Issued
Jan 18 2011
Expiry
Feb 28 2029
Extension
683 days
Assg.orig
Entity
Large
164
68
all paid
1. A head comprising:
a slider having a leading face and a trailing face and an air bearing surface, the air bearing surface defining an upstream direction pointing from the trailing face to the leading face; and
a transducer;
the slider also having an overcoat layer, the overcoat layer including the trailing face and overcoating the transducer;
wherein the air bearing surface includes:
a trailing pad including a major surface adjacent the transducer, the major surface lying in a primary plane;
a sub-ambient pressure cavity disposed upstream of the overcoat layer and being recessed from the primary plane by a cavity depth in the range 0.8 to 2 microns; and
wherein the overcoat layer includes:
a trailing air flow dam being recessed from the primary plane by a step depth in the range 0.05 to 0.5 microns, and
a corner region recessed from the primary plane by at least the cavity depth.
2. The head of claim 1 wherein the slider comprises a wafer substrate material.
3. The head of claim 2 wherein the wafer substrate material is selected from the group consisting of AlTiC and Si.
4. The head of claim 1 wherein the overcoat layer comprises a deposited insulative material.
5. The head of claim 4 wherein the deposited insulative material is selected from the group consisting of Al2O3 and SiO2.
6. The head of claim 1 wherein the trailing pad is shaped like a letter W that is oriented so that the center peak of the W points in the upstream direction.
7. The head of claim 1 further including a step surface immediately upstream of the trailing pad, the step surface being recessed from the primary plane by no more than the step depth.
8. The head of claim 1 wherein the air bearing surface further defines a lateral axis that is orthogonal to the upstream direction, the slider having a width measured along the lateral axis, and wherein the trailing air flow dam laterally spans at least 75% of the width of the slider.
9. The head of claim 8 wherein the trailing air flow dam comprises a left portion extending from the transducer along the lateral axis in a first direction, and a right portion extending from the transducer along the lateral axis opposite the first direction, the left and right portions together laterally spanning at least 75% of the width of the slider.
10. The head of claim 1 wherein the air bearing surface further comprises a deep cavity, the deep cavity being recessed from the primary plane by 3 to 4 microns.
11. The head of claim 1 wherein the transducer is a merged magnetic transducer that includes a read element and a writer.

This application is a continuation in part of U.S. application Ser. No. 11/787,515 entitled “HEAD WITH AN AIR BEARING SURFACE HAVING A SHALLOW RECESSED TRAILING AIR FLOW DAM,” filed on Apr. 17, 2007.

The present invention relates generally to the field of information storage devices, and more particularly to air bearing sliders used in such devices.

Information storage devices are used to retrieve and/or store data in computers and other consumer electronics devices. A magnetic hard disk drive is an example of an information storage device that includes one or more heads that can both read and write, but other information storage devices also include heads—sometimes including heads that cannot write.

The typical hard disk drive includes a head disk assembly (HDA) and a printed circuit board (PCB) attached to a disk drive base of the HDA. Referring now to FIG. 1, the head disk assembly 100 includes at least one disk 102 (such as a magnetic disk, magneto-optical disk, or optical disk), a spindle motor 104 for rotating the disk, and a head stack assembly (HSA) 106. The spindle motor typically includes a rotating hub on which disks are mounted and clamped, a magnet attached to the hub, and a stator. Various coils of the stator are selectively energized to form an electromagnetic field that pulls/pushes on the magnet, thereby rotating the hub. Rotation of the spindle motor hub results in rotation of the mounted disks. The printed circuit board assembly includes electronics and firmware for controlling the rotation of the spindle motor and for controlling the position of the HSA, and for providing a data transfer channel between the disk drive and its host. The head stack assembly 106 typically includes an actuator, at least one head gimbal assembly (HGA) 108 that includes a head, and a flex cable assembly 110.

During operation of the disk drive, the actuator must rotate to position the heads adjacent desired information tracks on the disk. The actuator includes a pivot bearing cartridge 112 to facilitate such rotational positioning. One or more actuator arms extend from the actuator body. An actuator coil 114 is supported by the actuator body opposite the actuator arms. The actuator coil is configured to interact with one or more fixed magnets in the HDA, typically a pair, to form a voice coil motor. The printed circuit board assembly provides and controls an electrical current that passes through the actuator coil and results in a torque being applied to the actuator. A crash stop is typically provided to limit rotation of the actuator in a given direction, and a latch is typically provided to prevent rotation of the actuator when the disk drive is not in use.

In a magnetic hard disk drive, the head typically comprises a body called a “slider” that carries a magnetic transducer on its trailing end. The magnetic transducer typically comprises a writer and a read element. The magnetic transducer's writer may be of a longitudinal or perpendicular design, and the read element of the magnetic transducer may be inductive or magnetoresistive. In a magnetic hard disk drive, the transducer is typically supported in very close proximity to the magnetic disk by a hydrodynamic air bearing. As the motor rotates the magnetic disk, the hydrodynamic air bearing is formed between an air bearing surface of the slider of the head, and a surface of the magnetic disk. The thickness of the air bearing at the location of the transducer is commonly referred to as “flying height.”

Magnetic hard disk drives are not the only type of information storage devices that have utilized air bearing sliders. For example, air bearing sliders have also been used in optical information storage devices to position a mirror and an objective lens for focusing laser light on the surface of disk media that is not necessarily magnetic.

The flying height is a key parameter that affects the performance of an information storage device. Accordingly, the nominal flying height is typically chosen as a careful compromise between each extreme in a classic engineering “trade-off.” If the flying height is too high, the ability of the transducer to write and/or read information to/from the disk surface is degraded. Therefore, reductions in flying height can facilitate desirable increases in the areal density of data stored on a disk surface. However, the air bearing between the slider and the disk surface can not be eliminated entirely because the air bearing serves to reduce friction and wear (between the slider and the disk surface) to an acceptable level. Excessive reduction in the nominal flying height degrades the tribological performance of the disk drive to the point where the disk drive's lifetime and reliability become unacceptable.

Another factor that can adversely affect the tribological performance of the head, and therefore also adversely affect the disk drive's lifetime and reliability, is the extent to which lubricant and other debris are picked up or accumulated on the air bearing surface during operation. Excessive accumulation of lubricant or other debris on the air bearing surface can undesirably change the flying characteristics of the slider, potentially leading to immediate reading or writing errors, head crash, or future tribological failure, and/or redeposit on the disk surface at a location or in a quantity that leads to similar problems. To reduce accumulation of lubricant on the air bearing surface disk drive tribologists have been constrained in their choice of lubricants, for example having to opt for a lubricant with less mobile component than would otherwise be desirable. Accordingly, what is needed in the art is an air bearing design that discourages excessive accumulation of lubricant or other debris on the air bearing surface.

A novel head is disclosed and claimed. The head includes a transducer and a slider having a leading face, a trailing face, and an air bearing surface. The slider has an overcoat layer that includes the trailing face and that overcoats the transducer. The air bearing surface defines an upstream direction pointing from the trailing face to the leading face. The air bearing surface includes a trailing pad having a major surface adjacent the transducer, with the major surface lying in a primary plane. The air bearing surface also includes a sub-ambient pressure cavity disposed upstream of the overcoat layer and being recessed from the primary plane by a cavity depth in the range 0.8 to 2 microns. The overcoat layer includes a trailing air flow dam being recessed from the primary plane by a step depth in the range 0.05 to 0.5 microns. The overcoat layer also includes a corner region recessed from the primary plane by at least the cavity depth.

FIG. 1 depicts a contemporary hard disk drive information storage device.

FIG. 2 is an air bearing surface view of a head according to an exemplary embodiment of the present invention (not necessarily to scale).

FIG. 3 is cross-sectional view of the head shown in FIG. 2, taken along the plane of cross-section designated as A-A in FIG. 2. For clarity, only the region of the cross-section near the air bearing surface is shown in FIG. 3 and the step heights are not to scale but rather are exaggerated so as to be easily discernible.

FIG. 4 is an air bearing surface view of a head according to another exemplary embodiment of the present invention (not necessarily to scale).

FIG. 5 is cross-sectional view of the head shown in FIG. 4, taken along the plane of cross-section designated as B-B in FIG. 4. For clarity, only the region of the cross-section near the air bearing surface is shown in FIG. 5 and the step heights are not to scale but rather are exaggerated so as to be easily discernible.

FIG. 6 is an air bearing surface view of a head according to another exemplary embodiment of the present invention (not necessarily to scale).

FIG. 7 is cross-sectional view of the head shown in FIG. 6, taken along the plane of cross-section designated as C-C in FIG. 6. For clarity, only the region of the cross-section near the air bearing surface is shown in FIG. 7 and the step heights are not to scale but rather are exaggerated so as to be easily discernible.

Now referring to FIG. 2, head 200 comprises a transducer 202 for at least reading information from the disk. In certain embodiments, the transducer 202 is a merged thin film magnetic transducer comprising an inductive writer and magneto resistive read element. In such embodiments, the magneto resistive element may be a giant magneto resistive element (GMR) or tunneling magneto resistive element (TMR). In such embodiments, the writer may be a perpendicular magnetic recording (PMR) writer.

Head 200 also comprises a slider 204, which is typically fabricated from a ceramic material such as alumina titanium carbide. Slider 204 includes an air bearing surface 206, which may be formed on the surface of slider 204 by etching or ion milling and has a geometry that may be defined by use of a mask. The slider 204 has an overcoat layer 236 that includes a trailing face 208 and includes a transducer region 203 that overcoats the transducer 202. The slider 204 also includes a leading face 210.

In the exemplary embodiment shown in FIG. 2 and FIG. 3, the air bearing surface 206 includes deep cavities 216 and 218, and shallow cavities 220 and 222. During operation, the shallow cavities 220 and 222 can develop a sub-ambient pressure region between the air bearing surface 206 and the surface of an adjacent disk. The sub-ambient pressure may serve to reduce flying height sensitivities to changes in altitude and air bearing geometries.

In the exemplary embodiment shown in FIG. 2 and FIG. 3, the air bearing surface 206 also includes two leading pads 212 and 214 that are adjacent to and upstream of the deep cavities 216 and 218, respectively. The term “upstream” is used herein only to define a directional convention to facilitate description of relative positions on the air bearing surface 206, and does not require the presence or existence of any stream. For example, “upstream” can be understood to refer to a range of directions across the air bearing surface 206 that generally point away from the trailing face 208 and towards the leading face 210. As such, in disk drive applications, upstream directions would ultimately be generally opposite the motion of an adjacent rotating disk surface. An upstream direction would be a direction within the aforementioned range. The term “downstream” is used herein as an antonym of “upstream.”

For each upstream direction, the air bearing surface 206 defines a lateral axis that is perpendicular to that upstream direction. For example, for a zero-skew upstream direction 230 that is parallel to the air bearing surface 206 and parallel to the plane of cross-section AA depicted in FIG. 2, the air bearing surface defines a corresponding lateral axis 232 that is parallel to the leading face 210 or the trailing face 208 (i.e. orthogonal to that upstream direction). The slider width can be measured along lateral axis 232. Of course, non-zero skew upstream directions are also contemplated herein.

The two leading pads 212, 214 may be separated by shallow cavities 220 and 222, respectively, and shallow cavities 220 and 222 may themselves be separated by a longitudinal divider 217.

Now referring additionally to FIG. 3, the leading pads 212 and 214 each include a major surface that is not recessed and instead establishes an air bearing surface datum plane (hereinafter referred to as the primary plane) 300, from which the recession of other surfaces that are approximately parallel to the primary plane 300 may be measured. During operation, the leading pads 212 and 214 can develop a super-ambient pressure region between the air bearing surface 206 and the surface of an adjacent disk, causing the slider to assume a positive pitch attitude. Deep cavities 216 and 218 each include a surface in a plane 330 that is recessed from the primary plane 300 by a deep cavity recession depth 370. The deep cavity recession depth is preferably but not necessarily in the range 3 microns to 4 microns. Shallow cavities 220 and 222 each include a surface in an intermediate plane 320 that lies between the primary plane 300 and the deep cavity plane 330, and that is recessed from the primary plane 300 by a shallow cavity recession depth 360. For example, the shallow cavity recession depth 360 is preferably in the range 0.8 microns to 2 microns.

In the exemplary embodiment shown in FIG. 2 and FIG. 3, the leading pads 212 and 214 are connected by a leading dam 276 that helps prevent particulate contamination from entering the air bearing, and that assists in creating sub-ambient pressure in shallow cavities 220 and 222. The leading pads 212 and 214 also include leading pressurizing steps 224 and 226, respectively. The leading pressurizing steps 224 and 226 each include a surface in a plane 310 that lies between the primary plane 300 and the intermediate plane 320. The plane 310 is recessed from the primary plane 300 by a pressurizing step recession depth 350. During operation, the leading pressurizing steps 224 and 226 can help develop super-ambient pressure between the leading pads 212 and 214, respectively and the surface of an adjacent disk. The pressurizing step recession depth 350 is preferably in the range 0.05 microns to 0.5 microns. In certain embodiments, fabrication of the air bearing surface can be simplified if the deep cavity recession depth 370 is equal to the sum of the shallow cavity recession depth 360 and the pressurizing step recession depth 350.

Also in the exemplary embodiment of FIG. 2 and FIG. 3, the air bearing surface 206 includes mid-cavity dams 272 and 274 that are disposed upstream of a central cavity 228. Mid-cavity dam 272 includes a surface in the plane 320, while mid-cavity dam 274 includes a surface in the plane 310. Moreover, mid-cavity dam 272 is oriented to confront the skewed incoming air flow when the head is near the inner diameter of the disk, while mid-cavity dam 274 is oriented to confront the differently-skewed incoming air flow when the head is near the outer diameter of the disk. Because mid-cavity dam 272 is recessed from the primary plane 300 more than mid-cavity dam 274 is, mid-cavity dam 272 tends to allow airflow into central cavity 228 more easily than mid-cavity dam 274 does. This difference in recession can be used by the air bearing designer to desensitize the flying height to changes in the radial position of the head relative to the spinning underlying disk, given that the incoming air flow has a higher velocity near the outer diameter of the disk and a lower velocity near the inner diameter of the disk. If the air bearing designer advantageously opts to use the mid-cavity dams 272 and 274 to desensitize the flying height to changes in the radial position of the head relative to the spinning underlying disk, then the air bearing designer will have more freedom to design downstream features of the air bearing 206, for example to include contamination-reducing features, and/or to reduce air bearing sensitivity to changes in operating altitude, applied bias forces and torques, etc.

In the exemplary embodiment of FIG. 2, the air bearing surface 206 also includes a trailing pad 256 having a major surface adjacent the transducer 202, the major surface lying in the primary plane 300. During operation, the trailing pad 256 can develop a super-ambient pressure region between the air bearing surface 206 and the surface of an adjacent disk that can help maintain a desired flying height at the location of transducer 202. For example, in the embodiment of FIG. 2, the trailing pad 256 creates a region of high pressure, including the highest pressure generated by the air bearing surface during normal operation of the head.

In the embodiment of FIG. 2, a pressurizing step surface 250 is disposed upstream of the trailing pad 256. The pressurizing step surface 250 includes a surface that lies in the plane 310. For example, the step surface may be recessed from the first surface 300 by the pressurizing step recession depth 350. During operation, the pressurizing step surface 250 can enhance the super-ambient pressure between the trailing pad 256 and the surface of an adjacent disk. Such enhanced pressurization may increase air bearing stiffness and/or may reduce the surface area required for the trailing pad 256.

Trailing pad side portions 246 and 248 can enhance the performance of the pressurizing step surface 250 by partially confining the airflow to pressurize the trailing pad 256. In the embodiment of FIG. 2, the trailing pad 256, and the trailing pad side portions 246 and 248, together form a trailing center pressurizing structure that has the general shape of the letter “W.” For example, the trailing pad 256 includes the center peak of the letter “W,” and the trailing pad side portions 246 and 248 could be considered to be the outer sides of the letter “W.” In the embodiment of FIG. 2, the W that is oriented so that the center peak of the W points in the upstream direction 230.

In the embodiment of FIGS. 2 & 3, the overcoat layer 236 includes a trailing air flow dam 280 being recessed from the primary plane 300 by a step depth in the range 0.05 to 0.5 microns. The breadth of the trailing air flow dam 280, measured parallel to the upstream direction 230, is determined by masking during fabrication and so is not necessarily (though preferably) equal to the thickness of the overcoat layer 236 (e.g. 20 to 50 microns). Preferably the trailing air flow dam 280 is recessed from the primary plane 300 by an amount approximately equal to the pressurizing step recession depth 350, as shown in FIG. 3. However, in certain embodiments the trailing air flow dam 280 is recessed from the primary plane 300 by an amount that is approximately equal to but marginally more than the pressurizing step recession depth 350, because of a difference in material etch rates. Specifically, the leading pressurizing steps 224 and 226 are disposed over the main body of the slider 204, which typically comprises a ceramic wafer substrate material such as alumina titanium carbide, while the trailing air flow dam 280 comprises an overcoat material such as alumina. Alumina typically etches away more rapidly than does alumina titanium carbide during fabrication of the leading pressurizing steps 224 and 226 and the trailing air flow dam 280. For example, because of the difference in etching rates, the trailing air flow dam 280 may be recessed up to 30% more than the pressurizing step recession depth 350.

In the embodiment of FIG. 2, the transducer region 203 is not etched; rather its surface lies close to the primary plane 300. In certain embodiments, the transducer region 203 is marginally recessed from the primary plane 300 due to lapping. For example, the transducer region 203 may be recessed from the primary plane 300 approximately 2.5 nanometers due to lapping. The transducer region 203 may also slightly protrude beyond the primary plane 300 due to thermal expansion (e.g. thermal pole tip protrusion and/or thermal dynamic transducer actuation).

In the embodiment of FIG. 2, the overcoat layer 236 also includes corner regions 282 and 284 recessed from the primary plane by at least the deep cavity recession depth 370. The corner regions 282 and 284 can be a desirable feature for avoiding rear corner contacts should the slider excessively roll relative to the disk surface during operation of the head and/or during a mechanical shock event.

In the embodiment of FIG. 2, the air bearing surface 206 defines a lateral axis 232 that is orthogonal to the upstream direction 230, and the slider 204 has a width measured along the lateral axis 232. In the embodiment of FIG. 2, the trailing air flow dam 280 laterally spans at least 75% of the width of the slider 204, with the corner regions 282 and 284 spanning the remainder of the width of the slider 204. The trailing air flow dam 280 itself can be considered to comprise a left portion (the portion extending from the transducer 202 along the lateral axis 232 to the left in FIG. 2), and a right portion (the portion extending from the transducer 202 along the lateral axis 232 to the right in FIG. 2). Preferably, the left and right portions together laterally span at least 75% of the width of the slider 204. However, in certain embodiments, the left and right portions extend to the left and right, respectively, not from the transducer 202, but rather from the relatively wider trailing pad 256. In such embodiments, the left and right portions of the trailing air flow dam 280 may not together laterally span at least 75% of the width of the slider 204; rather, in such embodiments the left and right portions of the trailing air flow dam 280, together with the trailing pad 256 preferably cumulatively laterally span at least 75% of the width of the slider 204.

In the embodiment of FIGS. 2 & 3, the air bearing surface 206 also includes two sub-ambient pressure cavities 252, 254 disposed adjacent to and upstream of the trailing air flow dam 280. The sub-ambient pressure cavities 252, 254 each include a surface in the plane 320 that is recessed from the primary plane 300 by the shallow cavity recession depth 360. Trailing pad side portions 246 and 248 may also extend around sub-ambient pressure cavities 252 and 254, to assist in the development of sub-ambient pressure within sub-ambient pressure cavities 252 and 254. During operation, the sub-ambient pressure cavities 252 and 254 may develop sub-ambient pressure in much the same way that shallow cavities 220 and 222 do, and thereby shift an effective center of net sub-ambient pressure rearward (towards the trailing face of the slider). Such a shift can facilitate separating the slider from the disk surface dynamically, during operation.

In the embodiment of FIGS. 2 & 3, the trailing air flow dam 280 may serve to reduce back flow from adjacent the trailing face 208 in the upstream direction 230 into the sub-ambient pressure cavities 252, 254, which, in turn, may serve to reduce the accumulation of lubricant and/or other debris in the sub-ambient pressure cavities 252, 254. The trailing air flow dam 280 is recessed from the primary plane 300 because, if it were not recessed, the air bearing designer could not allow the trailing air flow dam 280 to extend laterally sufficiently to adequately reduce back flow without potentially interfering with the disk surface given a non-zero roll angle. Specifically, during operation the air bearing 206 typically makes a non-zero roll angle with respect to the disk surface while it is desired that the location of minimum thickness of the air bearing be at or near the location of the transducer 202 (rather than on the trailing air flow dam 280).

In the embodiment of FIG. 2, the air bearing surface 206 also includes side pads 242 and 244. The side pads 242 and 244 each include a major surface that lies in the primary plane 300. Accordingly, the side pads 242 and 244 are located further upstream than the aft-most extent of the trailing pad 256. The side pad 242 includes side pressurizing step 262 and a side trailing step 292, each of which includes a surface in plane 310. The side pad 244 includes side pressurizing step 266 and a side trailing step 294, each of which includes a surface in plane 310.

Now referring to FIG. 4, head 400 comprises a transducer 402 for at least reading information from the disk. In certain embodiments, the transducer 402 is a merged transducer comprising both a writer and a read element. Head 400 also comprises a slider 404 that includes an air bearing surface 406. The slider 404 has an overcoat layer 436 that includes a trailing face 408 and includes a transducer region 403 that overcoats the transducer 402. The slider 404 also includes a leading face 410.

In the exemplary embodiment shown in FIG. 4 and FIG. 5, the air bearing surface 406 includes deep cavity 428. In the exemplary embodiment shown in FIG. 4 and FIG. 5, the air bearing surface 406 also includes shallow cavity 416. During operation, the shallow cavity 416 can develop a sub-ambient pressure region between the air bearing surface 406 and the surface of an adjacent disk. The sub-ambient pressure may serve to reduce flying height sensitivity to changes in altitude.

In the exemplary embodiment shown in FIG. 4, the air bearing surface 406 also includes two leading pads 412 and 414 that are separated by the shallow cavity 416. Now referring additionally to FIG. 5, the leading pads 412 and 414 each include a major surface that is not recessed and instead lies in the primary plane 300. During operation, the leading pads 412 and 414 can develop a super-ambient pressure region between the air bearing surface 406 and the surface of an adjacent disk, causing the slider to assume a positive pitch attitude. Deep cavity 428 includes a surface in the plane 330 that is recessed from the primary plane 300 by the deep cavity recession depth 370. Shallow cavity 416 includes a surface in the intermediate plane 320 that lies between the primary plane 300 and the deep cavity plane 330, and that is recessed from the primary plane 300 by the shallow cavity recession depth 360.

In the exemplary embodiment shown in FIG. 4 and FIG. 5, the leading pads 412 and 414 also include leading pressurizing steps 424 and 426, respectively. The leading pressurizing steps 424 and 426 each include a surface in the plane 310 that lies between the primary plane 300 and the intermediate plane 320, and that is recessed from the primary plane 300 by the pressurizing step recession depth 350. During operation, the leading pressurizing steps 424 and 426 can help develop super-ambient pressure between the leading pads 412 and 414, respectively and the surface of an adjacent disk.

In the exemplary embodiment of FIG. 4, the air bearing surface 406 also includes a trailing pad 456 having a major surface adjacent the transducer 402, the major surface lying in the primary plane 300. During operation, the trailing pad 456 can develop a super-ambient pressure region between the air bearing surface 406 and the surface of an adjacent disk that can help maintain a desired flying height at the location of transducer 402. For example, in the embodiment of FIG. 4, the trailing pad 456 creates a region of high pressure, including the highest pressure generated by the air bearing surface during normal operation of the head. In the exemplary embodiment of FIG. 4, the air bearing surface 406 also includes trailing pad side portions 446 and 448, which may serve to enhance the pressurization of trailing pad 456.

In the embodiment of FIGS. 4 & 5, the overcoat layer 436 includes a trailing air flow dam 480 being recessed from the primary plane 300 by a step depth in the range 0.05 to 0.5 microns. The breadth of the trailing air flow dam 480, measured parallel to the upstream direction 430, is determined by masking during fabrication and so is not necessarily (though preferably) equal to the thickness of the overcoat layer 436 (e.g. 20 to 50 microns). Preferably the trailing air flow dam 480 is recessed from the primary plane 300 by an amount approximately equal to the pressurizing step recession depth 350, as shown in FIG. 5. However, in certain embodiments the trailing air flow dam 480 is recessed from the primary plane 300 by an amount approximately equal to but marginally more than the pressurizing step recession depth 350, because of the aforementioned difference in material etch rates. For example, because of the difference in etching rates, the trailing air flow dam 480 may be recessed up to 30% more than the pressurizing step recession depth 350.

In the embodiment of FIG. 4, the transducer region 403 is not etched; rather its surface lies close to the primary plane 300. In certain embodiments, the transducer region 403 is marginally recessed from the primary plane 300 due to lapping. For example, the transducer region 403 may be recessed from the primary plane 300 approximately 2.5 nanometers due to lapping. The transducer region 403 may also slightly protrude beyond the primary plane 300 due to thermal expansion (e.g. thermal pole tip protrusion and/or thermal dynamic transducer actuation).

In the embodiment of FIG. 4, the overcoat layer 436 also includes corner regions 482 and 484 recessed from the primary plane by at least the deep cavity recession depth 370.

In the embodiment of FIG. 4, the air bearing surface 406 defines a lateral axis 432 that is orthogonal to the upstream direction 430, and the slider 404 has a width measured along the lateral axis 432. In the embodiment of FIG. 4, the trailing air flow dam 480 laterally spans at least 75% of the width of the slider 404, with the corner regions 482 and 484 spanning the remainder of the width of the slider 404. The trailing air flow dam 480 itself can be considered to comprise a left portion (the portion extending from the transducer 402 along the lateral axis 432 to the left in FIG. 4), and a right portion (the portion extending from the transducer 402 along the lateral axis 432 to the right in FIG. 4). Preferably, the left and right portions together laterally span at least 75% of the width of the slider 404. However, in certain embodiments, the left and right portions extend to the left and right, respectively, not from the transducer 402, but rather from the relatively wider trailing pad 456. In such embodiments, the left and right portions of the trailing air flow dam 480 may not together laterally span at least 75% of the width of the slider 404; rather, in such embodiments the left and right portions of the trailing air flow dam 480, together with the trailing pad 456 preferably cumulatively laterally span at least 75% of the width of the slider 404.

In the embodiment of FIGS. 4 & 5, the air bearing surface 406 also includes two sub-ambient pressure cavities 452, 454 disposed adjacent to and upstream of the trailing air flow dam 480. The sub-ambient pressure cavities 452, 454 each include a surface in the plane 320 that is recessed from the primary plane 300 by the shallow cavity recession depth 360. Trailing pad side portions 446 and 448 may also extend around sub-ambient pressure cavities 452 and 454, to assist in the development of sub-ambient pressure within sub-ambient pressure cavities 452 and 454. During operation, the sub-ambient pressure cavities 452 and 454 may develop sub-ambient pressure in much the same way that shallow cavity 416 does, and thereby shift an effective center of net sub-ambient pressure rearward (towards the trailing face of the slider). Such a shift can facilitate separating the slider from the disk surface dynamically, during operation.

In the embodiment of FIGS. 4 & 5, the trailing air flow dam 480 may serve to reduce back flow from adjacent the trailing face 408 in the upstream direction 430 into the sub-ambient pressure cavities 452, 454, which, in turn, may serve to reduce the accumulation of lubricant and/or other debris in the sub-ambient pressure cavities 452, 454.

In the embodiment of FIG. 4, the air bearing surface 406 also includes side pads 442 and 444. The side pads 442 and 444 each include a major surface that lies in the primary plane 300. Accordingly, the side pads 442 and 444 are located further upstream than the aft-most extent of the trailing pad 456.

Now referring to FIG. 6, head 600 comprises a transducer 602 for at least reading information from the disk. Head 600 also comprises a slider 604, which may be fabricated from a wafer substrate material such as alumina titanium carbide or silicon. Slider 604 includes an air bearing surface 606, which may be formed on the surface of slider 604 by etching or ion milling and has a geometry that may be defined by use of a mask. The slider 604 has an overcoat layer 636 that includes a trailing face 608 and includes a transducer region 603 that overcoats the transducer 602. The slider 604 also includes a leading face 610. A zero-skew upstream direction 630 points from the trailing face 608 towards the leading face 610.

In the exemplary embodiment shown in FIG. 6 and FIG. 7, the air bearing surface 606 includes deep cavities 616 and 618, and shallow cavities 620 and 622. During operation, the shallow cavities 620 and 622 can develop a sub-ambient pressure region between the air bearing surface 606 and the surface of an adjacent disk. The sub-ambient pressure may serve to reduce flying height sensitivities to changes in altitude and air bearing geometries.

In the exemplary embodiment shown in FIG. 6 and FIG. 7, the air bearing surface 606 also includes two leading pads 612 and 614 that are adjacent to and upstream of the deep cavities 616 and 618, respectively. The two leading pads 612, 614 may be separated by shallow cavities 620 and 622, respectively, and shallow cavities 620 and 622 may themselves be separated by a longitudinal divider 617.

Now referring additionally to FIG. 7, the leading pads 612 and 614 each include a major surface that is not recessed and instead establishes the primary plane 300, from which the recession of other surfaces that are approximately parallel to the primary plane 300 may be measured. During operation, the leading pads 612 and 614 can develop a super-ambient pressure region between the air bearing surface 606 and the surface of an adjacent disk, causing the slider to assume a positive pitch attitude. Deep cavities 616 and 618 each include a surface in the plane 330 that is recessed from the primary plane 300 by the deep cavity recession depth 370. Shallow cavities 620 and 622 each include a surface in the intermediate plane 320 that lies between the primary plane 300 and the deep cavity plane 330, and that is recessed from the primary plane 300 by a shallow cavity recession depth 360.

In the exemplary embodiment shown in FIG. 6 and FIG. 7, the leading pads 612 and 614 are connected by a leading dam 676 that helps prevent particulate contamination from entering the air bearing, and that assists in creating sub-ambient pressure in shallow cavities 620 and 622. The leading pads 612 and 614 also include leading pressurizing steps 624 and 626, respectively. The leading pressurizing steps 624 and 626 each include a surface in a plane 310 that lies between the primary plane 300 and the intermediate plane 320. The plane 310 is recessed from the primary plane 300 by a pressurizing step recession depth 350. During operation, the leading pressurizing steps 624 and 626 can help develop super-ambient pressure between the leading pads 612 and 614, respectively and the surface of an adjacent disk.

Also in the exemplary embodiment of FIG. 6 and FIG. 7, the air bearing surface 606 includes mid-cavity dams 672 and 674 that are disposed upstream of a central cavity 628, and are structured and function in a similar manner as in the embodiment of FIGS. 2 and 3. In the exemplary embodiment of FIG. 6, the air bearing surface 606 also includes a trailing pad 656 having a major surface adjacent the transducer 602, the major surface lying in the primary plane 300. In the embodiment of FIG. 6, a pressurizing step surface 650 is disposed upstream of the trailing pad 656. The pressurizing step surface 650 includes a surface that lies in the plane 310. Trailing pad side portions 646 and 648 can enhance the performance of the pressurizing step surface 650 by partially confining the airflow to pressurize the trailing pad 656.

In the embodiment of FIGS. 6 & 7, the air bearing surface 606 includes a trailing air flow dam 660 that includes a major surface in the plane 310. In the embodiment of FIGS. 6 & 7, the overcoat layer 636 also includes a trailing air flow dam 680 being recessed from the primary plane 300 by a step depth in the range 0.05 to 0.5 microns. Preferably the trailing air flow dam 680 is recessed from the primary plane 300 by an amount approximately equal to the pressurizing step recession depth 350, as shown in FIG. 7. However, in certain embodiments the trailing air flow dam 680 is recessed from the primary plane 300 by an amount approximately equal to but marginally more than the pressurizing step recession depth 350, because of a difference in material etch rates. Specifically, the trailing air flow dam 660 is disposed over the main body of the slider 604, which typically comprises a ceramic wafer substrate material such as alumina titanium carbide, while the trailing air flow dam 680 is disposed in the overcoat material (e.g. Al2O3, SiO2). Alumina typically etches away more rapidly than does alumina titanium carbide during fabrication of the trailing air flow dams 660 and 680. For example, because of the difference in etching rates, the trailing air flow dam 680 may be recessed up to 30% more than the trailing air flow dam 660. The combined breadth of the trailing air flow dams 660 and 680, measured parallel to the upstream direction 630, is determined by masking during fabrication and may exceed the thickness of the overcoat layer 636 (e.g. 20 to 50 microns).

In the embodiment of FIG. 6, the transducer region 603 is not etched; rather its surface lies close to the primary plane 300. In certain embodiments, the transducer region 603 is marginally recessed from the primary plane 300 due to lapping. For example, the transducer region 603 may be recessed from the primary plane 300 approximately 2.5 nanometers due to lapping. The transducer region 603 may also slightly protrude beyond the primary plane 300 due to thermal expansion (e.g. thermal pole tip protrusion and/or thermal dynamic transducer actuation). In the embodiment of FIG. 6, the overcoat layer 636 also includes corner regions 682 and 684 recessed from the primary plane by at least the deep cavity recession depth 370.

In the embodiment of FIG. 6, the trailing air flow dam 680 laterally spans at least 75% of the width of the slider 604, with the corner regions 682 and 684 spanning the remainder of the width of the slider 604.

In the embodiment of FIGS. 6 & 7, the air bearing surface 606 also includes two sub-ambient pressure cavities 652, 654 disposed just upstream of the trailing air flow dams 660 and 680. The sub-ambient pressure cavities 652, 654 each include a surface in the plane 320 that is recessed from the primary plane 300 by the shallow cavity recession depth 360. Trailing pad side portions 646 and 648 may also extend around sub-ambient pressure cavities 652 and 654, to assist in the development of sub-ambient pressure within sub-ambient pressure cavities 652 and 654.

In the embodiment of FIGS. 6 & 7, the trailing air flow dams 660 and 680 may serve to reduce back flow from adjacent the trailing face 608 in the upstream direction 630 into the sub-ambient pressure cavities 652, 654, which, in turn, may serve to reduce the accumulation of lubricant and/or other debris in the sub-ambient pressure cavities 652, 654.

In the embodiment of FIG. 6, the air bearing surface 606 also includes side pads 642 and 644. The side pads 642 and 644 each include a major surface that lies in the primary plane 300. Accordingly, the side pads 642 and 644 are located further upstream than the aft-most extent of the trailing pad 656. The side pad 642 includes side pressurizing step 662 and a side trailing step 692, each of which includes a surface in plane 310. The side pad 644 includes side pressurizing step 666 and a side trailing step 694, each of which includes a surface in plane 310.

In the foregoing specification, the invention is described with reference to specific exemplary embodiments thereof, but those skilled in the art will recognize that the invention is not limited thereto. It is contemplated that various features and aspects of the above-described invention may be used individually or jointly and possibly in an environment or application beyond those described herein. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. The terms “comprising,” “including,” and “having,” as used herein are intended to be read as open-ended terms.

Hu, Yong, Sladek, Eric T.

Patent Priority Assignee Title
10037770, Nov 12 2015 Western Digital Technologies, INC Method for providing a magnetic recording write apparatus having a seamless pole
10074387, Dec 21 2014 Western Digital Technologies, INC Method and system for providing a read transducer having symmetric antiferromagnetically coupled shields
10115419, Mar 24 2015 Western Digital Technologies, INC Method for AFC shields for multiple sensor magnetic transducers and magnetic transducers having multiple sensors and AFC shields
10121495, Nov 30 2015 Western Digital Technologies, INC Magnetic recording write apparatus having a stepped conformal trailing shield
10199058, Aug 31 2012 International Business Machines Corporation Method of forming magnetic recording head having protected reader sensors and near zero recession writer poles
10242700, Jun 26 2015 Western Digital Technologies, INC Magnetic reader having a nonmagnetic insertion layer for the pinning layer
10381029, Nov 10 2015 Western Digital Technologies, INC Method and system for providing a HAMR writer including a multi-mode interference device
10553241, Dec 17 2014 Western Digital Technologies, INC Near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
10665258, Sep 13 2018 Kabushiki Kaisha Toshiba; Toshiba Electronic Devices & Storage Corporation Magnetic head and magnetic disk device including the same
10714135, Mar 29 2019 Western Digital Technologies, Inc.; Western Digital Technologies, INC Air-bearing surface designs with a curved trailing air flow dam
10854224, Aug 28 2017 Seagate Technology LLC Differential recessed topography of a media-facing surface
10891981, Mar 29 2019 Western Digital Technologies, Inc. Air-bearing surface designs with a curved trailing air flow dam
8169744, Nov 26 2008 Western Digital Technologies, INC Slider having a lubricant-accumulation barrier
8174794, Nov 26 2008 Western Digital Technologies, INC Slider having a lubricant-accumulation barrier including a plurality of lubricant-accumulation-barrier portions
8611044, Jun 02 2011 International Business Machines Corporation Magnetic head having separate protection for read transducers and write transducers
8830628, Feb 23 2009 Western Digital Technologies, INC Method and system for providing a perpendicular magnetic recording head
8837082, Apr 27 2012 International Business Machines Corporation Magnetic recording head having quilted-type coating
8879207, Dec 20 2011 Western Digital Technologies, INC Method for providing a side shield for a magnetic recording transducer using an air bridge
8883017, Mar 12 2013 Western Digital Technologies, INC Method and system for providing a read transducer having seamless interfaces
8917581, Dec 18 2013 Western Digital Technologies, INC Self-anneal process for a near field transducer and chimney in a hard disk drive assembly
8923102, Jul 16 2013 Western Digital Technologies, INC Optical grating coupling for interferometric waveguides in heat assisted magnetic recording heads
8947985, Jul 16 2013 Western Digital Technologies, INC Heat assisted magnetic recording transducers having a recessed pole
8953422, Jun 10 2014 Western Digital Technologies, INC Near field transducer using dielectric waveguide core with fine ridge feature
8958272, Jun 10 2014 Western Digital Technologies, INC Interfering near field transducer for energy assisted magnetic recording
8970988, Dec 31 2013 Western Digital Technologies, INC Electric gaps and method for making electric gaps for multiple sensor arrays
8971160, Dec 19 2013 Western Digital Technologies, INC Near field transducer with high refractive index pin for heat assisted magnetic recording
8976635, Jun 10 2014 Western Digital Technologies, INC Near field transducer driven by a transverse electric waveguide for energy assisted magnetic recording
8980109, Dec 11 2012 Western Digital Technologies, INC Method for providing a magnetic recording transducer using a combined main pole and side shield CMP for a wraparound shield scheme
8982508, Oct 31 2011 Western Digital Technologies, INC Method for providing a side shield for a magnetic recording transducer
8984740, Nov 30 2012 Western Digital Technologies, INC Process for providing a magnetic recording transducer having a smooth magnetic seed layer
8988812, Nov 27 2013 Western Digital Technologies, INC Multi-sensor array configuration for a two-dimensional magnetic recording (TDMR) operation
8988825, Feb 28 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer having half-side shields
8988830, May 13 2013 Western Digital Technologies, INC Air bearing design to mitigate lube waterfall effect
8993217, Apr 04 2013 Western Digital Technologies, INC Double exposure technique for high resolution disk imaging
8995087, Nov 29 2006 Western Digital Technologies, INC Perpendicular magnetic recording write head having a wrap around shield
8997832, Nov 23 2010 Western Digital Technologies, INC Method of fabricating micrometer scale components
9001467, Mar 05 2014 Western Digital Technologies, INC Method for fabricating side shields in a magnetic writer
9001628, Dec 16 2013 Western Digital Technologies, INC Assistant waveguides for evaluating main waveguide coupling efficiency and diode laser alignment tolerances for hard disk
9007719, Oct 23 2013 Western Digital Technologies, INC Systems and methods for using double mask techniques to achieve very small features
9007725, Oct 07 2014 Western Digital Technologies, INC Sensor with positive coupling between dual ferromagnetic free layer laminates
9007879, Jun 10 2014 Western Digital Technologies, INC Interfering near field transducer having a wide metal bar feature for energy assisted magnetic recording
9013836, Apr 02 2013 Western Digital Technologies, INC Method and system for providing an antiferromagnetically coupled return pole
9036297, Aug 31 2012 International Business Machines Corporation Magnetic recording head having protected reader sensors and near zero recession writer poles
9042051, Aug 15 2013 Western Digital Technologies, INC Gradient write gap for perpendicular magnetic recording writer
9042052, Jun 23 2014 Western Digital Technologies, INC Magnetic writer having a partially shunted coil
9042057, Jan 09 2013 Western Digital Technologies, INC Methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys
9042058, Oct 17 2013 Western Digital Technologies, INC Shield designed for middle shields in a multiple sensor array
9042208, Mar 11 2013 Western Digital Technologies, INC Disk drive measuring fly height by applying a bias voltage to an electrically insulated write component of a head
9053723, Apr 27 2012 International Business Machines Corporation Magnetic recording head having quilted-type coating
9053735, Jun 20 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer using a full-film metal planarization
9064507, Jul 31 2009 Western Digital Technologies, INC Magnetic etch-stop layer for magnetoresistive read heads
9064527, Apr 12 2013 Western Digital Technologies, INC High order tapered waveguide for use in a heat assisted magnetic recording head
9064528, May 17 2013 Western Digital Technologies, INC Interferometric waveguide usable in shingled heat assisted magnetic recording in the absence of a near-field transducer
9065043, Jun 29 2012 Western Digital Technologies, INC Tunnel magnetoresistance read head with narrow shield-to-shield spacing
9070381, Apr 12 2013 Western Digital Technologies, INC Magnetic recording read transducer having a laminated free layer
9082423, Dec 18 2013 Western Digital Technologies, INC Magnetic recording write transducer having an improved trailing surface profile
9087527, Oct 28 2014 Western Digital Technologies, INC Apparatus and method for middle shield connection in magnetic recording transducers
9087534, Dec 20 2011 Western Digital Technologies, INC Method and system for providing a read transducer having soft and hard magnetic bias structures
9093639, Feb 21 2012 Western Digital Technologies, INC Methods for manufacturing a magnetoresistive structure utilizing heating and cooling
9104107, Apr 03 2013 Western Digital Technologies, INC DUV photoresist process
9111550, Dec 04 2014 Western Digital Technologies, INC Write transducer having a magnetic buffer layer spaced between a side shield and a write pole by non-magnetic layers
9111558, Mar 14 2014 Western Digital Technologies, INC System and method of diffractive focusing of light in a waveguide
9111564, Apr 02 2013 Western Digital Technologies, INC Magnetic recording writer having a main pole with multiple flare angles
9123358, Jun 11 2012 Western Digital Technologies, INC Conformal high moment side shield seed layer for perpendicular magnetic recording writer
9123359, Dec 22 2010 Western Digital Technologies, INC Magnetic recording transducer with sputtered antiferromagnetic coupling trilayer between plated ferromagnetic shields and method of fabrication
9123362, Mar 22 2011 Western Digital Technologies, INC Methods for assembling an electrically assisted magnetic recording (EAMR) head
9123374, Feb 12 2015 Western Digital Technologies, INC Heat assisted magnetic recording writer having an integrated polarization rotation plate
9135930, Mar 06 2014 Western Digital Technologies, INC Method for fabricating a magnetic write pole using vacuum deposition
9135937, May 09 2014 Western Digital Technologies, INC Current modulation on laser diode for energy assisted magnetic recording transducer
9142233, Feb 28 2014 Western Digital Technologies, INC Heat assisted magnetic recording writer having a recessed pole
9147404, Mar 31 2015 Western Digital Technologies, INC Method and system for providing a read transducer having a dual free layer
9147408, Dec 19 2013 Western Digital Technologies, INC Heated AFM layer deposition and cooling process for TMR magnetic recording sensor with high pinning field
9153255, Mar 05 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer having an asymmetric gap and shields
9159345, Nov 23 2010 Western Digital Technologies, INC Micrometer scale components
9159346, Jun 10 2014 Western Digital Technologies, INC Near field transducer using dielectric waveguide core with fine ridge feature
9183854, Feb 24 2014 Western Digital Technologies, INC Method to make interferometric taper waveguide for HAMR light delivery
9190079, Sep 22 2014 Western Digital Technologies, INC Magnetic write pole having engineered radius of curvature and chisel angle profiles
9190085, Mar 12 2014 Western Digital Technologies, INC Waveguide with reflective grating for localized energy intensity
9194692, Dec 06 2013 Western Digital Technologies, INC Systems and methods for using white light interferometry to measure undercut of a bi-layer structure
9202480, Oct 14 2009 Western Digital Technologies, INC Double patterning hard mask for damascene perpendicular magnetic recording (PMR) writer
9202493, Feb 28 2014 Western Digital Technologies, INC Method of making an ultra-sharp tip mode converter for a HAMR head
9213322, Aug 16 2012 Western Digital Technologies, INC Methods for providing run to run process control using a dynamic tuner
9214165, Dec 18 2014 Western Digital Technologies, INC Magnetic writer having a gradient in saturation magnetization of the shields
9214169, Jun 20 2014 Western Digital Technologies, INC Magnetic recording read transducer having a laminated free layer
9214172, Oct 23 2013 Western Digital Technologies, INC Method of manufacturing a magnetic read head
9230565, Jun 24 2014 Western Digital Technologies, INC Magnetic shield for magnetic recording head
9236560, Dec 08 2014 SanDisk Technologies, Inc Spin transfer torque tunneling magnetoresistive device having a laminated free layer with perpendicular magnetic anisotropy
9245543, Jun 25 2010 Western Digital Technologies, INC Method for providing an energy assisted magnetic recording head having a laser integrally mounted to the slider
9245545, Apr 12 2013 Western Digital Technologies, INC Short yoke length coils for magnetic heads in disk drives
9245562, Mar 30 2015 Western Digital Technologies, INC Magnetic recording writer with a composite main pole
9251813, Apr 19 2009 Western Digital Technologies, INC Method of making a magnetic recording head
9263067, May 29 2013 Western Digital Technologies, INC Process for making PMR writer with constant side wall angle
9263071, Mar 31 2015 Western Digital Technologies, INC Flat NFT for heat assisted magnetic recording
9269382, Jun 29 2012 Western Digital Technologies, INC Method and system for providing a read transducer having improved pinning of the pinned layer at higher recording densities
9275657, Aug 14 2013 Western Digital Technologies, INC Process for making PMR writer with non-conformal side gaps
9280990, Dec 11 2013 Western Digital Technologies, INC Method for fabricating a magnetic writer using multiple etches
9286919, Dec 17 2014 Western Digital Technologies, INC Magnetic writer having a dual side gap
9287494, Jun 28 2013 Western Digital Technologies, INC Magnetic tunnel junction (MTJ) with a magnesium oxide tunnel barrier
9305583, Feb 18 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer using multiple etches of damascene materials
9311952, Jun 10 2014 Western Digital Technologies, INC Interfering near field transducer for energy assisted magnetic recording
9312064, Mar 02 2015 Western Digital Technologies, INC Method to fabricate a magnetic head including ion milling of read gap using dual layer hard mask
9318130, Jul 02 2013 Western Digital Technologies, INC Method to fabricate tunneling magnetic recording heads with extended pinned layer
9336814, Mar 12 2013 Western Digital Technologies, INC Inverse tapered waveguide for use in a heat assisted magnetic recording head
9343086, Sep 11 2013 Western Digital Technologies, INC Magnetic recording write transducer having an improved sidewall angle profile
9343087, Dec 21 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer having half shields
9343097, Aug 31 2012 International Business Machines Corporation Method of forming magnetic recording head having protected reader sensors and near zero recession writer poles
9343098, Aug 23 2013 Western Digital Technologies, INC Method for providing a heat assisted magnetic recording transducer having protective pads
9349392, May 24 2012 Western Digital Technologies, INC Methods for improving adhesion on dielectric substrates
9349393, Mar 05 2014 Western Digital Technologies, INC Magnetic writer having an asymmetric gap and shields
9349394, Oct 18 2013 Western Digital Technologies, INC Method for fabricating a magnetic writer having a gradient side gap
9361913, Jun 03 2013 Western Digital Technologies, INC Recording read heads with a multi-layer AFM layer methods and apparatuses
9361914, Jun 18 2014 Western Digital Technologies, INC Magnetic sensor with thin capping layer
9368134, Dec 16 2010 Western Digital Technologies, INC Method and system for providing an antiferromagnetically coupled writer
9384763, Mar 26 2015 Western Digital Technologies, INC Dual free layer magnetic reader having a rear bias structure including a soft bias layer
9384765, Sep 24 2015 Western Digital Technologies, INC Method and system for providing a HAMR writer having improved optical efficiency
9396742, Nov 30 2012 Western Digital Technologies, INC Magnetoresistive sensor for a magnetic storage system read head, and fabrication method thereof
9396743, Feb 28 2014 Western Digital Technologies, INC Systems and methods for controlling soft bias thickness for tunnel magnetoresistance readers
9406331, Jun 17 2013 Western Digital Technologies, INC Method for making ultra-narrow read sensor and read transducer device resulting therefrom
9412400, Jun 29 2012 Western Digital Technologies, INC Tunnel magnetoresistance read head with narrow shield-to-shield spacing
9424866, Sep 24 2015 Western Digital Technologies, INC Heat assisted magnetic recording write apparatus having a dielectric gap
9431031, Mar 24 2015 Western Digital Technologies, INC System and method for magnetic transducers having multiple sensors and AFC shields
9431032, Aug 14 2013 Western Digital Technologies, INC Electrical connection arrangement for a multiple sensor array usable in two-dimensional magnetic recording
9431038, Jun 29 2015 Western Digital Technologies, INC Method for fabricating a magnetic write pole having an improved sidewall angle profile
9431039, May 21 2013 Western Digital Technologies, INC Multiple sensor array usable in two-dimensional magnetic recording
9431044, May 07 2014 Western Digital Technologies, INC Slider having shock and particle resistance
9431047, May 01 2013 Western Digital Technologies, INC Method for providing an improved AFM reader shield
9437251, Dec 22 2014 Western Digital Technologies, INC Apparatus and method having TDMR reader to reader shunts
9441938, Oct 08 2013 Western Digital Technologies, INC Test structures for measuring near field transducer disc length
9443541, Mar 24 2015 Western Digital Technologies, INC Magnetic writer having a gradient in saturation magnetization of the shields and return pole
9449620, Aug 31 2012 International Business Machines Corporation Magnetic recording head having protected reader sensors and near zero recession writer poles
9449621, Mar 26 2015 Western Digital Technologies, INC Dual free layer magnetic reader having a rear bias structure having a high aspect ratio
9449625, Dec 24 2014 Western Digital Technologies, INC Heat assisted magnetic recording head having a plurality of diffusion barrier layers
9472216, Sep 23 2015 Western Digital Technologies, INC Differential dual free layer magnetic reader
9484051, Nov 09 2015 Western Digital Technologies, INC Method and system for reducing undesirable reflections in a HAMR write apparatus
9495984, Mar 12 2014 Western Digital Technologies, INC Waveguide with reflective grating for localized energy intensity
9508363, Jun 17 2014 Western Digital Technologies, INC Method for fabricating a magnetic write pole having a leading edge bevel
9508365, Jun 24 2015 Western Digital Technologies, INC Magnetic reader having a crystal decoupling structure
9508372, Jun 03 2015 Western Digital Technologies, INC Shingle magnetic writer having a low sidewall angle pole
9530443, Jun 25 2015 Western Digital Technologies, INC Method for fabricating a magnetic recording device having a high aspect ratio structure
9564150, Nov 24 2015 Western Digital Technologies, INC Magnetic read apparatus having an improved read sensor isolation circuit
9595273, Sep 30 2015 Western Digital Technologies, INC Shingle magnetic writer having nonconformal shields
9646639, Jun 26 2015 Western Digital Technologies, INC Heat assisted magnetic recording writer having integrated polarization rotation waveguides
9659583, Aug 31 2012 International Business Machines Corporation Magnetic recording head having protected reader sensors and near zero recession writer poles
9666214, Sep 23 2015 Western Digital Technologies, INC Free layer magnetic reader that may have a reduced shield-to-shield spacing
9672847, Nov 23 2010 Western Digital Technologies, INC Micrometer scale components
9705072, Dec 08 2014 SanDisk Technologies, Inc Spin transfer torque tunneling magnetoresistive device having a laminated free layer with perpendicular magnetic anisotropy
9721595, Dec 04 2014 Western Digital Technologies, INC Method for providing a storage device
9740805, Dec 01 2015 Western Digital Technologies, INC Method and system for detecting hotspots for photolithographically-defined devices
9741366, Dec 18 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer having a gradient in saturation magnetization of the shields
9754611, Nov 30 2015 Western Digital Technologies, INC Magnetic recording write apparatus having a stepped conformal trailing shield
9754613, Jul 26 2016 Western Digital Technologies, INC Method for AFC shields for multiple sensor magnetic transducers and magnetic transducers having multiple sensors and AFC shields
9767831, Dec 01 2015 Western Digital Technologies, INC Magnetic writer having convex trailing surface pole and conformal write gap
9786301, Dec 02 2014 Western Digital Technologies, INC Apparatuses and methods for providing thin shields in a multiple sensor array
9799351, Nov 30 2015 Western Digital Technologies, INC Short yoke length writer having assist coils
9812155, Nov 23 2015 Western Digital Technologies, INC Method and system for fabricating high junction angle read sensors
9830936, Oct 23 2013 Western Digital Technologies, INC Magnetic read head with antiferromagentic layer
9842615, Jun 26 2015 Western Digital Technologies, INC Magnetic reader having a nonmagnetic insertion layer for the pinning layer
9858951, Dec 01 2015 Western Digital Technologies, INC Method for providing a multilayer AFM layer in a read sensor
9881638, Dec 17 2014 Western Digital Technologies, INC Method for providing a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
9922672, Mar 26 2015 Western Digital Technologies, INC Dual free layer magnetic reader having a rear bias structure having a high aspect ratio
9934811, Mar 07 2014 Western Digital Technologies, INC Methods for controlling stray fields of magnetic features using magneto-elastic anisotropy
9940950, May 24 2012 Western Digital Technologies, INC Methods for improving adhesion on dielectric substrates
9953670, Nov 10 2015 Western Digital Technologies, INC Method and system for providing a HAMR writer including a multi-mode interference device
9997177, Dec 01 2015 Western Digital Technologies, INC Magnetic writer having convex trailing surface pole and conformal write gap
Patent Priority Assignee Title
5343343, May 25 1990 Seagate Technology, Inc. Air bearing slider with relieved rail ends
5353180, Mar 01 1993 Western Digital Technologies, INC Air bearing magnetic slider with wishbone-shaped rails
5870250, Mar 01 1996 Western Digital Technologies, INC Method and apparatus for improving file capacity using different flying height profiles
5917679, Aug 22 1997 SAMSUNG ELECTRONICS CO , LTD Pseudo contact type negative pressure air bearing slider
5940249, Nov 10 1997 Western Digital Technologies, INC Shielded air bearing slider
6021020, Oct 28 1996 Kabushiki Kaisha Toshiba Head slider and read/write apparatus using same
6055127, Nov 13 1996 Seagate Technology LLC Disc head slider having surface discontinuities to minimize fly stiction
6072662, Jun 10 1996 TDK Corporation Magnetic head slider with U-shaped and/or V-shaped portions
6188547, Jun 04 1998 Seagate Technology LLC Slider with pressure relief trenches
6212032, Feb 18 1998 SAMSUNG ELECTRONICS CO , LTD Pseudo contact negative pressure air bearing slider with divided negative pressure pockets
6359754, Jul 21 1998 Seagate Technology LLC Increased mechanical spacing through localized continuous carbon overcoat
6445542, Mar 06 2000 Western Digital Technologies, INC Air bearing slider
6483667, Jul 21 1998 Seagate Technology LLC Self-loading disc head slider having multiple steps approximating a leading taper
6490135, Dec 02 1999 Seagate Technology LLC Disc drive assembly having side rail-channeled air bearing for ramp load-unload applications
6498701, Mar 24 2000 SEAGATE TECHNOLOGY LLP; Seagate Technology LLC Method of channeling accumulated disc lube off of recording head sliders
6504682, Dec 02 1999 Seagate Technology LLC Disc head slider having recessed, channeled rails for reduced stiction
6515831, Jan 11 2000 Seagate Technology LLC Disc head slider having leading and trailing channeled rails for enhanced damping
6594113, Dec 20 2000 Seagate Technology LLC Slider with furrows for flushing contaminants and lubricant
6603639, Jul 21 1998 Seagate Technology LLC Slider for disc storage system
6661612, Oct 21 2001 Western Digital Technologies, INC Air bearing slider including side rail shallow recessed surfaces extending along trailing portions of leading side air bearing surfaces
6690545, Sep 28 2001 Western Digital Technologies, INC Air bearing slider including a depressed region extending from a main support structure between a pressurized pad support base and a contact pad support base
6707631, Mar 20 2000 Maxtor Corporation Flying-type disk drive slider with wear pad
6747847, Jan 10 2001 Seagate Technology LLC Self-flushing trench air bearing for improved slider flyability
6785093, Jan 09 2001 HGST NETHERLANDS B V Slider, head assembly, and disk drive unit
6920016, Jun 10 2002 Hitachi Global Storage Technologies Japan, Ltd Thin film magnetic head
6989967, Aug 06 2002 Seagate Technology LLC Slider having a trailing bearing pad adjacent to a recessed area
7009813, May 05 2003 Western Digital Technologies, INC Apparatus and method of configuring the air bearing surfaces of sliders in disk drives for producing high temperatures in thermally-assisted recordings
7019945, Dec 23 2002 Western Digital Technologies, INC Air bearing slider including pressurized side pads with forward and trailing shallow etched surfaces
7027265, Jun 01 2000 Toshiba Storage Device Corporation Flying head slider capable of avoiding collision when loaded having an air clogging dished space
7251106, May 12 2004 Western Digital Technologies, INC Magnetic head slider having protrusion-compensated air bearing surface design
7289299, Feb 02 2005 Western Digital Technologies, INC Air bearing slider with three-projection trailing center pad
7583473, Jul 28 2006 Western Digital Technologies, INC Air bearing with both low altitude and speed sensitivities
7616405, Nov 15 2006 Western Digital Technologies, INC Slider with an air bearing surface having a inter-cavity dam with OD and ID dam surfaces of different heights
7719795, Nov 15 2006 Western Digital Technologies, INC Head having a transducer heater and an air bearing surface with a flow-diversion dam and pressure-relief trough disposed upstream of the transducer
20010030834,
20020008938,
20020012199,
20020030938,
20020041467,
20020048120,
20020051316,
20020060881,
20020071216,
20020089789,
20020109941,
20030058578,
20030067719,
20030128471,
20030227717,
20040032694,
20040100732,
20040156143,
20040233580,
20040240109,
20050099728,
20050105216,
20050190500,
20050207065,
20050213252,
20050225902,
20060023358,
20060119986,
20060238922,
20070121238,
20070206326,
20070211385,
20080024924,
JP7021714,
///////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 14 2007HU, YONGWESTERN DIGITAL FREMONT , LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198730357 pdf
Sep 14 2007SLADEK, ERIC T WESTERN DIGITAL FREMONT , LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198730357 pdf
Sep 25 2007Western Digital (Fremont) , LLC(assignment on the face of the patent)
May 12 2016WESTERN DIGITAL FREMONT , LLCU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY AGREEMENT0387440675 pdf
May 12 2016WESTERN DIGITAL FREMONT , LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0387100845 pdf
Feb 27 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTWESTERN DIGITAL FREMONT , LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0455010158 pdf
May 08 2019WESTERN DIGITAL FREMONT , LLCWestern Digital Technologies, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0504500582 pdf
Feb 03 2022JPMORGAN CHASE BANK, N A WESTERN DIGITAL FREMONT , LLCRELEASE OF SECURITY INTEREST AT REEL 038710 FRAME 08450589650445 pdf
Feb 03 2022JPMORGAN CHASE BANK, N A Western Digital Technologies, INCRELEASE OF SECURITY INTEREST AT REEL 038710 FRAME 08450589650445 pdf
Aug 18 2023Western Digital Technologies, INCJPMORGAN CHASE BANK, N A PATENT COLLATERAL AGREEMENT - A&R LOAN AGREEMENT0647150001 pdf
Aug 18 2023Western Digital Technologies, INCJPMORGAN CHASE BANK, N A PATENT COLLATERAL AGREEMENT - DDTL LOAN AGREEMENT0670450156 pdf
Date Maintenance Fee Events
Jul 23 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jul 23 2014M1554: Surcharge for Late Payment, Large Entity.
Jul 06 2018M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 06 2022M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jan 18 20144 years fee payment window open
Jul 18 20146 months grace period start (w surcharge)
Jan 18 2015patent expiry (for year 4)
Jan 18 20172 years to revive unintentionally abandoned end. (for year 4)
Jan 18 20188 years fee payment window open
Jul 18 20186 months grace period start (w surcharge)
Jan 18 2019patent expiry (for year 8)
Jan 18 20212 years to revive unintentionally abandoned end. (for year 8)
Jan 18 202212 years fee payment window open
Jul 18 20226 months grace period start (w surcharge)
Jan 18 2023patent expiry (for year 12)
Jan 18 20252 years to revive unintentionally abandoned end. (for year 12)