This invention is directed toward a process for reducing transfusion related complications in a recipient of an allogeneic blood transfusion by adding to the blood to be transfused a photosensitizer comprising riboflavin, irradiating the blood and riboflavin with light, transfusing the irradiated blood into a recipient, and reducing a transfusion related complication by the recipient to cells in the donor blood.
The invention is also directed towards a process for preventing rejection of a donor organ by a recipient comprising the steps of transfusing the recipient of the donor organ with treated platelets; and transplanting the donor organ into the recipient.
|
1. A process for reducing rejection of a donor organ by a recipient comprising the steps of:
transfusing the recipient of the donor organ with platelets treated with a photosensitizer consisting essentially of riboflavin at a concentration of 50 μm and light at a wavelength between 290-370 nm for around 8 minutes,
wherein the recipient is transfused with the treated platelets for a period of time before receiving the donor organ; and
transplanting the donor organ into the recipient.
2. The process of
3. The process of
4. The process of
6. The process of
|
This application is a divisional of U.S. patent application Ser. No. 11/469,186, filed on Aug. 31, 2006, now allowed, which claims the benefit of U.S. provisional application No. 60/714,682 filed Sep. 7, 2005; and a continuation-in-part of U.S. patent application Ser. No. 10/648,536, filed Aug. 25, 2003, which is a continuation of 10/377,524 filed Feb. 28, 2003 which is a continuation of 09/586,147, filed Jun. 2, 2000, now abandoned.
This invention is directed to methods of preventing transfusion related complications in a recipient of allogeneic donor blood.
Whole blood collected from volunteer donors for transfusion into recipients is typically separated into components: red blood cells, white blood cells, platelets, plasma and plasma proteins, using apheresis or other known methods. Each of these separated blood components may be stored individually for later use and are used to treat a multiplicity of specific conditions and disease states. For example, the red blood cell component is used to treat anemia, the concentrated platelet component is used to control bleeding, and the plasma protein component is used frequently as a source of Clotting Factor VIII for the treatment of hemophilia.
In cell separation procedures, there is unusually some small percentage of other types of cells which are carried over into a separated blood component. When contaminating cells are carried over into a separated component of cells in a high enough percentage to cause some undesired effect, the contaminating cells are considered to be undesirable. White blood cells, which may transmit infections such as HIV and CMV also cause other transfusion-related complications such as transfusion-associated Graft vs. Host Disease (TA-GVHD), alloimmunization and microchimerism.
TA-GVHD is a disease produced by the reaction of immunocompetent T lymphocytes of the donor that are histoincompatible with the cells of the recipient into which they have been transplanted. Recipients develop skin rashes, fever, diarrhea, weight loss, hepatosplenomegaly and aplasia of the bone marrow. The donor lymphocytes infiltrate the skin, gastrointestinal tract and liver. Three weeks following transfusion 84% of patients who develop TA-GVHD die.
Alloimmunization describes an immune response provoked in a recipient by an alloantigen from a donor of the same species. Alloantigens include blood group substances (A, B, O) on erythrocytes and histocompatibility antigens.
Chimerism, or microchimerism refers to the small numbers of donor cells found in the recipient's body outside the region of the organ transplant. It is believed that the presence of these cells may contribute to the long term development of autoimmune diseases in the transfusion recipient.
Human Leukocyte Antigen (HLA) markers are found on the cell membranes of many different cell types, including white blood cells. HLA is the major histocompatibility complex (MHC I) in humans, and contributes to the recognition of self v. non-self. Recognition by a transfusion recipient's immune system of differences in HLA antigens on the surface of the transfused cells may be the first step in the rejection of transplanted tissues. Therefore, the phenomena of alloimmunization of recipients against HLA markers on donor blood is a major problem in transfusion medicine today. This issue arises in recipients of blood products due to the generation of antibodies against white blood cell HLA antigens in donor blood by the recipient.
Platelets also contain low levels of these HLA antigens because they bud from a megakaryocyte cell (a form of white cell) located primarily in the bone marrow. When a recipient of a whole blood or blood component transfusion generates antibodies against the HLA antigens on the white blood cells of the donor blood cells, a consequence is that these antibodies also lead to recognition and clearance of platelets that carry this same marker. When this occurs, it becomes necessary to HLA match the donor and recipient in order to assure that the recipient receiving the transfusion is able to maintain an adequate number of platelets in circulation. This is often a complicated, expensive and difficult procedure but a necessary one, since rapid clearance of the platelets due to antibody-antigen interaction would otherwise put the recipient at severe risk of bleeding to death. In cases where recipients are very heavily transfused with blood or blood products from multiple donors and antibodies to several different HLA markers are generated, or where no suitable matched donor for platelets is available, death frequently results for those patients who become alloimmunized and sustain a bleed.
Since the problem arises from the presence of white cells in the donated blood products, the elimination of white cells from these products would be expected to reduce the likelihood and frequency of reactions. Gamma irradiation of blood products, which kills the cells but does not remove them from the blood product to be transfused, has not been shown to be able to prevent alloimmunization reactions. It is likely that this is due to the fact that the treated cells are still present and capable of presenting antigens to the recipient's immune system.
Filtration of white blood cells from blood or blood products to be transfused has been shown to be capable of reducing alloimmunization reactions. This has been demonstrated based on an extensive clinical study known as the TRAP study. It was conducted as a multi-institutional study between 1995-1997 and results were subsequently published in the NEJM in 1997 (Trial to Reduce Alloimmunization to Platelets Study Group. Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. N Engl J Med. 1997; 337: 1861-1869). The data from that study suggested that leukoreduction significantly decreased the likelihood of alloimmunization reactions in patients from 13% for non-leukoreduced, untreated products to 3-5% for leukoreduced products. As a result of this work, platelet products have been routinely filtered by a variety of methods to remove WBC. The remaining levels of alloimmunization that were observed were believed to be due to residual white blood cells that were not filtered out. Even the best WBC filters cannot remove 100% of the white blood cells and those left behind are potentially able to stimulate antibody production against the HLA markers on the remaining cells. A decrease in the occurrence rate from 13% of patients receiving platelets to 3-4% is significant, but still leaves several tens of thousands of cases occurring on an annual basis.
In the same TRAP study, treatment of platelet products with ultraviolet B (UVB) light was evaluated. In the case of the UVB treatment, the results were equivalent to those obtained through leukoreduction. The work was consistent with prior studies that showed that UVB treated platelet products possessed significantly reduced alloimmunization responses (Blundell et al. Transfusion 1996; 36: 296-302). This was believed to be due to changes in white cells induced by UVB that cause them to present their antigens and have those antigens processed differently from non-irradiated cells by the patient's immune system. The result is that antibody generation is significantly suppressed for UVB treated products. Although the results were positive, the UVB treatment described in the TRAP study was not adopted widely, because the UV dose required to suppress the alloimmunization response damaged the platelets to an extent which did not allow the platelets to be stored with adequate maintenance of their efficacy (Grijzenhout et al. Blood 1994; 84: 3524-3531).
Photosensitizers, or compounds which absorb light of a defined wavelength and transfer the absorbed energy to an electron acceptor may be a solution to the above problems, by inactivating undesirable cells contaminating a blood product without damaging the desirable components of blood.
There are many photosensitizer compounds known in the art to be useful for inactivating undesirable cells and/or other infectious particles. Examples of such photosensitizers include porphyrins, psoralens, dyes such as neutral red, methylene blue, acridine, toluidines, flavine (acriflavine hydrochloride) and phenothiazine derivatives, coumarins, quinolones, quinones, anthroquinones and endogenous photosensitizers.
As described above, ways to reduce the risks of transfusion related complications from white blood cells is either to reduce the number of white blood cells transfused into a recipient to an extent that no immune response is generated, and/or to effectively destroy the viability and capacity of any transfused white blood cells to function post transfusion.
What is not known is whether donor cells which have been subjected to pathogen reduction treatment with riboflavin and light have modified HLA surface markers, and therefore will not cause transfusion related complications such as alloimmunization, GVHD and microchimerism in the recipient.
It is to this second aspect that this invention is directed.
This invention is directed toward a process for reducing transfusion related complications in a recipient of an allogeneic blood transfusion by adding to the blood to be transfused a photosensitizer comprising riboflavin, irradiating the blood and riboflavin with light, transfusing the irradiated blood into a recipient, and reducing a transfusion related complication by the recipient to cells in the donor blood.
Also claimed is a blood product for transfusion into a recipient comprising inactivated blood or a blood product which has been treated with riboflavin and light. The treated blood or blood product will not cause transfusion related complications in the recipient when transfused.
The invention is also directed towards a process for preventing rejection of a donor organ by a recipient comprising the steps of transfusing the recipient of the donor organ with treated platelets; and transplanting the donor organ into the recipient.
Photosensitizers useful in this invention include endogenous photosensitizers. The term “endogenous” means naturally found in a human or mammalian body, either as a result of synthesis by the body or because of ingestion as an essential foodstuff (e.g. vitamins) or formation of metabolites and/or byproducts in vivo. When endogenous photosensitizers are used, particularly when such photosensitizers are not inherently toxic or do not yield toxic photoproducts after photoradiation, no removal or purification step is required after decontamination, and the decontaminated product can be directly administered to a recipient in need of its therapeutic effect.
Examples of such endogenous photosensitizers which may be used in this invention are alloxazines such as 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin), 7,8,10-trimethylisoalloxazine (lumiflavin), 7,8-dimethylalloxazine (lumichrome), isoalloxazine-adenine dinucleotide (flavin adenine dinucleotide [FAD]) and alloxazine mononucleotide (also known as flavin mononucleotide [FMN] and riboflavine-5-phosphate). The term “alloxazine” includes isoalloxazines.
Use of endogenous isoalloxazines as a photosensitizer to pathogen reduce blood and blood components are described in U.S. Pat. Nos. 6,258,577 and 6,277,337 both issued to Goodrich et al., and are herein incorporated by reference to the amount not inconsistent.
The process of using endogenous alloxazine and light to reduce the risks of transfusion related complications from contaminating white blood cells in blood or blood products are shown in
Whole blood to be transfused into a recipient is collected from a donor. If desired, the whole blood may be separated into blood components using any available procedures and/or extracorporeal blood processing machines 50 μM riboflavin in PBS is added to the whole blood or separated blood components. The blood product and riboflavin are illuminated at a wavelength of between about 290-370 nm for a sufficient amount of time to reduce the number of white blood cells present in the donor blood or blood product to an extent that no immune response to the donor blood is generated by the transfusion recipient, and/or to effectively destroy the viability and capacity of any transfused donor white blood cells to function in the recipient post transfusion. An illumination time of around 8 minutes appears to be satisfactory. The inactivated blood product is ready to be transfused into a donor.
The following examples show that allogeneic and xenogeneic donor cells subjected to a pathogen reduction treatment with riboflavin and light will not cause transfusion related complications in a donor such as alloimmunization, TA-GVHD and microchimerism.
The intent of this study was to determine whether human peripheral blood mononuclear cells (PBMNCs) treated with riboflavin and light (hereinafter known as treated cells) could be induced to proliferate in vitro when exposed to a growth stimulus, or whether the treated cells were rendered inactive by the treatment, and therefore could not be induced to proliferate. Untreated cells (control) are those human PBMNCs not treated with riboflavin and light.
For this study, PBMNC were obtained from three human donors, with each donor set being split into a treated and untreated subset. Each subset was subsequently tested using the in vitro test methods described below. PBMNC were isolated from platelets obtained from the donors using a standard apheresis procedure on a Trima® apheresis machine (available from Gambro BCT, Lakewood, Colo., USA). For treatment with riboflavin and light, the cells were added to ABO-matched platelet-poor plasma (PPP), which was then mixed with riboflavin and illuminated according to the procedure shown in
CD3 is the signaling complex of the T lymphocyte cell receptor. Anti-CD3+ antibody has been shown to induce proliferation of T cells. CD28 is a low affinity T cell receptor that interacts with B7 (ligand for CD28). CD28 is considered a co-stimulatory receptor because its signals are synergistic with those provided by the CD3 receptor in promoting T cell activation and proliferation. Signals from CD28 to the CD3 receptor also increase the synthesis of many cytokines. Cytokines are produced primarily by lymphocytes in response to a stimulus. Production of cytokines is therefore a measure of white blood cell health.
Preparation of CD3, CD3/CD28 or Control Coated Plates
PBS containing 10 μg/mL of anti-CD3 (NA/LE, Pharmingen), 10 μg/mL anti-CD3 and 4 μg/mL anti-CD28 (NA/LE, Pharmingen) or PBS alone were added to wells (50 μl per well) in a 96 well flat bottom plate. The plates were incubated for at least 90 minutes at room temperature. Following 2 washes of the wells with PBS, 100 μl of RPMI 1640 media containing 5% human AB serum, penicillin and streptomycin was added to all wells and the plates were incubated at room temperature for at least another 60 minutes. Then 100 μm of the treated or untreated cells at 2×106 cells/ml in RPMI 1640 containing 5% human AB serum, penicillin and streptomycin were added to the wells (replicate 6 wells per group).
As shown in
A comparison of the levels of cytokines present in the supernatants of the wells after 2 days in culture indicated that both anti-CD3 antibody (Control cell+CD3) and anti-CD3/CD28 antibodies (Control cell+CD3/CD28) induced increased cytokine production by the untreated PBMNCs. As shown in
Phorbol myristic acetate (PMA) is a stimulus that activates WBCs but does not cause proliferation. One of the results of this activation signal is the upregulation onto the surface of the leukocyte the activation antigen CD69. Activation through CD69 does not cause the cell to proliferate. This assay determined whether treatment with riboflavin and light interferes with the ability of the cells to be activated.
As above, WBC were obtained from the leukocyte reduction chamber of a Trima® machine following a double unit platelet collection. The peripheral blood mononuclear cells (PBMNCs) were purified by Ficoll-Hypaque discontinuous gradient centrifugation. These PBMNCs were divided into 2 aliquots and one aliquot was placed in an Extended Life Platelet (ELP) bag containing autologous human plasma and exposed to riboflavin and light. Following the treatment, the PBMNC were collected by centrifugation, washed and then placed in a 50 ml tube filled with RPMI 1640 containing 10% fetal calf serum (FCS). The cells were initially counted and then the following assays were performed:
Stock PMA (Sigma) at 0.5 mg/ml in DMSO was diluted to 1000 ng/ml in PBS. 50 μL of PMA or PBS was transferred to 12×75 mm tubes. Treated and untreated PBMNC were adjusted to 1×106/ml in RPMI-10% Fetal calf serum (R10 medium) and 450 μL of each was transferred to tubes containing either 50 μL of PMA or PBS. The tubes were incubated in a 37° C. water bath for 4 hours. 50 μL of cells were stained with 20 μL of CD8FITC, CD69PE, and CD3PerCP (Becton Dickinson, Fast Immune Kit) and analyzed on the FACScan Flow Cytometer (Becton Dickinson). Fluorescence of the cells containing CD69 and CD8 fluorescent markers was acquired by gating on the CD3+ PerCP positive cells, and quadrant analysis used to assess the level of lymphocyte activation.
The results are shown in Table 2A below. Summarizing this data shows that untreated (−) CD3+ cells (both CD4+ (helper T cells) and CD8+ (cytotoxic T cells)) expressed CD69 upon activation with PMA, while the treated (+) CD3+ cells (both CD4+ and CD8+) did not express CD69 upon activation with PMA. Thus treatment with riboflavin and light resulted in almost 100% inhibition of the ability of PMA to activate cells.
TABLE 2A
Experiment
% CD3+ CD4+
% CD3+ CD8+
No.
Treatment
CD69+ cells
CD69+ cells
1
−
39.7
7.7
1
+
0.5
0.0
2
−
62.9
11.3
2
+
2.8
0.3
3
−
59.5
15.1
3
+
1.2
0.2
Other stimuli that have been shown to induce PBMNC to proliferate are mitogens such as phytohaemagglutinin (PHA), which activates T lymphocytes (CD8−), and allogeneic stimulator PBMNC. Allogenic stimulator cells are cells from a different donor which initiates an immune response by presenting antigen to responder cells. The ability of treated or untreated PBMNC to proliferate in response to these stimuli was tested. Responder cells proliferate in response to antigen presentation by a stimulator cell.
To measure the proliferative response to PHA, PBMNC were adjusted to 1×106/ml in RPMI-10% fetal calf serum, and Phytohemagglutinin-M(PHA-M) (Gibco) was diluted 1:40 in R10 medium. Equal volumes (100 μL) of each were transferred to triplicate flat bottomed wells of 96 well micro plates (Falcon Primeria). After incubating for 3 days under 10% CO2 the wells were pulsed for 4 hours with luCi of 3H-thymidine (Perkin Elmer/NEN). The cells were harvested on a multi well harvester apparatus (Brandel Scientific), and uptake of the isotope was quantitated on a liquid scintillation counter (Beckman).
To measure the proliferative response to allogeneic stimulator PBMNC, 1×107 cells/ml of allogeneic stimulator cells were treated with mitomycin C (Sigma) 33 μg/ml in R10 medium for 30 minutes at 37° C. Mitomycin C was removed by washing 2× with 30 ml of R10 medium. The experimental treated and control PBMNC as well as the allogeneic mitomycin C treated cells were adjusted to 1×106 cells/ml in R10 medium. The treated and control PBMNC were transferred in 100 μL volumes to triplicate flat bottom wells (Falcon Primaria). After adding an equal volume of the mitomycin C allogeneic stimulators the plates were incubated for 5 days at 37° C. under 10% CO2, and cell proliferation assessed by uptake of luCi of 3H-thymidine.
Table 2B below shows that treated PBMNC were unable to proliferate in response to either PHA or allogeneic stimulator cells.
TABLE 2B
Experi-
ment
No.
Untreated cells
Treated cells
+PHA
−PHA
+PHA
−PHA
1
42349 ± 3947
643 ± 31
1387 ± 86
1070 ± 187
2
108946 ± 989
396 ± 37
222 ± 56
225 ± 27
3
117373 ± 14215
589 ± 27
326 ± 4
336 ± 84
Mean
89556
543
645
544
±SD
41099
130
644
459
+Stimulators
−Stimulators
+Stimulators
−Stimulators
1
41598 ± 4697
5019 ± 3391
430 ± 73
450 ± 191
2
38089 ± 19733
6813 ± 1880
322 ± 137
349 ± 88
3
45652 ± 5515
596 ± 143
234 ± 43
251 ± 80
Mean
41780
4143
329
350
±SD
3784
3200
98
100
While treatment with riboflavin and light appears to inhibit the proliferation of treated PBMNCs, there remains the possibility that although the treated donor cells themselves may not proliferate, they may act as stimulator cells to other responder immune cells in a transfusion recipient, causing the recipient's body to mount an immune response to the treated transfused cells, causing ultimate rejection of the cells. This was tested by measuring the ability of the treated and untreated PBMNC to stimulate the proliferation of allogeneic responder PBMNC.
The assay was set up as described in section 2B. above. The experimental treated and control PBMNC as well as the allogeneic responder PBMNC were adjusted to 1×106 cells/ml in R10 medium. The treated and control PBMNC were transferred in 100 μL volumes to triplicate flat bottom wells (Falcon Primaria). After adding an equal volume of the allogeneic responder PBMNC the plates were incubated for 5 days at 37° C. under 10% CO2, and cell proliferation assessed by uptake of luCi of 3H-thymidine as for PHA (see above).
The results in Table 2C below show that the treated cells do not stimulate proliferation of allogeneic responder cells.
TABLE 2C
Experiment
Untreated cells
Treated cells
No.
+Responder
−Responder
+Responder
−Responder
1
55483 ± 3232
436 ± 126
548 ± 221
436 ± 126
2
50690 ± 750
3028 ± 3323
806 ± 619
3028 ± 3323
3
55295 ± 6149
412 ± 65
510 ± 90
412 ± 65
Mean
53823
1292
621
1292
±SD
2714
1503
161
1503
While the results obtained using the in vitro assays above demonstrate that treatment with riboflavin and light inactivates the treated PBMNC, it remains important to confirm these results with an assay that measures the in vivo responsiveness of the treated or untreated PBMNC. One such assay is to measure xenogeneic GVHD responses in mice which have been transfused with human PBMNCs. These mice (Rag−/− double knockout mice) lack T and B lymphocytes as well as natural killer (NK) cells, γc−/− and previous studies have shown that the injection of human WBC into these mice results in xenogeneic GVHD that is characterized by xenoreactive T cells.
Characterization of Donor Cells
White blood cells were obtained from the leukocyte reduction chamber of a Trima® machine following platelet donation from 6 different human donors. The cells were separated into the mononuclear cell fraction using Ficoll-Hypaque discontinuous centrifugation and then placed in a platelet bag containing autologous plasma. Treated cells received treatment with riboflavin and light, while control cells received no treatment.
Rag2−/−γc−/− double knockout mice were obtained from Taconic (Germantown, N.Y.).
Injection of Cells
The recipient mice received 350 cGy irradiation the night before injection. The number of donor cells either treated or untreated containing 30×106 CD3+ cells was determined and 3 mice were injected intraperitoneally with that number of cells per group. Each injected mouse was assigned a number. Mice receiving treated cells were given the prefix T, mice receiving untreated cells were given the prefix C.
Analysis of GVHD Response
Mice were weighed twice per week and observed regularly. Recipient mice that demonstrated a dramatic weight loss (usually >20%) and exhibited lethargy, hunched posture and ruffled fur were considered to have developed a GVHD response and were euthanized. Blood was collected by cardiac puncture using a heparinized syringe. In addition, the spleen, bone marrow from the femurs, liver and any intestinal lymphoid tissue that was observed was collected. The weight of the spleen was determined and then single cell suspensions were prepared from all organs by rubbing the organ on a screen. The liver mononuclear cell population was obtained from the liver cells by centrifuging the cells over a Ficoll-Hypaque discontinuous gradient and collecting the cells at the interface. The blood was centrifuged and the plasma collected and stored at −20° C. The buffy coat cells were collected and the red blood cells were lysed using RBC Lysis solution (Gentra, Minneapolis, Minn.). All mice that did not exhibit a GVHD response were euthanized by day 63 (designated as N/A in table below) and a similar analysis was conducted on all of these recipient mice as well.
Analysis of Cells
Cells were initially stained with PECy5 or PE anti-human CD45 or isotype control and then analyzed for the presence of human CD45+ cells in the organs of the transfused mice. CD45+ is a marker found on all leukocytes. The results are shown in Table 3A below.
TABLE 3A
% CD45
% CD45
Mouse
Death
Spleen
% CD45
% CD45
bone
Intestinal
% CD45
No.
Treatment
(day)
weight
Hct
spleen
blood
marrow
lymphoid
liver
Donor 1
T1
Yes
N/A
0.05
57
0.0
0.0
0.0
ND
ND
T2
Yes
N/A
0.02
57
0.0
0.0
0.0
ND
ND
T3
Yes
N/A
0.04
55
0.0
0.0
0.0
ND
ND
C4
No
55
0.59
21
1.9
0.2
0.8
66.8
6.6
C5
No
N/A
0.03
20
0.1
0.0
0.2
ND
0.01
C6
No
57
0.79
23
3.0
0.3
0.6
48.4
3.3
Donor 3
T7
Yes
N/A
0.04
55
0.0
0.0
0.0
ND
ND
T8
Yes
N/A
0.20
48
0.0
0.0
0.0
ND
ND
T9
Yes
N/A
0.18
50
0.0
0.0
0.0
ND
ND
C10
No
43
ND
68
54.9
3.3
1.7
67.8
35.7
C11
No
19
ND
ND
11.2
ND
ND
ND
ND
C12
No
48
0.04
42
42.1
3.9
7.36
45.8
70.7
Donor 4
T13
Yes
N/A
0.03
56
0.0
0.0
0.0
ND
ND
T14
Yes
N/A
0.02
56
0.0
0.0
0.0
ND
ND
T15
Yes
N/A
0.02
57
0.0
0.0
0.0
ND
ND
C16
No
61
0.07
25
31.3
4.7
3.2
26.8
7.2
C17
No
58
0.09
26
36.9
4.3
3.5
82.6
7.8
C18
No
58
0.02
34
47.6
8.1
16.6
91.3
ND
Donor 5
T19
Yes
37
ND
ND
0.0
0.0
0.0
ND
ND
T20
Yes
N/A
0.11
52
0.0
0.0
0.0
ND
ND
T21
Yes
N/A
0.19
53
0.0
0.0
0.0
ND
ND
C22
No
42
0.12
6
15.5
16.7
3.7
91.0
19.1
C23
No
42
0.30
6
4.7
7.6
1.1
44.5
14.9
C24
No
51
ND
ND
ND
ND
ND
ND
ND
Donor 6
T25
Yes
N/A
0.04
52
0.0
0.0
0.0
ND
ND
T26
Yes
N/A
0.03
53
0.0
0.0
0.0
ND
ND
T27
Yes
N/A
0.01
52
0.0
0.0
0.0
ND
ND
C28
No
60
0.20
40
38.3
1.5
1.9
43.5
20.9
C29
No
60
0.31
38
39.8
1.0
6.0
1.4
36.5
C30
No
38
0.68
13
47.6
8.1
16.6
91.32
ND
The clinical evaluation of the mice found that one from 15 recipients per group injected with either untreated or treated cells died of unknown causes. No weight loss or human CD45+ cells were detected in the remaining 14 recipients injected with treated cells. These mice had an average spleen weight of 0.07±0.07 g and an average hematocrit of 53.8±2.8%. In contrast 12 of 14 recipients injected with untreated cells were euthanized because of GVHD symptoms including >20% loss of weight and hunched posture, ruffled fur and lethargy and 13 of 14 recipients had high levels of human cell chimerism. This recipient group had an average spleen weight of 0.27±0.27 g, which is significantly larger (p=0.0138) than that of the treated mice (p value <0.02), and an average hematocrit of 27.9±16.9%, which is also significantly lower than that of the treated mice (p value <0.02).
A summary of the results is shown in the following table:
No. of
No. of dead
GVHD
Body
survivors at
during study
death
weight loss
Total mice No.
end of study
GVHD
non-GVHD
rate
rate
Treated Group
15
14
0
1
0/14
0/14
Control Group
15
2
12
1
12/14
13/14
If human CD45+ cells were detected and enough cells remained for further study, a second battery of staining was done in which the expression of leukocyte subpopulation markers including CD3 (all T cells), CD4 (T helper cells), CD8 (cytotoxic cells), CD14 (macrophages), CD19 (B cells), and CD56 (NK cells) was measured. The data shown in Table 3B below is expressed as % of total cells.
TABLE 3B
Source of cells
Mouse No.
% CD3
% CD4
% CD8
% CD56
% CD19
% CD14
Donor 1
Spleen
C4
1.64
0.62
0.88
0.05
0.25
1.9
Intestinal
C4
20.30
8.47
11.07
75.36
Spleen
C6
0.81
0.54
0.57
3.38
Intestinal
C6
8.63
6.09
1.99
32.26
Donor 3
Blood
C10
1.24
0.3
1.16
2.22
Spleen
C10
51.42
14.72
38.90
6.26
Liver
C10
5.68
3.08
4.14
25.90
BM
C10
1.98
0.58
0.58
1.48
Intestinal
C10
6.06
3.24
6.04
37.24
Blood
C12
1.23
0.22
1.14
7.5
3.82
Spleen
C12
33.07
6.52
24.16
6.09
18.03
Liver
C12
2.28
1.82
7.42
24.86
BM
C12
3.32
0.68
3.19
3.43
Intestinal
C12
6.52
1.85
4.86
22.06
Donor 4
Spleen
C16
5.09
3.25
2.09
28.21
BM
C16
0.40
0.34
Intestinal
C16
12.28
3.52
1.06
32.84
Blood
C17
0.90
0.28
Spleen
C17
2.80
3.65
1.96
14.05
Liver
C17
1.05
0.34
BM
C17
0.97
0.39
Intestinal
C17
4.57
3.72
1.68
7.74
Blood
C18
2.71
0.32
0.23
BM
C18
1.00
0.59
0.48
1.48
Intestinal
C18
3.59
0.85
0.85
2.15
Donor 5
Blood
C22
5.84
4.54
1.25
2.33
0.71
Spleen
C22
14.62
11.25
4.67
Liver
C22
18.94
17.12
2.52
BM
C22
2.74
2.98
1.50
Intestinal
C22
43.25
40.27
16.07
5.21
71.2
Blood
C23
7.76
5.74
1.31
Spleen
C23
4.55
2.96
2.41
Liver
C23
13.08
11.30
2.24
Donor 6
Blood
C28
2.8
0.36
1.98
2.42
Spleen
C28
46.6
7.9
39.9
11.0
Liver
C28
14.46
1.50
10.86
19.9
Intestinal
C28
31.38
8.54
18.26
25.22
Blood
C29
9.23
1.79
5.84
Spleen
C29
19.68
5.86
11.96
Liver
C29
3.56
3.08
0.32
29.3
BM
C29
6.70
2.22
5.76
Blood
C30
8.02
6.46
0.98
Spleen
C30
42.96
29.84
27.2
BM
C30
13.96
9.9
6.08
Intestinal
C30
22.84
14.24
10.52
10.22
Results
When examined in a donor by donor fashion, the results indicate that the makeup of donor cells transfused can influence the type of cells that are present in different lymphoid organs and in which organs they will be found. CD3+ cells were found in varying numbers in the different lymphoid compartments and CD19+ cells were primarily found in the intestinal lymphoid tissue and in the liver. In contrast to these findings, no macrophages were found and only a limited number of CD56+ cells in a few mice.
Plasma of recipient mice was collected when the mice were euthanized either because they were demonstrating symptoms of GVHD or because the experiment was terminated. The levels of cytokines associated with inflammation and acute phase response were measured using the CBA cytometric bead assay kits available from BD Biosciences. The measurement of cytokines associated with the inflammation response is another approach to determine if recipient mice develop an acute phase response to transplanted human cells and also helps define the nature of the xenogeneic GVHD response.
Results are shown in Table 3C below. As can be seen, human cells treated with riboflavin and light do not cause a significant production of inflammatory cytokines.
TABLE 3C
Cytokine concentration
in plasma (pg/ml)
Mouse No.
Treatment
IL-1β
IL-6
IL-8
IL-12p70
Donor 1
T1
Yes
0.1
0.1
0.1
0.1
T2
Yes
32.5
0.1
2.5
4.8
T3
Yes
0.1
0.1
1.5
0.1
C5
No
0.1
0.1
3.2
4.9
C4
No
0.1
6.3
28.4
8.7
C6
No
0.1
390.6
104
158.8
Donor 3
T7
Yes
41.2
2.5
4.3
7.3
T8
Yes
22.6
0.1
4
7.3
T9
Yes
0.1
0.1
2.9
5
C10
No
205.5
8.0
236.2
78.9
C12
No
396.8
13.2
189.6
149.6
Donor 4
T13
Yes
8.4
0.1
3.3
6.2
T14
Yes
0.1
0.1
2.7
6.3
T15
Yes
12.9
0.1
2.2
4.8
C16
No
0.1
300
105
500
C17
No
0.1
162.6
22.6
17.4
C18
No
40
110
100
11
Donor 5
T20
Yes
8.4
0.1
3.2
5.6
T21
Yes
33.9
0.1
3.7
5.7
C22
No
0.1
0.1
3.8
4.8
C23
No
0.1
0.1
4.1
4.3
Donor 6
T25
Yes
0.1
0.1
2
3.4
T26
Yes
0.1
0.1
2.6
2.8
T27
Yes
21.3
2.2
4.4
8.8
C28
No
65
60
80
11
C29
No
0.1
4.2
3.9
4.3
C30
No
0.1
0.1
3.8
3.5
Another measure of human cell chimerism is to determine the level of human IgG and IgM present in the plasma of the recipient mice using an ELISA assay. IgG and IgM are antibodies produced by B cells in response to an antigen. The results shown in Table 3D below indicate that no human IgG (0.10±0.24 ng/ml) or IgM (0.27±0.68 ng/ml) was detected in the plasma of mice injected with treated cells. High levels of IgG (5980.8±2780.8 ng/ml) or IgM (1389.6±845.3 ng/ml) were detected in the plasma of all recipients in which human cell chimerism was detected (these mice received untreated cells).
TABLE 3D
Mice No.
T1
T2
T3
T7
T8
T9
T13
T14
T15
T19
T 20
T21
T25
T26
T27
IgG
0
0
0
0
0
0
0.2
0
0
ND
0
0
0
0
0.9
(ng/ml)
IgM
0
0
0
0
0.1
0
0
0
0
ND
0
2.1
0
2.1
0
(ng/ml)
Mice No.
C4
C5
C6
C10
C11
C12
C16
C17
C18
C22
C23
C24
C28
C29
C30
IgG
5682
0
6134
4241
ND
4102
9087
10202
7283
8973
7034
ND
3478
4221
7314
(ng/ml)
IgM
2189
0
1070
1383
ND
631
685
1500
800
2853
1676
ND
809
1746
2724
(ng/ml)
In vitro studies showed that treatment with riboflavin and light abolished the functional activity of human WBC cells. Consistent with these findings, treated human WBCs did not appear to generate a xenogeneic GVHD response in vivo following injection of these cells into immunodeficient Rag2−/−γc−/− mice recipients. The lack of a xenogeneic GVHD response in the recipient mice also correlated with a lack of human cell chimerism as measured by immunophenotyping. The plasmas of these recipient mice were also found to lack human cytokines or immunoglobulins. These findings indicate that blood cells treated with riboflavin and light are unable to respond in vitro and in vivo and therefore should not induce TA-GVHD in a transfusion recipient.
This study evaluated the ability of treatment with riboflavin and light to modify the immune response to allogeneic solid organ transplants in rats.
Over a 10 week period, Lewis rats received 8 transfusions (shown by the small arrows in
As can be seen in
In summary, treatment with riboflavin and light prevented the development of an Ig response in transplanted animals This inhibition of an Ig response, in particular IgG, shows that pre-transfusion of a solid organ recipient with platelets treated with riboflavin and light helps to prevent alloimmunization to the transplanted allogeneic organ. The lack of rejection of the allogeneic heart transplant in the absence of an IgG response indicates that the pre-treatment may be effective in preventing alloimmune refractoriness to platelets and pre-sensitization to transplants.
Goodrich, Raymond P., Li, Junzhi
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
1733239, | |||
1961700, | |||
2056614, | |||
2212330, | |||
2340890, | |||
2417143, | |||
2786014, | |||
3057865, | |||
3456053, | |||
3629071, | |||
3683177, | |||
3683183, | |||
3705985, | |||
3776694, | |||
3852032, | |||
3864081, | |||
3874384, | |||
3894236, | |||
3926556, | |||
3927325, | |||
4061537, | Jul 18 1975 | Behringwerke Aktiengesellschaft | Polyionic isotonic salt solution |
4112070, | Jun 08 1977 | Research Corporation | Blood preservation system |
4124598, | Oct 20 1976 | Hoffmann-La Roche Inc. | Psoralens |
4139348, | Nov 28 1975 | Massachusetts Institute of Technology | Electrochemical process and apparatus to control the chemical state of a material |
4159320, | Mar 01 1977 | Bayer Aktiengesellschaft | Activated MASF |
4169204, | Oct 20 1976 | Regents of the University of California | Psoralens |
4173631, | Aug 23 1976 | Merck & Co., Inc. | 7-Methyl-8-methylamino-10-(1'-D-ribityl)isoalloxazine |
4181128, | Nov 28 1975 | Massachusetts Institute of Technology | Virus inactivation applicator and the like |
4196281, | Oct 20 1976 | Regents of the University of California | Psoralens |
4264601, | Jun 12 1979 | BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA, THE | Antihypertensive agents and their use in treatment of hypertension |
4267269, | Feb 05 1980 | Baxter Travenol Laboratories, Inc. | Red cell storage solution |
4312883, | Aug 20 1979 | Consiglio Nazionale delle Ricerche | Furocoumarin for the photochemotherapy of psoriasis and related skin diseases |
4321918, | Oct 23 1979 | Process for suppressing immunity to transplants | |
4321919, | Dec 11 1979 | BOURKE, FREDERIC A , JR ,; BOURKE, ELEANOR F ; EDELSON, RICHARD L ; EDELSON, RUTH C | Method and system for externally treating human blood |
4336809, | Mar 17 1980 | Burleigh Instruments, INC | Human and animal tissue photoradiation system and method |
4381004, | Jan 15 1981 | AUTOMEDIX SCIENCES, INC , A CORPORATION OF ILLINOIS | Extracorporeal system for treatment of infectious and parasitic diseases |
4390619, | Sep 28 1981 | HAIGHT, JAMES CLIFFORD | Leukocyte or platelet storage using ion-exchange resins |
4398031, | Jun 11 1980 | The Regents of the University of California | Coumarin derivatives and method for synthesizing 5'-methyl psoralens therefrom |
4398906, | Dec 11 1979 | BOURKE, FREDERIC A JR ; BOURKE, ELEANOR F ,; EDELSON, RICHARD L ,; EDELSON TRUST | Method for externally treating the blood |
4402318, | Nov 25 1975 | Method for inactivating viruses, bacteria, etc. in vitro and production of vaccines | |
4407282, | Nov 28 1975 | Method and apparatus for generating superoxide and hydroxyl ions in solution | |
4421987, | Mar 17 1980 | THERA PATENT GMBH & CO KG GESELLSCHAFT FUR INDUSTRIELLE SCHUTZRECHE | Apparatus for irradiating dental objects |
4424201, | Nov 28 1978 | Rockefeller University | Employment of a mereyanine dye for the detection of malignant leukocytic cells |
4428744, | Dec 11 1979 | BOURKE, FREDERIC A JR ; BOURKE, ELEANOR F ; EDELSON, RICHARD L ; EDELSON TRUST | Method and system for externally treating the blood |
4432750, | Dec 02 1981 | Baxter Travenol Laboratories, Inc. | Additive sterol solution and method for preserving normal red cell morphology in whole blood during storage |
4456512, | Mar 10 1982 | The Dow Chemical Company | Photochemical reactor and method |
4457918, | May 12 1982 | GENERAL HOSPITAL CORPORATION, FRUIT ST , BOSTON, 02114 | Glycosides of vitamins A, E and K |
4464166, | Dec 11 1979 | BOURKE FREDRIC A ,; BOURKE, ELEANOR F ; EDELSON RICHARD L ; TRUST EDELSON,THE | Method for externally treating the blood |
4467206, | Dec 14 1981 | MCNEILAB, INC | Method and apparatus for the irradiation of fluids |
4474153, | Oct 09 1981 | Mazda Motor Corporation | Idling speed controlling system for internal combustion engine |
4481167, | Apr 16 1979 | The Dow Chemical Company | Sanitizing complexes of polyoxazolines or polyoxazines and polyhalide anions |
4493981, | Mar 05 1984 | General Electric Company | Boil dry protection system for cooking appliance |
4568328, | Oct 29 1984 | Extracorporeal Medical Specialties, Inc. | Automated photophoresis blood portion control methods and apparatus |
4572899, | Jul 07 1982 | NPBI NEDERLANDS PRODUKTIELABORATORIUM VOOR BLOEDTRANSFUSIEAPPARATUUR EN INFUSIEVLOEISTOFFEN B V , A DUTCH CORPORATION | Aqueous solution for suspending and storing cells, especially erthrocytes |
4573960, | Oct 29 1984 | Extracorporeal Medical Specialties, Inc. | Three phase irradiation treatment process |
4573961, | Oct 29 1984 | Extracorporeal Medical Specialties, Inc. | Electronic control methods for puvapheresis apparatus |
4573962, | Oct 29 1984 | Extracorporeal Medical Specialties, Inc. | Cassette drawer assembly for photoactivation patient treatment system |
4576143, | Oct 05 1984 | Method of immune modification by means of extracorporeal irradiation of the blood | |
4578056, | Oct 29 1984 | Extracorporeal Medical Specialties, Inc. | Patient photopheresis treatment apparatus and method |
4585735, | Jul 19 1984 | AMERICAN NATIONAL RED CROSS, A CORP OF U S | Prolonged storage of red blood cells |
4596547, | Oct 29 1984 | McNeilab, Inc. | Valve apparatus for photoactivation patient treatment system |
4604356, | Dec 21 1983 | Miles Laboratories, Inc. | Purification of flavin adenine dinucleotide synthetase |
4608255, | Jan 31 1985 | American National Red Cross | Biocompatible method for in situ production of functional platelets and product produced thereby lacking immunogenicity |
4609372, | Oct 13 1983 | Pall Corporation | Heat sterilizable storage solution for red blood cells |
4612007, | Dec 11 1979 | BOURKE, FREDERIC A ,; BOURKE, ELEANOR F ; EDELSON, RICHARD L ; EDELSON TRUST, THE; BOURKE, FREDERICK A | Method and system for externally treating the blood |
4613322, | Dec 11 1979 | BOURKE, FREDERIC A ; BOURKE, ELEANOR F ; EDELSON, RICHARD L ; EDELSON TRUST, THE | Method and system for externally treating the blood |
4614190, | Sep 08 1981 | INNOVATIVE HEALTH CONCEPTS, INC | Photoradiation method and arrangement |
4623328, | Oct 29 1984 | McNeilab, Inc. | Pump monitor for photoactivation patient treatment system |
4626431, | Oct 25 1983 | BURROUGHS WELLCOME CO , A CORP OF NC | Storage of red blood cells |
4642171, | Sep 18 1984 | Kabushiki Kaisha Toshiba | Phototreating apparatus |
4645649, | Apr 27 1981 | G-C Dental Industrial Corp.; Mitsubishi Rayon Co., Ltd. | Apparatus for curing resin films coated on dental resin prosthesis |
4648992, | Feb 17 1984 | Ciba Specialty Chemicals Corporation | Water-soluble phthalocyanine compounds |
4649151, | Sep 27 1982 | HEALTH RESEARCH, INC , | Drugs comprising porphyrins |
4651739, | Apr 08 1985 | President and Fellows of Harvard College | Light-induced killing of carcinoma cells |
4675185, | Dec 06 1985 | Baxter Travenol Laboratories, Inc. | Solution for stabilizing red blood cells during storage |
4683195, | Oct 25 1985 | Roche Molecular Systems, Inc | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
4683202, | Mar 28 1985 | Roche Molecular Systems, Inc | Process for amplifying nucleic acid sequences |
4683889, | Dec 11 1979 | Frederic A., Bourke, Jr.; Eleanor F., Bourke; Richard L., Edelson; The Edelson Trust | Method and system for externally treating the blood |
4684521, | Dec 11 1979 | Frederic A., Bourke, Jr.; Eleanor F., Bourke; Richard L., Edelson | Method and system for externally treating the blood |
4693981, | Dec 20 1983 | MILES INC | Preparation of inactivated viral vaccines |
4695460, | Mar 19 1986 | AMERICAN RED CROSS, NATIONAL HEADQUARTERS, 17TH & D STREETS, N W , WASHINGTON, DC 20006, A CORP OF DC | Synthetic, plasma-free, transfusible platelet storage medium |
4704352, | Jun 25 1985 | BAXTER TRAVENOL LABORATORIES, INC , A CORP OF DELAWARE | L-ascorbate-2-phosphate salts in blood cell storage |
4708715, | Oct 29 1984 | MCNEILAB, INC | Light array assembly for photoactivation patient treatment system |
4726949, | Aug 26 1986 | Baxter Travenol Laboratories, Inc. | Irradiation of blood products |
4727027, | Oct 07 1985 | MILES INC | Photochemical decontamination treatment of whole blood or blood components |
4737140, | Oct 29 1984 | McNeilab, Inc. | Irradiation chamber for photoactivation patient treatment system |
4748120, | May 02 1983 | MILES INC | Photochemical decontamination treatment of whole blood or blood components |
4769318, | Jun 03 1986 | Ube Industries, Ltd.; The Japanese Red Cross Society | Additive solution for blood preservation and activation |
4775625, | Nov 21 1986 | MEDICAL COLLEGE OF WISCONSIN, INC , THE, MILWAUKEE, WISCONSIN A CORP OF WI | Inactivating enveloped viruses with a merocyanine dye |
4784852, | Oct 06 1981 | Composition for human supply of selenium as trace element | |
4788038, | Sep 21 1984 | CLEARFLOW, INC | Process for killing cells |
4828976, | Nov 09 1983 | THOMAS JEFFERSON UNIVERSITY, A CORP OF PA | Glucose free media for storing blood platelets |
4831268, | Mar 20 1985 | VEB Elektro-und Metallgerate Ilmenau | Method for the physiologically & therapeutically effective irradiation of corporeal venous blood |
4833165, | Oct 07 1987 | Pall Corporation | Method of inactivating HTLV-III virus in blood |
4861704, | Sep 01 1983 | The Trustees of Columbia University in the City of New York | Processes for development of acceptance of transplanted organs and tissues |
4866282, | Aug 26 1986 | Baxter International Inc. | Irradiation of blood products |
4878891, | Jun 25 1987 | Baylor Research Institute | Method for eradicating infectious biological contaminants in body tissues |
4880788, | Oct 30 1987 | Baylor College of Medicine | Method for preventing and treating thrombosis |
4915683, | Nov 21 1986 | MEDICAL COLLEGE OF WISCONSIN, INC , THE | Antiviral method, agents and apparatus |
4921473, | Feb 02 1989 | Therakos, Inc. | Multicomponent fluid separation and irradiation system |
4925665, | Jun 22 1989 | Thomas Jefferson University | Glucose free primary anticoagulant for blood containing citrate ions |
4930516, | Nov 13 1985 | LASER DIAGNOSTIC INSTRUMENTS INC , A CORP OF NEW JERSEY | Method for detecting cancerous tissue using visible native luminescence |
4946438, | Sep 01 1983 | The Trustees of Columbia University in the City of New York | Process for development of acceptance of transplanted organs and tissues |
4948980, | Jul 20 1988 | Wedeco Gesellschaft fur Entkeimungsanlagen m.b.H. | Apparatus for irradiating media with UV-light |
4950665, | Oct 28 1988 | Oklahoma Medical Research Foundation | Phototherapy using methylene blue |
4952812, | Aug 26 1986 | Fenwal, Inc | Irradiation of blood products |
4960408, | Jan 10 1989 | Treatment methods and vaccines for stimulating an immunological response against retroviruses | |
4961928, | Mar 19 1986 | American National Red Cross | Synthetic, plasma-free, transfusible storage medium for red blood cells and platelets |
4978688, | Mar 24 1989 | HEMASURE INC | Method of treating white blood cells |
4986628, | Aug 23 1988 | RADIOTEKHNICHESY INSTITUT IMENI AKADEMIKA A L MINTSA AKADEMII NAUK SSSR | Light guide device for phototherapy |
4992363, | Nov 09 1983 | Thomas Jefferson University | Method for preparing glucose free media for storing blood platelets |
4994367, | Oct 07 1988 | AMERICAN NATIONAL RED CROSS, A CORP OF THE CONGRESS OF THE UNITED STATES OF AMERICA | Extended shelf life platelet preparations and process for preparing the same |
4998931, | Jul 05 1985 | PUGET SOUND BLOOD CENTER AND PROGRAM, THE | Method of reducing immunogenicity and inducing immunologic tolerance |
4999375, | Apr 11 1989 | Therakos, Inc | Psoralen reagent compositions for extracorporeal treatment of blood |
5011695, | Feb 22 1988 | Biotest Pharma GmbH | Sterilization of blood and its derivatives with vitamins |
5017338, | Apr 11 1986 | The Center for Blood Research, Inc. | Platelet concentrates |
5020995, | Jan 18 1989 | Endo Technic International Corporation | Surgical treatment method and instrument |
5030200, | Jun 25 1987 | Baylor Research Institute | Method for eradicating infectious biological contaminants in body tissues |
5039483, | Mar 10 1987 | INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, NY 10504, A CORP OF NY | Antiprotozoan method |
5041078, | Mar 06 1989 | Board of Regents, The University of Texas System | Photodynamic viral deactivation with sapphyrins |
5089146, | Feb 12 1990 | Pall Corporation | Pre-storage filtration of platelets |
5089384, | Nov 04 1988 | Amoco Corporation | Method and apparatus for selective cell destruction using amplified immunofluorescence |
5092773, | Jan 19 1989 | LASER MEDICAL TECHNOLOGY, INC | Method and apparatus for filling a tooth canal |
5114670, | Aug 30 1990 | LIQUI-BOX B-BAR-B CORPORATION | Process for sterilizing surfaces |
5114957, | May 08 1990 | VYREXIP HOLDINGS, INC | Tocopherol-based antiviral agents and method of using same |
5120649, | May 15 1990 | New York Blood Center, Inc. | Photodynamic inactivation of viruses in blood cell-containing compositions |
5123902, | Sep 13 1988 | Carl-Zeiss-Stiftung | Method and apparatus for performing surgery on tissue wherein a laser beam is applied to the tissue |
5133932, | Mar 29 1988 | Iatros Limited | Blood processing apparatus |
5147776, | Feb 26 1990 | University of Iowa Research Foundation | Use of 2,5-anhydromannitol for control of pH during blood storage |
5149718, | Jan 19 1989 | NEW YORK UNIVERSITY, A CORP OF NY | Biological fluid purification system |
5150705, | Jul 12 1989 | Apparatus and method for irradiating cells | |
5166528, | Oct 04 1991 | R SQUARED HOLDING, INC | Microwave-actuated ultraviolet sterilizer |
5184020, | Oct 26 1989 | Cerus Corporation | Device and method for photoactivation |
5185532, | May 21 1991 | PLATINUM CORPORATION A NV CORPORATION | Dental instrument sterilizer |
5192264, | Oct 06 1989 | The Beth Israel Hospital Association; BETH ISRAEL HOSPITAL ASSOCIATION, THE | Methods and apparatus for treating disease states using oxidized lipoproteins |
5211960, | Nov 29 1988 | SCRIPPS RESEARCH INSTITUTE, THE, A CORP OF CA | Stabilization of leukocytes |
5216251, | Oct 18 1991 | MOLECUCARE INC | Apparatus and method for a bio-conditioning germicidal dryer |
5229081, | Feb 12 1988 | Regal Joint Co., Ltd. | Apparatus for semiconductor process including photo-excitation process |
5232844, | May 15 1990 | New York Blood Center | Photodynamic inactivation of viruses in cell-containing compositions |
5234808, | Oct 30 1991 | Thomas Jefferson University | Acetate addition to platelets stored in plasma |
5236716, | Feb 12 1992 | Pall Corporation | Platelets concentrate with low white blood cells content |
5247178, | Dec 12 1991 | Fusion UV Systems, Inc | Method and apparatus for treating fluids by focusing reflected light on a thin fluid layer |
5248506, | Mar 19 1986 | AMERICAN RED CROSS, NATIONAL HEADQUARTERS | Synthetic, plasma-free, transfusible storage medium for red blood cells and platelets |
5250303, | Oct 06 1989 | AMERICAN NATIONAL RED CROSS, THE | Procedure for storing red cells with prolonged maintenance of cellular concentrations of ATP and 2,3 DPG |
5258124, | Dec 06 1991 | CALGON CARBON CANADA INC , A CANADIAN CORPORATION | Treatment of contaminated waste waters and groundwaters with photolytically generated hydrated electrons |
5269946, | May 22 1991 | Baxter Healthcare Corporation | Systems and methods for removing undesired matter from blood cells |
5273713, | Jan 18 1989 | Laser Medical Technology, Inc. | Water purification and sterilization process |
5281392, | Mar 10 1986 | INTERNATIONAL MEDICAL TECHNOLOGIES CORP | Method for disinfecting red blood cells, blood products, and corneas |
5288605, | Mar 02 1992 | Cerus Corporation | Methods for inactivating bacteria in blood preparations with 8-methoxypsoralen |
5288647, | May 02 1988 | Agilent Technologies, Inc | Method of irradiating biological specimens |
5290221, | Dec 20 1990 | Fenwal, Inc | Systems for eradicating contaminants using photoactive materials in fluids like blood |
5300019, | Dec 20 1990 | Fenwal, Inc | Systems and methods for eradicating contaminants using photoactive materials in fluids like blood |
5304113, | Nov 21 1986 | The MCW Research Foundation, Inc. | Method of eradicating infectious biological contaminants |
5318023, | Apr 03 1991 | CEDARS-SINAI MEDICAL CENTER, A CORP OF CA | Apparatus and method of use for a photosensitizer enhanced fluorescence based biopsy needle |
5340716, | Jun 20 1991 | Siemens Healthcare Diagnostics Products GmbH | Assay method utilizing photoactivated chemiluminescent label |
5342752, | Apr 16 1990 | Baxter International Inc | Method of inactivation of viral blood contaminants using acridine deriatives |
5344752, | Oct 30 1991 | Thomas Jefferson University | Plasma-based platelet concentrate preparations |
5344918, | Dec 16 1991 | Association d'Aquitaine pour le Developpement de la Transfusion Sanguine | Process for the manufacture of a high-purity activated factor VII concentrate essentially free of vitamin K-dependent factors and factors VIIIC and VIIICAg |
5358844, | Feb 18 1993 | BRIGHAM AND WOMEN S HOSPITAL, INC | Preservation of blood platelets |
5360734, | Jun 21 1991 | Fenwal, Inc | Method for inactivating pathogens in erythrocytes using photoactive compounds and plasma protein reduction |
5366440, | Oct 06 1989 | The Beth Israel Hospital Association | Methods for treating disease states using oxidized lipoproteins in conjunction with chemotherapeutic effector agents |
5372929, | Jan 27 1992 | Cerus Corporation | Methods for measuring the inactivation of pathogens |
5376524, | Apr 01 1991 | Thomas Jefferson University | Platelet storage medium containing acetate and phosphate |
5378601, | Jul 24 1992 | Montefiore Medical Center | Method of preserving platelets with apyrase and an antioxidant |
5399719, | Jun 28 1993 | Cerus Corporation | Compounds for the photodecontamination of pathogens in blood |
5418130, | Apr 16 1990 | Baxter International Inc | Method of inactivation of viral and bacterial blood contaminants |
5419759, | Nov 17 1988 | Apparatus and methods for treatment of HIV infections and AIDS | |
5427695, | Jul 26 1993 | Fenwal, Inc | Systems and methods for on line collecting and resuspending cellular-rich blood products like platelet concentrate |
5433738, | Jul 12 1989 | Method for irradiating cells | |
5459030, | Mar 02 1992 | Cerus Corporation | Synthetic media compositions for inactivating bacteria and viruses in blood preparations with 8-methoxypsoralen |
5466573, | Apr 01 1991 | Thomas Jefferson University | Platelet storage method in a medium containing acetate and phosphate |
5474891, | Oct 30 1991 | Thomas Jefferson University | Plasma-based platelet concentrate preparations with additive |
5482828, | Mar 02 1992 | Cerus Corporation | Synthetic media compositions and methods for inactivating bacteria and viruses in blood preparations with 8-methoxypsoralen |
5487971, | Mar 19 1986 | American National Red Cross | Synthetic, plasma-free, transfusible storage medium for red blood cells and platelets |
5494590, | Jun 11 1992 | Becton Dickinson and Company | Method of using anticoagulant solution in blood separation |
5503721, | Jul 18 1991 | Cerus Corporation | Method for photoactivation |
5512187, | May 08 1991 | Fenwal, Inc | Methods for processing red cell products for long term storage free of microorganisms |
5516629, | Apr 16 1990 | Baxter International Inc | Photoinactivation of viral and bacterial blood contaminants using halogenated coumarins |
5527704, | Dec 06 1994 | Fenwal, Inc | Apparatus and method for inactivating viral contaminants in body fluids |
5536238, | Dec 20 1990 | Baxter International Inc. | Systems and methods for simultaneously removing free and entrained contaminants in fluids like blood using photoactive therapy and cellular separation techniques |
5545516, | May 01 1990 | AMERICAN NATIONAL RED CROSS, THE | Inactivation of extracellular enveloped viruses in blood and blood components by phenthiazin-5-ium dyes plus light |
5547635, | Oct 22 1987 | Sterilization method and apparatus | |
5550111, | Jul 11 1984 | Temple University-Of The Commonwealth System of Higher Education | Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof |
5556958, | Oct 26 1989 | Cerus Corporation | Inactivation of pathogens in clinical samples |
5556993, | Mar 11 1994 | Cerus Corporation | Compounds for the photodecontamination of pathogens in blood |
5557098, | Dec 20 1994 | Baxter International Inc. | System to identify bags disinfected by irradiation which punches holes in a polarized portion of the bag to indicate processing thereof |
5559250, | Nov 14 1994 | Cerus Corporation | Treating red blood cell solutions with anti-viral agents |
5569579, | Apr 01 1991 | Thomas Jefferson University | Synthetic-based platelet storage media |
5571666, | Oct 28 1988 | Oklahoma Medical Research Foundation | Thiazine dyes used to inactivate HIV in biological fluids |
5578736, | Nov 18 1994 | Cerus Corporation | Compounds for the photo-decontamination of pathogens in blood |
5585503, | Nov 18 1994 | Cerus Corporation | Compounds for the photodecontamination of pathogens in blood |
5587490, | Apr 16 1990 | Baxter International Inc | Method of inactivation of viral and bacterial blood contaminants |
5593823, | Jun 28 1993 | Cerus Corporation | Method for inactivating pathogens in blood using photoactivation of 4'-primary amino-substituted psoralens |
5597722, | Jan 28 1993 | Fenwal, Inc | Method for inactivating pathogens in compositions containing cells and plasma using photoactive compounds and plasma protein reduction |
5607924, | Jan 21 1992 | Board of Regents, The University of Texas System | DNA photocleavage using texaphyrins |
5618662, | Mar 02 1992 | Cerus Corporation | Intravenous administration of psoralen |
5622867, | Oct 19 1994 | LifeCell Corporation | Prolonged preservation of blood platelets |
5624435, | Jun 05 1995 | CYNOSYURE, INC | Ultra-long flashlamp-excited pulse dye laser for therapy and method therefor |
5624794, | Jun 05 1995 | Regents of the University of California, The | Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas |
5625079, | Jun 28 1993 | Cerus Corporation | Synthesizing psoralen compounds useful as intermediates |
5628727, | Aug 15 1995 | Extracorporeal virioncidal apparatus | |
5639376, | Jan 10 1994 | HEMASURE INC | Process for simultaneously removing leukocytes and methylene blue from plasma |
5639382, | Dec 23 1991 | Fenwal, Inc | Systems and methods for deriving recommended storage parameters for collected blood components |
5643334, | Feb 07 1995 | LUMENIS LTD | Method and apparatus for the diagnostic and composite pulsed heating and photodynamic therapy treatment |
5652096, | Aug 01 1988 | Cerus Corporation | Identification of allele specific nucleic acid sequences by hybridization with crosslinkable oligonucleotide probes |
5653887, | Jun 07 1995 | Terumo BCT, Inc | Apheresis blood processing method using pictorial displays |
5654443, | Nov 18 1994 | Cerus Corporation | Compounds for the photo decontamination of pathogens in blood |
5656154, | Jun 07 1995 | ORGAN RECOVERY SYSTEMS, INC | Method and apparatus for separating a fluid into components and for washing a material |
5656498, | Feb 22 1994 | Nippon Telegraph and Telephone Corporation | Freeze-dried blood cells, stem cells and platelets, and manufacturing method for the same |
5658530, | Sep 27 1994 | SANWA BANK CALIFORNIA | Photocatalyst and pulsed light synergism in deactivation of contaminants |
5658722, | May 15 1990 | NEW YORK BLOOD CENTER, INC A NEW YORK CORP | Process for the sterilization of biological compositions using UVA1 irradiation |
5683661, | Oct 30 1989 | Cerus Corporation | Device and method for photoactivation |
5683768, | Dec 21 1994 | Baxter International Inc.; Baxter International Inc | Plastic formulations for platelet storage containers and the like |
5686436, | May 13 1993 | HIV DIAGNOSTICS, INC | Multi-faceted method to repress reproduction of latent viruses in humans and animals |
5688475, | Oct 22 1987 | Sterilization method and apparatus | |
5691132, | Nov 14 1994 | Cerus Corporation | Method for inactivating pathogens in red cell compositions using quinacrine mustard |
5698524, | May 27 1990 | Method of treating a patient suffering from a viral infection | |
5698677, | May 06 1994 | Baxalta GmbH | Stable preparation for the treatment of blood coagulation disorders |
5702684, | May 02 1994 | Ecolab USA Inc | Method of use of compositions of biocides and fluorescent indicators to control microbial growth |
5707401, | Mar 10 1994 | LUMENIS LTD | Apparatus for an efficient photodynamic treatment |
5709653, | Jul 25 1996 | Cordis Corporation | Photodynamic therapy balloon catheter with microporous membrane |
5709991, | Mar 02 1992 | Cerus Corporation | Proralen inactivation of microorganisms and psoralen removal |
5709992, | Aug 17 1994 | Method for disinfecting red blood cells | |
5712085, | Jun 28 1993 | Cerus Corporation | 5'-(4-amino-2-oxa)butye-4,4', 8-trinethylpsoralen in synthetic medium |
5712086, | May 15 1990 | New York Blood Center, Inc. | Process for transfusing cell containing fractions sterilized with radiation and a quencher of type I and type II photodynamic reactions |
5714328, | Jun 07 1995 | Pharmacyclics, Inc; Pharmacyclics LLC | RNA photocleavage using texaphyrins |
5736313, | Oct 20 1995 | NAVY, UNITED STATES OF AMERICA,THE, AS REPRESENTED BY THE SECRETARY | Method of lyophilizing platelets by incubation with high carbohydrate concentrations and supercooling prior to freezing |
5739013, | Sep 24 1993 | Enzymatic synthesis of 2',5'-oligoadenylate-2',3'-cyclophosphates and treatment of papillomaviruses | |
5753428, | Jul 19 1995 | Kawasumi Laboratories, Inc. | Synthetic composition for storage of platelets comprising glycerol |
5756553, | Jul 21 1993 | Otsuka Pharmaceutical Factory, Inc.; Otsuka Pahrmaceutical Co., Ltd. | Medical material and process for producing the same |
5769839, | Nov 14 1994 | Haemonetics Corporation | Long-term blood components storage system and method |
5772960, | Dec 04 1995 | JMS CO , LTD | Container for medical use |
5783093, | Jan 02 1997 | Haemonetics Corporation | Blood cell concentrates using a single solution for anticoagulation and preservation |
5789150, | May 15 1990 | New York Blood Center, Inc. | Process for the sterilization of biological compositions using UVA1 irradiation |
5789151, | May 15 1997 | Los Alamos National Security, LLC | Prolonged cold storage of red blood cells by oxygen removal and additive usage |
5789601, | Apr 16 1990 | Baxter International Inc. | Method of inactivation of viral and bacterial blood contaminants |
5798238, | Apr 16 1990 | Baxter International Inc | Method of inactivation of viral and bacterial blood contaminants with quinolines as photosensitizer |
5798523, | Jul 19 1996 | CELMED BIOSCIENCES, INC | Irradiating apparatus using a scanning light source for photodynamic treatment |
5817519, | Dec 28 1995 | Siemens Healthcare Diagnostics Inc | Automated method and device for identifying and quantifying platelets and for determining platelet activation state using whole blood samples |
5827644, | Oct 28 1988 | Oklahoma Medical Research Foundation | Thiazine dyes used to inactivate HIV in biological fluids |
5834198, | Dec 18 1996 | Boehringer Mamnnheim GmbH | Selective photoinducted flavin-dependent cleavage of RNA at G-U base pairs and kits therefor |
5840252, | Mar 23 1995 | Baxter International Inc. | Method of manufacturing and storing medical solutions |
5843459, | Jan 19 1996 | Human Gene Therapy Research Institute | Differential inactivation of nucleic acids by chemical modification |
5846961, | May 13 1993 | HIV DIAGNOSTICS, INC | Multi-faceted method to repress reproduction of latent viruses in humans and animals |
5854967, | Oct 30 1989 | Cerus Corporation | Device and method for photoactivation |
5866074, | Dec 20 1996 | Baxter International Inc | Systems for quantifying the illumination characteristics of vessels such as blood processing containers with respect to light energy |
5869701, | Apr 16 1990 | Baxter International Inc. | Method of inactivation of viral and bacterial blood contaminants |
5871900, | Jun 28 1993 | Cerus Corporation | Method of inactivating pathogens in biological fluids using photoactivated 5-primaryamino psoralens |
5876676, | Feb 18 1993 | Brigham and Women's Hospital, Inc. | Preservation of blood platelets |
5899874, | Apr 30 1992 | Stiftelsen for Medicinsk-Teknisk Utveckling | Preparation and method for production of platelet concentrates with significantly prolonged viabilty during storage |
5906915, | Nov 07 1990 | Fenwal, Inc | Method for storing red cells using reduced citrate anticoagulant and a solution containing sodium, citrate, phosphate, adenine and mannitol |
5908742, | Mar 02 1992 | Fenwal, Inc | Synthetic media for blood components |
5919614, | Oct 19 1994 | LifeCell Corporation | Composition comprising three platelet lesion inhibitors for platelet storage |
5922278, | Nov 19 1996 | Fenwal, Inc | Method and apparatus for inactivating contaminants in biological fluid |
5935092, | Dec 20 1990 | Fenwal, Inc | Systems and methods for removing free and entrained contaminants in plasma |
5955256, | Apr 16 1990 | Baxter International Inc | Method of inactivation of viral and bacterial blood contaminants |
5955257, | Oct 21 1997 | Regents of the University of Minnesota | Infusible grade short-term cell storage medium for mononuclear cells |
5965349, | Mar 02 1992 | Cerus Corporation | Methods of photodecontamination using synthetic media |
5972593, | Jun 28 1993 | Cerus Corporation | Method for the photo-decontamination of pathogens in blood using 4'-primary amino psoralens |
5976884, | Dec 20 1996 | Baxter International Inc. | Methods for quantifying photoreactions in light activated materials |
5981163, | May 15 1990 | New York Blood Center, Inc. | Process for the sterilization of biological compositions using irradiation and quenchers of type I and type II photodynamic reactions |
6004741, | Jun 28 1993 | Cerus Corporation | Method for the photoactivation of 4' and 5' primary aminoalkyl psoralens in platelet preparations |
6004742, | Jun 28 1993 | Cerus Corporation | Method for inactivation of pathogens in platelets using 4' and 5' primary amino-substituted psoralens |
6017691, | Jun 28 1993 | Cerus Corporation | 4'-primary aminopsoralen and platelet compositions |
6020333, | Apr 11 1994 | Compositions containing in particular, riboflavin, for the local prevention of diseases of the genital and rectal mucus membranes | |
6060233, | Jun 14 1996 | Biostore New Zealand | Methods for the lyophilization of platelets, platelet membranes or erythrocytes |
6063624, | Jun 09 1997 | Fenwal, Inc | Platelet suspensions and methods for resuspending platelets |
6077659, | May 15 1990 | New York Blood Center, Inc. | Vitamin E and derivatives thereof prevent potassium ion leakage and other types of damage in red cells that are virus sterilized by phthalocyanines and light |
6087141, | May 15 1990 | New York Blood Center, Inc. | Process for the sterilization of biological compositions and the product produced thereby |
6093725, | Jan 06 1997 | Cerus Corporation | Frangible compounds for pathogen inactivation |
6106773, | Sep 24 1998 | American National Red Cross | Pathogen inactivating compositions for disinfecting biological fluids |
6133460, | Nov 20 1997 | Cerus Corporation | Psoralens for pathogen inactivation |
6143490, | Nov 14 1994 | Cerus Corporation | Treating blood or blood product with a compound having a mustard and a nucleic acid binding moiety |
6171777, | Nov 14 1994 | Cerus Corporation | Treating blood or blood product with a compound having a mustard and a nucleic acid binding moiety |
6177441, | Jun 05 1995 | Cerus Corporation | Treating red blood cell solutions with anti-viral agents |
6194139, | Jun 28 1993 | Cerus Corporation | Methods for photodecontamination of pathogens in blood |
6197207, | May 21 1997 | BAXTER INTERNATIONAL, INC | Method of reducing the possibility of transmission of spongiform encephalopathy diseases by blood products |
6214534, | May 15 1990 | New York Blood Center, Inc. | Biological compositions containing quenchers of type I and type II photodynamic reactions |
6218100, | Jun 28 1993 | Cerus Corporation | 5'-primary aminoalkyl psoralen compositions with platelets |
6258319, | Oct 26 1989 | Cerus Corporation | Device and method for photoactivation |
6258577, | Jul 21 1998 | Terumo BCT Biotechnologies, LLC | Method and apparatus for inactivation of biological contaminants using endogenous alloxazine or isoalloxazine photosensitizers |
6268120, | Oct 19 1999 | Terumo BCT Biotechnologies, LLC | Isoalloxazine derivatives to neutralize biological contaminants |
6270952, | Jan 06 1998 | Cerus Corporation | Methods for quenching pathogen inactivators in biological materials |
6277337, | Jul 21 1998 | Terumo BCT Biotechnologies, LLC | Method and apparatus for inactivation of biological contaminants using photosensitizers |
6410219, | Nov 14 1994 | Cerus Corporation | Treating blood or blood products with compounds which have a mustard, azirdinium or aziridine group and a nucleic acid binding group |
6413714, | May 15 1990 | New York Blood Center, Inc. | Process for the sterilization of biological compositions and the product produced thereby |
6420570, | Jun 28 1993 | Cerus Corporation | Psoralen compounds |
6433343, | Mar 02 1992 | Cerus Corporation | Device and method for photoactivation |
6455286, | Nov 20 1997 | Cerus Corporation | Psoralens for pathogen inactivation |
6461567, | Oct 26 1989 | Cerus Corporation | Device and method for photoactivation |
6469052, | Jun 28 1993 | Cerus Corporation | Compounds for the photodecontamination of pathogens in blood |
6503699, | Jun 28 1993 | Cerus Corporation | Method for photodecontamination of pathogens in blood using 5'-primary aminopsoralens |
6514987, | Jan 06 1997 | Cerus Corporation | Frangible compounds for pathogen inactivation |
6544727, | Jun 07 1995 | Cerus Corporation | Methods and devices for the removal of psoralens from blood products |
6565802, | Jun 03 1999 | Fenwal, Inc | Apparatus, systems and methods for processing and treating a biological fluid with light |
6576201, | Jan 28 2000 | Baxalta GmbH | Device and method for pathogen inactivation of therapeutic fluids with sterilizing radiation |
6586749, | Mar 02 1992 | Cerus Corporation | Device and method for photoactivation |
6596230, | Jan 28 2000 | Baxalta GmbH | Device and method for pathogen inactivation of therapeutic fluids with sterilizing radiation |
6680025, | Oct 26 1989 | Cerus Corporation | Device and method for photoactivation |
6686480, | Jun 28 1993 | Cerus Corporation | Compounds for the photodecontamination of pathogens in blood |
683690, | |||
20010053597, | |||
20020022215, | |||
EP66886, | |||
EP108588, | |||
EP124363, | |||
EP184331, | |||
EP196515, | |||
EP491757, | |||
EP510185, | |||
EP525138, | |||
EP590514, | |||
EP679398, | |||
EP754461, | |||
EP801072, | |||
FR2674753, | |||
FR2715303, | |||
FR2718353, | |||
GB2034463, | |||
JP59020218, | |||
RE32874, | Nov 01 1982 | Gail A., Rock | Plasma-free medium for platelet storage |
WO4930, | |||
WO11946, | |||
WO128599, | |||
WO202153, | |||
WO230190, | |||
WO8302328, | |||
WO8502116, | |||
WO8810087, | |||
WO8906702, | |||
WO9000059, | |||
WO9010461, | |||
WO9102529, | |||
WO9208348, | |||
WO9208349, | |||
WO9211057, | |||
WO9217173, | |||
WO9300005, | |||
WO9407426, | |||
WO9407499, | |||
WO9502325, | |||
WO9511028, | |||
WO9512973, | |||
WO9516348, | |||
WO9614740, | |||
WO9614741, | |||
WO9707674, | |||
WO9718844, | |||
WO9722245, | |||
WO9736581, | |||
WO9736634, | |||
WO9822150, | |||
WO9830545, | |||
WO9831219, | |||
WO9841087, | |||
WO9851147, | |||
WO9911305, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 03 2009 | CaridianBCT Biotechnologies, LLC | (assignment on the face of the patent) | / | |||
Jan 04 2012 | CaridianBCT Biotechnologies, LLC | Terumo BCT Biotechnologies, LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 027715 | /0552 |
Date | Maintenance Fee Events |
Jul 25 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 15 2018 | REM: Maintenance Fee Reminder Mailed. |
Apr 01 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 22 2014 | 4 years fee payment window open |
Aug 22 2014 | 6 months grace period start (w surcharge) |
Feb 22 2015 | patent expiry (for year 4) |
Feb 22 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 22 2018 | 8 years fee payment window open |
Aug 22 2018 | 6 months grace period start (w surcharge) |
Feb 22 2019 | patent expiry (for year 8) |
Feb 22 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 22 2022 | 12 years fee payment window open |
Aug 22 2022 | 6 months grace period start (w surcharge) |
Feb 22 2023 | patent expiry (for year 12) |
Feb 22 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |