The present invention relates to the use of novel pyrrolopyrazine derivatives of formula I,

##STR00001##
wherein the variables Q and R are defined as described herein, which inhibit JAK and SYK and are useful for the treatment of auto-immune and inflammatory diseases.

Patent
   7902197
Priority
Feb 25 2008
Filed
Feb 20 2009
Issued
Mar 08 2011
Expiry
Mar 28 2029
Extension
36 days
Assg.orig
Entity
Large
91
12
EXPIRED
1. A compound of formula I
##STR00068##
R is R1, R2, R3, or R4;
R1 is lower alkyl, lower alkoxy, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R1a;
R1a is R1b or R1c;
R1b is halogen, oxo, hydroxy, or —CN;
R1c is —C(═O)O(R1f), —C(═O)CH2(R1e), —S(R1f), —S(O)2(R1f), or —S(═O) (R1f), lower alkyl, lower alkoxy, amino, amido, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, cycloalkyloxy, or heterocycloalkyloxy optionally substituted with one or more R1d;
R1d is H, halogen, hydroxy, lower alkyl, lower alkoxy, or lower haloalkyl;
R1e is H, lower alkyl, lower alkoxy, —CN, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
R1f is H, lower alkyl, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
R2 is N(R2a)2;
each R2a is independently H or R2b;
each R2b is independently lower alkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, or heterocycloalkyl alkylene, optionally substituted with one or more R2c;
R2c is R2d or R2e;
 R2d is halogen, oxo, or hydroxy;
 R2e is —N(R2g)2, —C(═O)(R2g), —C(═O)O(R2g), —C(═O)N(R2g)2, —N(R2g)C(═O)(R2g), —S(═O)2(R2g), —S(O)2N(R2g)2, lower alkyl, lower alkoxy, lower haloalkyl, phenyl, heteroaryl, heteroaryloxy, cycloalkyl, or heterocycloalkyl, optionally substituted with one or more R2f;
 each R2f is independently H, halogen, lower alkyl, lower alkoxy, or lower haloalkyl;
 each R2g is independently H, lower alkyl, lower alkoxy, lower haloalkyl, or phenyl;
R3 is —C(═O)R3a;
R3a is lower alkyl, lower alkoxy, phenyl, or N(R3b)2;
each R3b is independently H or lower alkyl;
R4 is —O(R4a);
R4a is H or R4b;
R4b is lower alkyl, phenyl, benzyl, lower haloalkyl, cycloalkyl, heterocycloalkyl, heteroaryl, optionally substituted with one or more R4c;
R4c is halogen, hydroxy, lower alkyl, lower haloalkyl, or lower alkoxy;
Q3 is —O-Q3a, —S-Q3a, —C(═O)(Q3a), —S(═O)(Q3a), —S(═O)2(Q3a), —N(Q3a)2, —NHC(═O)(Q3a), —C(═O)N(Q3a)2, or —NHC(═O)N(Q3a)2;
each Q3a is independently Q3b or Q3c;
Q3b is H;
Q3c is lower alkyl, lower haloalkyl, phenyl, cycloalkyl, heterocycloalkyl, or heteroaryl, optionally substituted with one or more Q3d; and
each Q3d is independently Q3e or Q3f;
Q3e is halogen or hydroxy;
Q3f is lower alkyl, lower alkoxy, or lower haloalkyl;
or a pharmaceutically acceptable salt thereof.
23. A compound of formula I
##STR00069##
R is R1, R2, R3, or R4;
R1 is lower alkyl, lower alkoxy, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R1a;
R1a is R1b or Ric;
R1b is halogen, oxo, hydroxy, or —CN;
R1c is —C(═O)O(R1f), —C(═O)CH2(R1e), —S(R1f), —S(O)2(R1f), or —S(═O) (R1f), lower alkyl, lower alkoxy, amino, amido, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, cycloalkyloxy, or heterocycloalkyloxy optionally substituted with one or more R1d;
R1d is H, halogen, hydroxy, lower alkyl, lower alkoxy, or lower haloalkyl;
R1e is H, lower alkyl, lower alkoxy, —CN, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
R1f is H, lower alkyl, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
R2 is N(R2a)2;
each R2a is independently H or R2b;
each R2b is independently lower alkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, or heterocycloalkyl alkylene, optionally substituted with one or more R2c;
R2c is R2d or R2e;
 R2d is halogen, oxo, or hydroxy;
 R2e is —N(R2g)2, —C(═O)(R2g), —C(═O)O(R2g), —C(═O)N(R2g)2, —N(R2g)C(═O)(R2g), —S(═O)2(R2g), —S(O)2N(R2g)2, lower alkyl, lower alkoxy, lower haloalkyl, phenyl, heteroaryl, heteroaryloxy, cycloalkyl, or heterocycloalkyl, optionally substituted with one or more R2f;
 each R2f is independently H, halogen, lower alkyl, lower alkoxy, or lower haloalkyl;
 each R2g is independently H, lower alkyl, lower alkoxy, lower haloalkyl, or phenyl;
R3 is —C(═O)R3a;
R3a is lower alkyl, lower alkoxy, phenyl, or N(R3b)2;
each R3b is independently H or lower alkyl;
R4 is —O(R4a);
R4a is H or R4b;
R4b is lower alkyl, phenyl, benzyl, lower haloalkyl, cycloalkyl, heterocycloalkyl, heteroaryl, optionally substituted with one or more R4c;
R4c is halogen, hydroxy, lower alkyl, lower haloalkyl, or lower alkoxy;
Q3 is —O-Q3a, —S-Q3a, —C(═O)(Q3a), —O(CH2)mC(═O)(Q3a), —S(═O)(Q3a), —S(═O)2(Q3a), —N(Q3a)2, —N(Q3a)S(═O)2(Q3a), —N(Q3a)C(═O)(Q3a), —C(═O)N(Q3a)2, or —N(Q3a)C(═O)N(Q3a)2;
each Q3a is independently Q3b or Q3c;
m is 0, 1, or 2;
Q3b is H;
Q3c is lower alkyl, lower haloalkyl, phenyl, heterocycloalkyl, or heteroaryl, optionally substituted with one or more Q3d; and
each Q3d is independently Q3e or Q3f;
Q3e is halogen or hydroxy;
Q3f is lower alkyl, lower alkoxy, lower haloalkyl, phenyl, cycloalkyl, heterocycloalkyl, or heteroaryl, optionally substituted with one or more Q3g; and
each Q3g is independently halogen, hydroxy, lower alkyl, lower hydroxyalkyl, lower haloalkyl, or lower alkoxy;
or a pharmaceutically acceptable salt thereof.
21. A compound selected from the group consisting of:
2-(Cyclopentyl-methyl-amino)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide;
1-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-2,2-dimethyl-propan-1-one;
1-(2-Cyclopentyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzamide;
Cyclohexanecarboxylic acid [7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-amide;
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methyl-benzamide;
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzenesulfonamide;
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methyl-benzenesulfonamide;
7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid dimethylamide;
7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid isopropylamide;
1-(2-Acetyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
1-(2-Isobutyryl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
2,2-Dimethyl-1-[2-(2-methyl-benzoyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one;
1-(2-Benzoyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid cyclopentylamide;
2,2-Dimethyl-1-[2-(pyridine-4-carbonyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one;
2,2-Dimethyl-1-[2-(pyridine-3-carbonyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one;
1-(2-Cycloheptyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
1-(2-Cyclohexyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
1-(2-Isopropoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
1-(2-Ethoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
2,2-Dimethyl-1-[2-(2-morpholin-4-yl-2-oxo-ethoxy)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one;
1-[2-(1,2-Dimethyl-propoxy)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one;
1-(2-Isobutoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
1-[2-(1-Benzyl-1H-[1,2,3]triazol-4-yl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one;
1-Cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea;
1-Cycloheptyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea;
2,2-Dimethyl-1-[2-(methyl-phenyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one;
1-(2-sec-Butoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
2,2-Dimethyl-1-(2-phenylamino-5H-pyrrolo[2,3-b]pyrazin-7-yl)-propan-1-one;
1-(2-Cyclopentyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
1-[2-(Cyclopentyl-methyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one;
2,2-Dimethyl-1-(2-phenoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-propan-1-one;
2,2-Dimethyl-1-{2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-5H-pyrrolo[2,3-b]pyrazin-7-yl}-propan-1-one;
1-Cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea;
1-Cycloheptyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea;
1-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-2,2-dimethyl-propan-1-one; and
1-[2-(6-Methoxy-pyridin-2-ylamino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one.
2. The compound of claim 1, wherein R is R′.
3. The compound of claim 2, wherein R1 is lower alkyl.
4. The compound of claim 3, wherein R1 is tert-butyl.
5. The compound of claim 3, wherein R1 is —CHC(CH3)3.
6. The compound of claim 3, wherein R1 is iso-butyl.
7. The compound of claim 3, wherein R1 is iso-propyl.
8. The compound of claim 2, wherein R1 is cycloalkyl.
9. The compound of claim 2, wherein R1 is heterocycloalkyl.
10. The compound of claim 2, wherein R1 is benzyl.
11. The compound of claim 2, wherein R1 is phenyl.
12. The compound of claim 1, wherein R is R2.
13. The compound of claim 12, wherein R2 is NH(R2a).
14. The compound of claim 13, wherein R2a is R2b and R2b is lower alkyl.
15. The compound of claim 14, wherein R2b is iso-propyl.
16. The compound of claim 13, wherein R2a is R2b and R2b is heterocycloalkyl.
17. The compound of claim 13, wherein R2a is R2b and R2b is cycloalkyl.
18. The compound of claim 13, wherein R2a is R2b and R2b is heterocycloalkyl alkylene.
19. The compound of claim 18, wherein R2b is pyrrolidinyl alkylene.
20. The compound of claim 18, wherein R2b is pyrrolidinyl methylene.
22. A pharmaceutical composition comprising the compound of claim 1, admixed with at least one pharmaceutically acceptable carrier, excipient or diluent.

This application is entitled to the benefit of U.S. provisional patent applications Ser. No. 61/031,035 filed on Feb. 25, 2008 and Ser. No. 61/146,496 filed on Jan. 22, 2009, the disclosures of which are incorporated herein by reference.

The present invention relates to the use of novel pyrrolopyrazine derivatives which are JAK and SYK inhibitors and selectively inhibit JAK3 and are useful for the treatment of auto-immune and inflammatory diseases.

Protein kinases constitute one of the largest families of human enzymes and regulate many different signaling processes by adding phosphate groups to proteins; particularly tyrosine kinases phosphorylate proteins on the alcohol moiety of tyrosine residues. The tyrosine kinase family includes members that control cell growth, migration, and differentiation. Abnormal kinase activity has been implicated in a variety of human diseases including cancers, autoimmune and inflammatory diseases. Since protein kinases are among the key regulators of cell signaling they provide a means to modulate cellular function with small molecule inhibitors of kinase activity and thus make good drug design targets. In addition to treatment of kinase-mediated disease processes, selective and efficacious inhibitors of kinase activity are also useful for investigation of cell signaling processes and identification of other cellular targets of therapeutic interest.

The JAKs (JAnus Kinases) are a family of cytoplasmic protein tyrosine kinases including JAK1, JAK2, JAK3 and TYK2. Each of the JAKs is preferentially associated with the intracytoplasmic portion of discrete cytokine receptors (Annu. Rev. Immunol. 16 (1998), pp. 293-322). The JAKs are activated following ligand binding and initiate signaling by phosphorylating cytokine receptors that, per se, are devoid of intrinsic kinase activity. This phosphorylation creates docking sites on the receptors for other molecules known as STAT proteins (signal transducers and activators of transcription) and the phosphorylated JAKs bind various STAT proteins. STAT proteins, or STATs, are DNA binding proteins activated by phosphorylation of tyrosine residues, and function both as signaling molecules and transcription factors and ultimately bind to specific DNA sequences present in the promoters of cytokine-responsive genes (Leonard et al., (2000), J. Allergy Clin. Immunol. 105:877-888).

JAK/STAT signaling has been implicated in the mediation of many abnormal immune responses such as allergies, asthma, autoimmune diseases such as transplant (allograft) rejection, rheumatoid arthritis, amyotrophic lateral sclerosis and multiple sclerosis, as well as in solid and hematologic malignancies such as leukemia and lymphomas.

Thus, the JAKs and STATs are components of multiple potentially intertwined signal-transduction pathways (Oncogene 19 (2000), pp. 5662-5679), which indicates the difficulty of specifically targeting one element of the JAK-STAT pathway without interfering with other signal transduction pathways.

The JAK kinases, including JAK3, are abundantly expressed in primary leukemic cells from children with acute lymphoblastic leukemia, the most common form of childhood cancer, and studies have correlated STAT activation in certain cells with signals regulating apoptosis (Demoulin et al., (1996), Mol. Cell. Biol. 16:4710-6; Jurlander et al., (1997), Blood. 89:4146-52; Kaneko et al., (1997), Clin. Exp. Immun. 109:185-193; and Nakamura et al., (1996), J. Biol. Chem. 271: 19483-8). They are also known to be important to lymphocyte differentiation, function and survival. JAK3 in particular plays an essential role in the function of lymphocytes, macrophages, and mast cells. Given the importance of this JAK kinase, compounds which modulate the JAK pathway, including those selective for JAK3, can be useful for treating diseases or conditions where the function of lymphocytes, macrophages, or mast cells is involved (Kudlacz et al., (2004) Am. J. Transplant 4:51-57; Changelian (2003) Science 302:875-878). Conditions in which targeting of the JAK pathway or modulation of the JAK kinases, particularly JAK3, are contemplated to be therapeutically useful include, leukemia, lymphoma, transplant rejection (e.g., pancreas islet transplant rejection, bone marrow transplant applications (e.g., graft-versus-host disease), autoimmune diseases (e.g., diabetes), and inflammation (e.g., asthma, allergic reactions). Conditions which can benefit for inhibition of JAK3 are discussed in greater detail below.

However, in contrast to the relatively ubiquitous expression of JAK1, JAK2 and Tyk2, JAK3 has a more restricted and regulated expression. Whereas some JAKs (JAK1, JAK2, Tyk2) are used by a variety of cytokine receptors, JAK3 is used only by cytokines that contain a γc in their receptor. JAK3, therefore, plays a role in cytokine signaling for cytokines which receptor was shown to date to use the common gamma chain; IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. JAK1 interacts with, among others, the receptors for cytokines IL-2, IL-4, IL-7, IL-9 and IL-21, while JAK2 interacts with, among others, the receptors for IL-9 and TNF-alpha. Upon the binding of certain cytokines to their receptors (e.g., IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21), receptor oligomerization occurs, resulting in the cytoplasmic tails of associated JAK kinases being brought into proximity and facilitating the trans-phosphorylation of tyrosine residues on the JAK kinase. This trans-phosphorylation results in the activation of the JAK kinase.

Animal studies have suggested that JAK3 not only plays a critical role in B and T lymphocyte maturation, but that JAK3 is constitutively required to maintain T cell function. Modulation of immune activity through this novel mechanism can prove useful in the treatment of T cell proliferative disorders such as transplant rejection and autoimmune diseases.

In particular, JAK3 has been implicated in a variety of biological processes. For example, the proliferation and survival of murine mast cells induced by IL-4 and IL-9 have been shown to be dependent on JAK3- and gamma chain-signaling (Suzuki et al., (2000), Blood 96:2172-2180). JAK3 also plays a crucial role in IgE receptor-mediated mast cell degranulation responses (Malaviya et al., (1999), Biochem. Biophys. Res. Commun. 257:807-813), and inhibition of JAK3 kinase has been shown to prevent type I hypersensitivity reactions, including anaphylaxis (Malaviya et al., (1999), J. Biol. Chem. 274:27028-27038). JAK3 inhibition has also been shown to result in immune suppression for allograft rejection (Kirken, (2001), Transpl. Proc. 33:3268-3270). JAK3 kinases have also been implicated in the mechanism involved in early and late stages of rheumatoid arthritis (Muller-Ladner et al., (2000), J. Immunal. 164:3894-3901); familial amyotrophic lateral sclerosis (Trieu et al., (2000), Biochem Biophys. Res. Commun. 267:22-25); leukemia (Sudbeck et al., (1999), Clin. Cancer Res. 5:1569-1582); mycosis fungoides, a form of T-cell lymphoma (Nielsen et al., (1997), Prac. Natl. Acad. Sci. USA 94:6764-6769); and abnormal cell growth (Yu et al., (1997), J. Immunol. 159:5206-5210; Catlett-Falcone et al., (1999), Immunity 10:105-115).

JAK3 inhibitors are useful therapy as immunosuppressive agents for organ transplants, xeno transplantation, lupus, multiple sclerosis, rheumatoid arthritis, psoriasis, Type I diabetes and complications from diabetes, cancer, asthma, atopic dermatitis, autoimmune thyroid disorders, ulcerative colitis, Crohn's disease, Alzheimer's disease, Leukemia and other indications where immunosuppression would be desirable.

Non-hematopoietic expression of JAK3 has also been reported, although the functional significance of this has yet to be clarified (J. Immunol. 168 (2002), pp. 2475-2482). Because bone marrow transplants for SCID are curative (Blood 103 (2004), pp. 2009-2018), it seems unlikely that JAK3 has essential non-redundant functions in other tissues or organs. Hence, in contrast with other targets of immunosuppressive drugs, the restricted distribution of JAK3 is appealing. Agents that act on molecular targets with expression limited to the immune system might lead to an optimal efficacy:toxicity ratio. Targeting JAK3 would, therefore, theoretically offer immune suppression where it is needed (i.e. on cells actively participating in immune responses) without resulting in any effects outside of these cell populations. Although defective immune responses have been described in various STAT−/− strains (J. Investig. Med. 44 (1996), pp. 304-311; Curr. Opin. Cell Biol. 9 (1997), pp. 233-239), the ubiquitous distribution of STATs and the fact that those molecules lack enzymatic activity that could be targeted with small-molecule inhibitors has contributed to their non-selection as key targets for immunosuppression.

SYK (Spleen Tyrosine Kinase) is a non-receptor tyrosine kinase that is essential for B-cell activation through BCR signaling. SYK become activated upon binding to phosphoryated BCR and thus initiates the early signaling events following BCR activation. Mice deficient in SYK exhibit an early block in B-cell development (Cheng et al. Nature 378:303, 1995; Turner et al. Nature 378:298, 1995). Therefore inhibition of SYK enzymatic activity in cells is proposed as a treatment for autoimmune disease through its effects on autoantibody production.

In addition to the role of SYK in BCR signaling and B-cell activation, it also plays a key role in Fc8RI mediated mast cell degranulation and eosinophil activation. Thus, SYK is implicated in allergic disorders including asthma (reviewed in Wong et al. Expert Opin Investig Drugs 13:743, 2004). SYK binds to the phosphorylated gamma chain of Fc8RI via its SH2 domains and is essential for downstream signaling (Taylor et al. Mol. Cell. Biol. 15:4149, 1995). SYK deficient mast cells demonstrate defective degranulation, arachidonic acid and cytokine secretion (Costello et al. Oncogene 13:2595, 1996). This also has been shown for pharmacologic agents that inhibit SYK activity in mast cells (Yamamoto et al. J Pharmacol Exp Ther 306:1174, 2003). Treatment with SYK antisense oligonucleotides inhibits antigen-induced infiltration of eosinophils and neutrophils in an animal model of asthma (Stenton et al. J Immunol 169:1028, 2002). SYK deficient eosinophils also show impaired activation in response to Fc8R stimulation (Lach-Trifilieffe et al. Blood 96:2506, 2000). Therefore, small molecule inhibitors of SYK will be useful for treatment of allergy-induced inflammatory diseases including asthma.

In view of the numerous conditions that are contemplated to benefit by treatment involving modulation of the JAK and/or SYK pathways it is immediately apparent that new compounds that modulate JAK and/or SYK pathways and methods of using these compounds should provide substantial therapeutic benefits to a wide variety of patients. Provided herein are novel pyrrolopyrazine derivatives for use in the treatment of conditions in which targeting of the JAK and/or SYK pathways or inhibition of JAK or SYK kinases, particularly JAK3, and are therapeutically useful for the treatment of auto-immune and inflammatory diseases.

The novel pyrrolopyrazine derivatives provided herein selectively inhibit JAK3 and are useful for the treatment of auto-immune and inflammatory diseases. The compounds of the invention modulate the JAK and/or SYK pathways and are useful novel pyrrolopyrazine derivatives for the treatment of auto-immune and inflammatory diseases, wherein preferred compounds selectively inhibit JAK3. For example, the compounds of the invention may inhibit JAK3 and SYK, wherein preferred compounds are selective for JAK3 of the JAK kinases and are useful novel pyrrolopyrazine derivatives for the treatment of auto-immune and inflammatory diseases. Furthermore, the compounds of the invention may inhibit JAK3 and JAK2, wherein preferred compounds are selective for JAK3 of the JAK kinases, and are useful novel pyrrolopyrazine derivatives for the treatment of auto-immune and inflammatory diseases. Similarly, the compounds of the invention may inhibit JAK3 and JAK1, wherein preferred compounds are selective for JAK3 of the JAK kinases, and are useful novel pyrrolopyrazine derivatives for the treatment of auto-immune and inflammatory diseases.

The application provides a compound of Formula I

##STR00002##

In one variation of the above embodiment, R is R1.

In one variation of the above embodiment, R1 is lower alkyl.

In one variation of the above embodiment, R1 is tert-butyl.

In another variation of the above embodiment, R1 is tert-butyl, Q is Q1, Q1a is Q1c, Q1c is Q1e, Q1e is Q1e′, and Q1e′ is pyrrolidine.

In another variation of the above embodiment, R1 is —CHC(CH3)3.

In another variation of the above embodiment, R1 is iso-butyl.

In another variation of the above embodiment, R1 is iso-propyl.

In one embodiment of the compound of Formula I, R1 is cycloalkyl.

In one embodiment of the compound of Formula I, R1 is heterocycloalkyl.

In one embodiment of the compound of Formula I, R1 is benzyl.

In one embodiment of the compound of Formula I, R1 is phenyl.

In one embodiment of the compound of Formula I, R is R2.

In one embodiment of the compound of Formula I, R is R2 and R2 is NH(R2a).

In one variation of the above embodiment, R2a is R2b.

In one variation of the above embodiment, R2b is lower alkyl.

In one variation of the above embodiment, R2b is iso-propyl.

In one embodiment of the compound of Formula I, R2b is heterocycloalkyl.

In one embodiment of the compound of Formula I, R2b is cycloalkyl.

In one embodiment of the compound of Formula I, R2b is heterocycloalkyl alkylene.

In one variation of the above embodiment, R2b is pyrrolidinyl methylene.

In one variation of the above embodiment, R2b is pyrrolidinyl methylene.

The application provides a compound of Formula I selected from the group consisting of:

In one aspect, the application provides a method for treating an inflammatory and/or autoimmune condition comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

In one variation of the above method, the above method further comprises administering an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, or an agent for treating immunodeficiency disorders.

In one aspect, the application provides a method for treating an inflammatory condition comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I, wherein R is R2.

In one aspect, the application provides a method for inhibiting T-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

In one aspect, the application provides a method for inhibiting T-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I, wherein R is R2.

In one variation of the above method, the proliferative disorder is cancer.

In one aspect, the application provides a method for treating a B-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

In one aspect, the application provides a method for treating an immune disorder including lupus, multiple sclerosis, rheumatoid arthritis, psoriasis, Type I diabetes, complications from organ transplants, xeno transplantation, diabetes, cancer, asthma, atopic dermatitis, autoimmune thyroid disorders, ulcerative colitis, Crohn's disease, Alzheimer's disease, and Leukemia, comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

In one aspect, the application provides a method for preventing or treating all forms of organ rejection, including acute allograft or xenograft rejection and chronic allograft or xenograft rejection, of vascularized or non-vascularized transplants, comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

In one aspect, the application provides a method for inhibiting JAK3 activity comprising administering the compound of Formula I, wherein the compound exhibits an IC50 of 50 micromolar or less in an in vitro biochemical assay of JAK3 activity.

In one variation of the above method, the compound exhibits an IC50 of 100 nanomolar or less in an in vitro biochemical assay of JAK3 activity.

In one variation of the above method, the compound exhibits an IC50 of 10 nanomolar or less in an in vitro biochemical assay of JAK3 activity.

In one aspect, the application provides a method for inhibiting SYK activity comprising administering the compound of Formula I, wherein the compound exhibits an IC50 of 50 micromolar or less in an in vitro biochemical assay of SYK activity.

In one variation of the above method, the compound exhibits an IC50 of 100 nanomolar or less in an in vitro biochemical assay of SYK activity.

In one variation of the above method, the compound exhibits an IC50 of 10 nanomolar or less in an in vitro biochemical assay of SYK activity.

In one aspect, the application provides a method for treating an inflammatory condition comprising co-administering to a patient in need thereof an anti-inflammatory compound in combination with a therapeutically effective amount of the compound of Formula I.

In one aspect, the application provides a method for treating an immune disorder comprising co-administering to a patient in need thereof an immunosuppressant compound in combination with a therapeutically effective amount of the compound of Formula I.

The application provides a pharmaceutical composition comprising the compound of Formula I, admixed with at least one pharmaceutically acceptable carrier, excipient or diluent.

In one variation, the above pharmaceutical composition further comprises an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, and an agent for treating immunodeficiency disorders.

In one aspect, the application provides a use of the compound of Formula I in the manufacture of a medicament for the treatment of an inflammatory disorder.

In one aspect, the application provides a use of the compound of Formula I in the manufacture of a medicament for the treatment of an autoimmune disorder.

The phrase “a” or “an” entity as used herein refers to one or more of that entity; for example, a compound refers to one or more compounds or at least one compound. As such, the terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein.

The phrase “as defined herein above” refers to the broadest definition for each group as provided in the Summary of the Invention or the broadest claim. In all other embodiments provided below, substituents which can be present in each embodiment and which are not explicitly defined retain the broadest definition provided in the Summary of the Invention.

As used in this specification, whether in a transitional phrase or in the body of the claim, the terms “comprise(s)” and “comprising” are to be interpreted as having an open-ended meaning. That is, the terms are to be interpreted synonymously with the phrases “having at least” or “including at least”. When used in the context of a process, the term “comprising” means that the process includes at least the recited steps, but may include additional steps. When used in the context of a compound or composition, the term “comprising” means that the compound or composition includes at least the recited features or components, but may also include additional features or components.

As used herein, unless specifically indicated otherwise, the word “or” is used in the “inclusive” sense of “and/or” and not the “exclusive” sense of “either/or”.

The term “independently” is used herein to indicate that a variable is applied in any one instance without regard to the presence or absence of a variable having that same or a different definition within the same compound. Thus, in a compound in which R″ appears twice and is defined as “independently carbon or nitrogen”, both R″s can be carbon, both R″s can be nitrogen, or one R″ can be carbon and the other nitrogen.

When any variable (e.g., R2a or Q3g) occurs more than one time in any moiety or formula depicting and describing compounds employed or claimed in the present invention, its definition on each occurrence is independent of its definition at every other occurrence. Also, combinations of substituents and/or variables are permissible only if such compounds result in stable compounds.

The symbols “*” at the end of a bond or custom characterdrawn through a bond each refer to the point of attachment of a functional group or other chemical moiety to the rest of the molecule of which it is a part. Thus, for example:

##STR00003##

A bond drawn into ring system (as opposed to connected at a distinct vertex) indicates that the bond may be attached to any of the suitable ring atoms.

The term “optional” or “optionally” as used herein means that a subsequently described event or circumstance may, but need not, occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, “optionally substituted” means that the optionally substituted moiety may incorporate a hydrogen or a substituent.

The phrase “come together to form a bicyclic ring system” as used herein means join to form a bicyclic ring system, wherein each ring may be made up of either 4-7 carbon atoms or 4-7 carbon and heteroatoms, and may be saturated or unsaturated.

The term “about” is used herein to mean approximately, in the region of, roughly, or around. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 20%.

The definitions described herein may be appended to form chemically-relevant combinations, such as “heteroalkylaryl,” “haloalkylheteroaryl,” “arylalkylheterocyclyl,” “alkylcarbonyl,” “alkoxyalkyl,” “cycloalkylalkyl” and the like. When the term “alkyl” is used as a suffix following another term, as in “phenylalkyl,” or “hydroxyalkyl,” this is intended to refer to an alkyl group, as defined above, being substituted with one to two substituents selected from the other specifically-named group. Thus, for example, “phenylalkyl” refers to an alkyl group having one to two phenyl substituents, and thus includes benzyl, phenylethyl, and biphenyl. An “alkylaminoalkyl” is an alkyl group having one to two alkylamino substituents. “Hydroxyalkyl” includes 2-hydroxyethyl, 2-hydroxypropyl, 1-(hydroxymethyl)-2-methylpropyl, 2-hydroxybutyl, 2,3-dihydroxybutyl, 2-(hydroxymethyl), 3-hydroxypropyl, and so forth. Accordingly, as used herein, the term “hydroxyalkyl” is used to define a subset of heteroalkyl groups defined below. The term -(ar)alkyl refers to either an unsubstituted alkyl or an aralkyl group. The term (hetero)aryl or (het)aryl refers to either an aryl or a heteroaryl group.

Compounds of formula I may exhibit tautomerism. Tautomeric compounds can exist as two or more interconvertable species. Prototropic tautomers result from the migration of a covalently bonded hydrogen atom between two atoms. Tautomers generally exist in equilibrium and attempts to isolate an individual tautomers usually produce a mixture whose chemical and physical properties are consistent with a mixture of compounds. The position of the equilibrium is dependent on chemical features within the molecule. For example, in many aliphatic aldehydes and ketones, such as acetaldehyde, the keto form predominates while; in phenols, the enol form predominates. Common prototropic tautomers include keto/enol (—C(═O)—CH-8-C(—OH)═CH—), amide/imidic acid (—C(═O)—NH-8-C(—OH)═N—) and amidine (—C(═NR)—NH-8-C(—NHR)═N—) tautomers. The latter two are particularly common in heteroaryl and heterocyclic rings and the present invention encompasses all tautomeric forms of the compounds.

Technical and scientific terms used herein have the meaning commonly understood by one of skill in the art to which the present invention pertains, unless otherwise defined. Reference is made herein to various methodologies and materials known to those of skill in the art. Standard reference works setting forth the general principles of pharmacology include Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th Ed., McGraw Hill Companies Inc., New York (2001). Any suitable materials and/or methods known to those of skill can be utilized in carrying out the present invention. However, preferred materials and methods are described. Materials, reagents and the like to which reference are made in the following description and examples are obtainable from commercial sources, unless otherwise noted.

The term “acyl” as used herein denotes a group of formula —C(═O)R wherein R is hydrogen or lower alkyl as defined herein. The term or “alkylcarbonyl” as used herein denotes a group of formula C(═O)R wherein R is alkyl as defined herein. The term C1-6 acyl refers to a group —C(═O)R contain 6 carbon atoms. The term “arylcarbonyl” as used herein means a group of formula C(═O)R wherein R is an aryl group; the term “benzoyl” as used herein an “arylcarbonyl” group wherein R is phenyl.

The term “alkyl” as used herein denotes an unbranched or branched chain, saturated, monovalent hydrocarbon residue containing 1 to 10 carbon atoms. The term “lower alkyl” denotes a straight or branched chain hydrocarbon residue containing 1 to 6 carbon atoms. “C1-10 alkyl” as used herein refers to an alkyl composed of 1 to 10 carbons. Examples of alkyl groups include, but are not limited to, lower alkyl groups include methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, t-butyl or pentyl, isopentyl, neopentyl, hexyl, heptyl, and octyl.

When the term “alkyl” is used as a suffix following another term, as in “phenylalkyl,” or “hydroxyalkyl,” this is intended to refer to an alkyl group, as defined above, being substituted with one to two substituents selected from the other specifically-named group. Thus, for example, “phenylalkyl” denotes the radical R′R″—, wherein R′ is a phenyl radical, and R″ is an alkylene radical as defined herein with the understanding that the attachment point of the phenylalkyl moiety will be on the alkylene radical. Examples of arylalkyl radicals include, but are not limited to, benzyl, phenylethyl, 3-phenylpropyl. The terms “arylalkyl”, “aryl alkyl”, or “aralkyl” are interpreted similarly except R′ is an aryl radical. The terms “heteroaryl alkyl” or “heteroarylalkyl” are interpreted similarly except R′ is optionally an aryl or a heteroaryl radical.

The term “haloalkyl” as used herein denotes a unbranched or branched chain alkyl group as defined above wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen. The term “lower haloalkyl” denotes a straight or branched chain hydrocarbon residue containing 1 to 6 carbon atoms, wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen. Examples are 1-fluoromethyl, 1-chloromethyl, 1-bromomethyl, 1-iodomethyl, difluoromethyl, trifluoromethyl, trichloromethyl, tribromomethyl, triiodomethyl, 1-fluoroethyl, 1-chloroethyl, 1-bromoethyl, 1-iodoethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-dichloroethyl, 3-bromopropyl or 2,2,2-trifluoroethyl.

The term “alkylene” as used herein denotes a divalent saturated linear hydrocarbon radical of 1 to 10 carbon atoms (e.g., (CH2)n) or a branched saturated divalent hydrocarbon radical of 2 to 10 carbon atoms (e.g., —CHMe- or —CH2CH(i-Pr)CH2—), unless otherwise indicated. Except in the case of methylene, the open valences of an alkylene group are not attached to the same atom. Examples of alkylene radicals include, but are not limited to, methylene, ethylene, propylene, 2-methyl-propylene, 1,1-dimethyl-ethylene, butylene, 2-ethylbutylene.

The term “alkoxy” as used herein means an —O-alkyl group, wherein alkyl is as defined above such as methoxy, ethoxy, n-propyloxy, i-propyloxy, n-butyloxy, i-butyloxy, t-butyloxy, pentyloxy, hexyloxy, including their isomers. “Lower alkoxy” as used herein denotes an alkoxy group with a “lower alkyl” group as previously defined. “C1-10 alkoxy” as used herein refers to an —O-alkyl wherein alkyl is C1-10.

The term “hydroxyalkyl” as used herein denotes an alkyl radical as herein defined wherein one to three hydrogen atoms on different carbon atoms is/are replaced by hydroxyl groups.

The term “cycloalkyl” as used herein refers to a saturated carbocyclic ring containing 3 to 8 carbon atoms, i.e. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl. “C3-7 cycloalkyl” as used herein refers to an cycloalkyl composed of 3 to 7 carbons in the carbocyclic ring.

The term “halogen” or “halo” as used herein means fluorine, chlorine, bromine, or iodine.

The term “heteroaryl” or “heteroaromatic” as used herein means a monocyclic or bicyclic, or tricyclic radical of 5 to 18 ring atoms having at least one aromatic ring containing four to eight atoms per ring, incorporating one or more N, O, or S heteroatoms, the remaining ring atoms being carbon, with the understanding that the attachment point of the heteroaryl radical will be on an aromatic ring. As well known to those skilled in the art, heteroaryl rings have less aromatic character than their all-carbon counter parts. Thus, for the purposes of the invention, a heteroaryl group need only have some degree of aromatic character. Examples of heteroaryl moieties include monocyclic aromatic heterocycles having 5 to 6 ring atoms and 1 to 3 heteroatoms include, but is not limited to, pyridinyl, pyrimidinyl, pyrazinyl, pyrrolyl, pyrazolyl, imidazolyl, oxazol, isoxazole, thiazole, isothiazole, triazoline, thiadiazole and oxadiaxoline which can optionally be substituted with one or more, preferably one or two substituents selected from hydroxy, cyano, alkyl, alkoxy, thio, lower haloalkoxy, alkylthio, halo, haloalkyl, alkylsulfinyl, alkylsulfonyl, halogen, amino, alkylamino, dialkylamino, aminoalkyl, alkylaminoalkyl, and dialkylaminoalkyl, nitro, alkoxycarbonyl and carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, arylcarbamoyl, alkylcarbonylamino and arylcarbonylamino. Examples of bicyclic moieties include, but are not limited to, quinolinyl, isoquinolinyl, benzofuryl, benzothiophenyl, benzoxazole, benzisoxazole, benzothiazole and benzisothiazole.

The term “heterocycloalkyl”, “heterocyclyl” or “heterocycle” as used herein denotes a monovalent saturated cyclic radical, consisting of one or more rings, preferably one to two rings, or three rings, of three to eight atoms per ring, incorporating one or more ring carbon atoms and one or more ring heteroatoms (chosen from N, O or S(═O)0-2), wherein the point of attachment can be through either a carbon atom or a heteroatom, and which can optionally be independently substituted with one or more, preferably one or two or three substituents selected from hydroxy, oxo, cyano, lower alkyl, lower alkoxy, lower haloalkoxy, alkylthio, halo, haloalkyl, hydroxyalkyl, nitro, alkoxycarbonyl, amino, alkylamino, alkylsulfonyl, arylsulfonyl, alkylaminosulfonyl, arylaminosulfonyl, alkylsulfonylamino, arylsulfonylamino, alkylaminocarbonyl, arylaminocarbonyl, alkylcarbonylamino, arylcarbonylamino, unless otherwise indicated. Examples of heterocyclic radicals include, but are not limited to, azetidinyl, pyrrolidinyl, hexahydroazepinyl, oxetanyl, tetrahydrofuranyl, tetrahydrothiophenyl, oxazolidinyl, thiazolidinyl, isoxazolidinyl, morpholinyl, piperazinyl, piperidinyl, tetrahydropyranyl, thiomorpholinyl, quinuclidinyl and imidazolinyl.

The phrase “organ rejection” includes acute allograft or xenograft rejection and chronic allograft or xenograft rejection in the setting of vascularized and/or non-vascularized (e.g. bone marrow, pancreatic islet cells) transplants.

Commonly used abbreviations include: acetyl (Ac), azo-bis-isobutyrylnitrile (AIBN), atmospheres (Atm), 9-borabicyclo[3.3.1]nonane (9-BBN or BBN), tert-butoxycarbonyl (Boc), di-tert-butyl pyrocarbonate or boc anhydride (BOC2O), benzyl (Bn), butyl (Bu), Chemical Abstracts Registration Number (CASRN), benzyloxycarbonyl (CBZ or Z), carbonyl diimidazole (CDI), 1,4-diazabicyclo[2.2.2]octane (DABCO), diethylaminosulfur trifluoride (DAST), dibenzylideneacetone (dba), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), N,N′-dicyclohexylcarbodiimide (DCC), 1,2-dichloroethane (DCE), dichloromethane (DCM), diethyl azodicarboxylate (DEAD), di-iso-propylazodicarboxylate (DIAD), di-iso-butylaluminumhydride (DIBAL or DIBAL-H), di-iso-propylethylamine (DIPEA), N,N-dimethyl acetamide (DMA), 4-N,N-dimethylaminopyridine (DMAP), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,1′-bis-(diphenylphosphino)ethane (dppe), 1,1′-bis-(diphenylphosphino)ferrocene (dppf), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI), ethyl (Et), ethyl acetate (EtOAc), ethanol (EtOH), 2-ethoxy-2H-quinoline-1-carboxylic acid ethyl ester (EEDQ), diethyl ether (Et2O), O-(7-azabenzotriazole-1-yl)-N,N,N′N′-tetramethyluronium hexafluorophosphate acetic acid (HATU), acetic acid (HOAc), 1-N-hydroxybenzotriazole (HOBt), high pressure liquid chromatography (HPLC), iso-propanol (IPA), lithium hexamethyl disilazane (LiHMDS), methanol (MeOH), melting point (mp), MeSO2— (mesyl or Ms), methyl (Me), acetonitrile (MeCN), m-chloroperbenzoic acid (MCPBA), mass spectrum (ms), methyl t-butyl ether (MTBE), N-bromosuccinimide (NBS), N-carboxyanhydride (NCA), N-chlorosuccinimide (NCS), N-methylmorpholine (NMM), N-methylpyrrolidone (NMP), pyridinium chlorochromate (PCC), pyridinium dichromate (PDC), phenyl (Ph), propyl (Pr), iso-propyl (i-Pr), pounds per square inch (psi), pyridine (pyr), room temperature (rt or RT), tert-butyldimethylsilyl or t-BuMe2Si (TBDMS), triethylamine (TEA or Et3N), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), triflate or CF3SO2— (Tf), trifluoroacetic acid (TFA), 1,1′-bis-2,2,6,6-tetramethylheptane-2,6-dione (TMHD), O-benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), thin layer chromatography (TLC), tetrahydrofuran (THF), trimethylsilyl or Me3Si (TMS), p-toluenesulfonic acid monohydrate (TsOH or pTsOH), 4-Me-C6H4SO2— or tosyl (Ts), N-urethane-N-carboxyanhydride (UNCA). Conventional nomenclature including the prefixes normal (n), iso (i-), secondary (sec-), tertiary (tert-) and neo have their customary meaning when used with an alkyl moiety. (J. Rigaudy and D. P. Klesney, Nomenclature in Organic Chemistry, IUPAC 1979 Pergamon Press, Oxford).

Examples of representative compounds encompassed by the present invention and within the scope of the invention are provided in the following Table. These examples and preparations which follow are provided to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.

In general, the nomenclature used in this Application is based on AUTONOM™ v.4.0, a Beilstein Institute computerized system for the generation of IUPAC systematic nomenclature. If there is a discrepancy between a depicted structure and a name given that structure, the depicted structure is to be accorded more weight. In addition, if the stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of it.

TABLE I depicts exemplified compounds according to Formula I.

TABLE I
SYSTEMATIC
COMPOUND NAME STRUCTURE MP
I-1 2-(Cyclopentyl- methyl-amino)-5H- pyrrolo[2,3- b]pyrazine- carboxylic acid isopropylamide ##STR00004## 277-278
I-2 1-[7-(2,2- Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]-2,2- dimethyl-propan-1- one ##STR00005## 188-198
I-3 1-(2- Cyclopentyloxy- 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00006##
I-4 N-[7-(2,2- Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]- benzamide ##STR00007##
I-5 Cyclo- hexanecarboxylic acid [7-(2,2- dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]- amide ##STR00008##
I-6 N-[7-(2,2- Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]-N- methyl-benzamide ##STR00009##
I-7 N-[7-(2,2- Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]- benzenesulfonamide ##STR00010##
I-8 N-[7-(2,2- Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]-N- methyl- benzenesulfonamide ##STR00011##
I-9 7-(2,2-Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazine-2- carboxylic acid dimethylamide ##STR00012##
I-10 7-(2,2-Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2- carboxylic acid isopropylamide ##STR00013##
I-11 1-(2-Acetyl-5H- pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00014##
I-12 1-(2-Isobutyryl 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00015##
I-13 2,2-Dimethyl-1-[2- (2-methyl- benzoyl)-5H- pyrrolo[2,3- b]pyrazin-7-yl]- propan-1-one ##STR00016##
I-14 1-(2-Benzoyl-5H- pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00017##
I-15 7-(2,2-Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2- carboxylic acid cyclopentylamide ##STR00018##
I-16 2,2-Dimethyl-1-[2- (pyridine-4- carbonyl)-5H- pyrrolo[2,3- b]pyrazin-7-yl]- propan-1-one ##STR00019##
I-17 2,2-Dimethyl-1-[2- (pyridine-3- carbonyl)-5H- pyrrolo[2,3- b]pyrazin-7-yl]- propan-1-one ##STR00020##
I-18 1-(2- Cycloheptyloxy- 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00021##
I-19 1-(2- Cyclohexyloxy- 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00022##
I-20 1-(2-Isopropoxy- 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00023##
I-21 1-(2-Ethoxy- 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00024##
I-22 2,2-Dimethyl-1-[2- (2-morpholin-4-yl- 2-oxo-ethoxy)-5H- pyrrolo[2,3- b]pyrazin-7-yl]- propan-1-one ##STR00025##
I-23 1-[2-(1,2- Dimethyl- propoxy)-5H- pyrrolo[2,3- b]pyrazin-7-yl]-2,2- dimethyl-propan-1- one ##STR00026##
I-24 1-(2-Isobutoxy- 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00027##
I-25 1-[2-(1-Benzyl- 1H-[1,2,3]triazol-4- yl)-5H-pyrrolo[2,3- b]pyrazin-7-yl]-2,2- dimethyl-propan-1- one ##STR00028##
I-26 1-Cyclohexyl-3-[7- (2,2-dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]- urea ##STR00029##
I-27 1-Cycloheptyl-3-[7- (2,2-dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]- urea ##STR00030##
I-28 2,2-Dimethyl-1-[2- (methyl-phenyl- amino)-5H- pyrrolo[2,3- b]pyrazin-7-yl]- propan-1-one ##STR00031##
I-29 1-(2-sec-Butoxy- 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00032##
I-30 2,2-Dimethyl-1-(2- phenylamino-5H- pyrrolo[2,3- b]pyrazin-7-yl)- propan-1-one ##STR00033##
I-31 1-(2- Cyclopentyloxy- 5H-pyrrolo[2,3- b]pyrazin-7-yl)-2,2- dimethyl-propan-1- one ##STR00034##
I-32 1-[2-(Cyclopentyl- methyl-amino)-5H- pyrrolo[2,3- b]pyrazin-7-yl]-2,2- dimethyl-propan-1- one ##STR00035##
I-33 2,2-Dimethyl-1-(2- phenoxy-5H- pyrrolo[2,3- b]pyrazin-7-yl)- propan-1-one ##STR00036##
I-34 2,2-Dimethyl-1-{2- [4-(4-methyl- piperazin-1-yl)- phenylamino]-5H- pyrrolo[2,3- b]pyrazin-7-yl}- propan-1-one ##STR00037##
I-35 2,2-Dimethyl-1-{2- [3-(4-methyl- piperazin-1-yl)- phenylamino]-5H- pyrrolo[2,3- b]pyrazin-7-yl}- propan-1-one ##STR00038##
I-36 1-Cyclohexyl-3-[7- (2,2-dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]- urea ##STR00039##
I-37 1-Cycloheptyl-3-[7- (2,2-dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]- urea ##STR00040##
I-38 1-[7-(2,2- Dimethyl- propionyl)-5H- pyrrolo[2,3- b]pyrazin-2-yl]-2,2- dimethyl-propan-1- one ##STR00041##
I-39 1-[2-(6-Methoxy- pyridin-2-ylamino)- 5H-pyrrolo[2,3- b]pyrazin-7-yl]-2,2- dimethyl-propan-1- one ##STR00042##

The compounds of the present invention may be formulated in a wide variety of oral administration dosage forms and carriers. Oral administration can be in the form of tablets, coated tablets, dragees, hard and soft gelatine capsules, solutions, emulsions, syrups, or suspensions. Compounds of the present invention are efficacious when administered by other routes of administration including continuous (intravenous drip) topical parenteral, intramuscular, intravenous, subcutaneous, transdermal (which may include a penetration enhancement agent), buccal, nasal, inhalation and suppository administration, among other routes of administration. The preferred manner of administration is generally oral using a convenient daily dosing regimen which can be adjusted according to the degree of affliction and the patient's response to the active ingredient.

A compound or compounds of the present invention, as well as their pharmaceutically useable salts, together with one or more conventional excipients, carriers, or diluents, may be placed into the form of pharmaceutical compositions and unit dosages. The pharmaceutical compositions and unit dosage forms may be comprised of conventional ingredients in conventional proportions, with or without additional active compounds or principles, and the unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed. The pharmaceutical compositions may be employed as solids, such as tablets or filled capsules, semisolids, powders, sustained release formulations, or liquids such as solutions, suspensions, emulsions, elixirs, or filled capsules for oral use; or in the form of suppositories for rectal or vaginal administration; or in the form of sterile injectable solutions for parenteral use. A typical preparation will contain from about 5% to about 95% active compound or compounds (w/w). The term “preparation” or “dosage form” is intended to include both solid and liquid formulations of the active compound and one skilled in the art will appreciate that an active ingredient can exist in different preparations depending on the target organ or tissue and on the desired dose and pharmacokinetic parameters.

The term “excipient” as used herein refers to a compound that is useful in preparing a pharmaceutical composition, generally safe, non-toxic and neither biologically nor otherwise undesirable, and includes excipients that are acceptable for veterinary use as well as human pharmaceutical use. The compounds of this invention can be administered alone but will generally be administered in admixture with one or more suitable pharmaceutical excipients, diluents or carriers selected with regard to the intended route of administration and standard pharmaceutical practice.

“Pharmaceutically acceptable” means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic, and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary as well as human pharmaceutical use.

A “pharmaceutically acceptable salt” form of an active ingredient may also initially confer a desirable pharmacokinetic property on the active ingredient which were absent in the non-salt form, and may even positively affect the pharmacodynamics of the active ingredient with respect to its therapeutic activity in the body. The phrase “pharmaceutically acceptable salt” of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. Such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo[2.2.2]-oct-2-ene-1-carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like; or (2) salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.

Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier may be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. In powders, the carrier generally is a finely divided solid which is a mixture with the finely divided active component. In tablets, the active component generally is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired. Suitable carriers include but are not limited to magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. Solid form preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.

Liquid formulations also are suitable for oral administration include liquid formulation including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions. These include solid form preparations which are intended to be converted to liquid form preparations shortly before use. Emulsions may be prepared in solutions, for example, in aqueous propylene glycol solutions or may contain emulsifying agents such as lecithin, sorbitan monooleate, or acacia. Aqueous solutions can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing, and thickening agents. Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents.

The compounds of the present invention may be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol. Examples of oily or nonaqueous carriers, diluents, solvents or vehicles include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain formulatory agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution for constitution before use with a suitable vehicle, e.g., sterile, pyrogen-free water.

The compounds of the present invention may be formulated for topical administration to the epidermis as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. Formulations suitable for topical administration in the mouth include lozenges comprising active agents in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.

The compounds of the present invention may be formulated for administration as suppositories. A low melting wax, such as a mixture of fatty acid glycerides or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and to solidify.

The compounds of the present invention may be formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

The compounds of the present invention may be formulated for nasal administration. The solutions or suspensions are applied directly to the nasal cavity by conventional means, for example, with a dropper, pipette or spray. The formulations may be provided in a single or multidose form. In the latter case of a dropper or pipette, this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray, this may be achieved for example by means of a metering atomizing spray pump.

The compounds of the present invention may be formulated for aerosol administration, particularly to the respiratory tract and including intranasal administration. The compound will generally have a small particle size for example of the order of five (5) microns or less. Such a particle size may be obtained by means known in the art, for example by micronization. The active ingredient is provided in a pressurized pack with a suitable propellant such as a chlorofluorocarbon (CFC), for example, dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, or carbon dioxide or other suitable gas. The aerosol may conveniently also contain a surfactant such as lecithin. The dose of drug may be controlled by a metered valve. Alternatively the active ingredients may be provided in a form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidine (PVP). The powder carrier will form a gel in the nasal cavity. The powder composition may be presented in unit dose form for example in capsules or cartridges of e.g., gelatin or blister packs from which the powder may be administered by means of an inhaler.

When desired, formulations can be prepared with enteric coatings adapted for sustained or controlled release administration of the active ingredient. For example, the compounds of the present invention can be formulated in transdermal or subcutaneous drug delivery devices. These delivery systems are advantageous when sustained release of the compound is necessary and when patient compliance with a treatment regimen is crucial. Compounds in transdermal delivery systems are frequently attached to an skin-adhesive solid support. The compound of interest can also be combined with a penetration enhancer, e.g., Azone (1-dodecylaza-cycloheptan-2-one). Sustained release delivery systems are inserted subcutaneously into to the subdermal layer by surgery or injection. The subdermal implants encapsulate the compound in a lipid soluble membrane, e.g., silicone rubber, or a biodegradable polymer, e.g., polyactic acid.

Suitable formulations along with pharmaceutical carriers, diluents and excipients are described in Remington: The Science and Practice of Pharmacy 1995, edited by E. W. Martin, Mack Publishing Company, 19th edition, Easton, Pa. A skilled formulation scientist may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity.

The modification of the present compounds to render them more soluble in water or other vehicle, for example, may be easily accomplished by minor modifications (salt formulation, esterification, etc.), which are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.

The term “therapeutically effective amount” as used herein means an amount required to reduce symptoms of the disease in an individual. The dose will be adjusted to the individual requirements in each particular case. That dosage can vary within wide limits depending upon numerous factors such as the severity of the disease to be treated, the age and general health condition of the patient, other medicaments with which the patient is being treated, the route and form of administration and the preferences and experience of the medical practitioner involved. For oral administration, a daily dosage of between about 0.01 and about 1000 mg/kg body weight per day should be appropriate in monotherapy and/or in combination therapy. A preferred daily dosage is between about 0.1 and about 500 mg/kg body weight, more preferred 0.1 and about 100 mg/kg body weight and most preferred 1.0 and about 10 mg/kg body weight per day. Thus, for administration to a 70 kg person, the dosage range would be about 7 mg to 0.7 g per day. The daily dosage can be administered as a single dosage or in divided dosages, typically between 1 and 5 dosages per day. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect for the individual patient is reached. One of ordinary skill in treating diseases described herein will be able, without undue experimentation and in reliance on personal knowledge, experience and the disclosures of this application, to ascertain a therapeutically effective amount of the compounds of the present invention for a given disease and patient.

The pharmaceutical preparations are preferably in unit dosage forms. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.

The following examples illustrate the preparation and biological evaluation of compounds within the scope of the invention. These examples and preparations which follow are provided to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.

##STR00043##

Sodium hydride (60% in mineral oil, 0.019 g, 0.48 mmol) was added to a stirring solution of 1-(2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one (0.094 g, 0.33 mmol) in 1.5 mL of N,N′-dimethylformamide at 0-5° C. The bubbling yellow mixture was stirred at 0-5° C. for 15 min., then 2-(trimethylsilyl)ethoxymethyl chloride (0.075 mL, 0.42 mmol) was added. The resulting cloudy yellow mixture was stirred at RT for 3 h, then partitioned between 10 mL of water and 10 mL of ethyl acetate. The organic layer was sequentially washed with two 10 mL portions of water and 10 mL of a sat. aq. NaCl solution, dried over MgSO4, filtered, and concentrated to an orange oil. Silica gel chromatography (10% EtOAc/hexanes) afforded 0.129 g (93%) of slightly impure 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a yellow oil that was used without further purification.

##STR00044##

A mixture of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.067 g, 0.16 mmol), 0.4 mL dioxane, 0.4 mL water, Pd2(dba)3 (0.009 g, 0.01 mmol), 2-di-t-butylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl (0.008 g, 0.02 mmol), and freshly ground KOH (0.038 g, 0.67 mmol) in a sealed tube under N2 was stirred at 100° C. for 15 h. The resulting orange-black mixture was partitioned between 5 mL of ethyl acetate and 5 mL of water, with a few drops of ethanol added to reduce emulsions. The aqueous layer was extracted with 5 mL of ethyl acetate. The combined organic layers were dried over Na2SO4, filtered, and concentrated to an orange oil. Silica gel chromatography (20→40% EtOAc/hexanes) afforded 0.029 g (51%) of 7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilanyl-ethoxymethyl)-1,5-dihydro-pyrrolo[2,3-b]pyrazin-2-one as a pale yellow solid.

##STR00045##

A solution of 7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilanyl-ethoxymethyl)-1,5-dihydro-pyrrolo[2,3-b]pyrazin-2-one (0.029 g, 0.082 mmol), 1 mL of tetrahydrofuran, cyclopentanol (0.010 mL, 0.11 mmol), tributylphosphine (0.025 mL, 0.1 mmol), and diisopropyl azodicarboxylate (0.020 mL, 0.10 mmol) under nitrogen was stirred at 65° C. for 17.5 h then allowed to cool. Additional cyclopentanol (0.020 mL, 0.22 mmol), tributylphosphine (0.050 mL, 0.20 mmol), and diisopropyl azodicarboxylate (0.040 mL, 0.21 mmol) were added, and the solution stirred at 65° C. for 2.5 h. The yellow solution was partitioned between 5 mL of water and 5 mL of ethyl acetate. The organic layer was washed with 5 mL of a sat. aq. NaCl solution, dried over MgSO4, filtered and concentrated to a yellow oil. Silica gel chromatography (10% EtOAc/hexanes) afforded 0.017 g (51%) of 1-[2-cyclopentyloxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a colorless oil.

##STR00046##

A solution of 1-[2-cyclopentyloxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.017 g, 0.041 mmol) in 1 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 5 h then concentrated to a yellow oil. Silica gel chromatography (0→40% EtOAc/hexanes) afforded 0.012 g of a white solid. 1H NMR spectroscopy indicated that this intermediate was the formaldehyde adduct of the desired product. The solid was dissolved in 1 mL of ethanol and the solution was treated with sodium acetate trihydrate (0.064 g, 0.47 mmol). The colorless mixture was stirred for 5 h then concentrated. The residue was partitioned between 5 mL of ethyl acetate and 5 mL of water. The organic layer was sequentially washed with 5 mL of water and 5 mL of a sat. aq. NaCl solution, dried over MgSO4, filtered and concentrated to 0.007 g (57%) of 1-(2-cyclopentyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one as a slightly impure white solid.

The following compounds were prepared according to the above general procedure:

##STR00047##

Step 1. Pyrrolopyrazine C (340 mg, 1.7 mmol) and N-methyl-cyclopentylamine were dissolved in NMP (2 mL) and placed in a sealed tube. The solution was irradiated with high intensity microwave at 240 Celsius for 1.5 hours. Upon cooling the mixture was partitioned between water and ethyl acetate. The extract was aged over anhydrous sodium sulfate and the volatiles were removed. The desired adduct (A, 102 mg) was isolated by SGC eluted with 10 to 60% ethyl acetate in hexanes and displayed spectroscopic properties consistent with the proposed structure.

Step 2. Pyrrolopyrazine A (100 mg, 0.46 mmol) was dissolved in N,N-dimethylformamide (5 mL) and cooled to 0 Celsius. Powdered potassium hydroxide (67 mg, 1.2 mmol) and iodine (127 mg, 0.5 mmol) were added in sequence which gave a tan solution after 30 minutes at 0 Celsius. The solution was treated with water, decolorized with 10% sodium thiosulfate(aq) and the resulting precipitate was filtered. The filter cake was washed with fresh water and stored in vacuo at 50 Celsius overnight. The tan powder (B, 120 mg) displayed spectroscopic properties consistent with the proposed structure.

Step 3. The desired amide I was prepared according to step 2 with B (110 mg, 0.32 mmol) and K2CO3 (135 mg, 1.0 mmol) by replacing the amine with iso-propylamine (0.08 mL, 1.0 mmol). The amide I was obtained as a solid (35 mg): mp 277-278° C.; ESMS m/z 302 (M+1) for MW of 301.

2-(3-Methylamino-piperidin-1-yl)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide was obtained by replacing N-methylcyclopentyl amine with 3-methylaminopiperidine in step 1 and conducting the reaction for 4 hours. The crude reaction mixture treated with di-tert-butyl dicarbonate and 4-dimethylaminopyridine in reluxing tetrahydrofuran and subjected to silica gel chromatography (eluant: 20 to 80% ethyl acetate in hexanes. The title compound was obtained by replacing B in step 2 with [1-(7-Iodo-5H-pyrrolo[2,3-b]pyrazin-2-yl)-piperidin-3-yl]-methyl-carbamic acid tert-butyl ester then the product of the carbonylation was treated with trifluoroacetic acid in refluxing 1,2-dichloroethane to obtain the title compound as the trifluoroacetate salt: m.p. 54-64° C.; MS m/z 317 (M+H for free base).

##STR00048##

7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid dimethylamide: 1-(2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one (50 mg, 0.177 mmol) was dissolved in N,N-dimethylformamide and the flask was purged with carbon monoxide. Dimethylamine (0.32 ml of a 5.5M ethanol solution) was added followed by palladium bis(diphenylphosphino)ferrocene dichloride, dichloromethane complex (14 mg, 0.0177 mmol). A carbon monoxide-filled balloon was attached and the flask was stirred in a 100 C bath for 48 hrs. The reaction was worked up by addition of water and ethyl acetate. The layers were separated and the aqueous layer was extracted twice more with ethyl acetate. The combined ethyl acetate layers were washed with water and then saturated sodium chloride solution, dried over sodium sulfate, filtered, and evaporated to a residue. The residue was purified by silica gel chromatography (methanol/dichloromethane) to give 16 mg (32%) of product. MP=98-101 C, (M+H)+=275.

7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid cyclopentylamide. Substituting cyclopentylamine for dimethylamine. MP=237.9-241.5 C, (M+H)+=315.

##STR00049##

Step 1: A mixture of 1-[2-Bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.25 g, 0.61 mmol), N-Methyl-benzamide (0.243 g, 1.8 mmol), K2CO3 (0.185 g, 1.34 mmol), CuI (0.0175 g, 0.092 mmol) and N,N′-Dimethyl-ethane-1,2-diamine (0.02 mL, 0.184 mmol) in tolene was heated under an argon atmosphere in a microwave oven at 110° C. overnight. After cooling to room temperature, the reaction mixture was purified by flash column chromatography on silica gel with EtOAc in hexane (10% to 40% gradient over 30 min) to give the desired product (60 mg, 21% yield) as a yellow oil. 1H NMR (CDCl3, 300 MHz): δ 8.43 (s, 1H), 8.04 (s, 1H), 7.45-7.24 (m, 5H), 5.65 (s, 2H), 3.74 (s, 3H), 3.62-3.59 (m, 2H), 1.51 (s, 9H), 0.99-0.94 (m, 2H), 0 (s, 9H); MS [M+H]+: 467. Step 2: The general procedures as described in these Examples were followed. 1H NMR (CDCl3): δ 9.50 (s, 1H), 8.35 (s, 1H), 8.00 (s, 1H), 7.39-7.21 (m, 5H), 3.69 (s, 3H), 1.45 (s, 9H); MS [M+H]+: 337.

##STR00050##

Cyclohexanecarboxylic acid [7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3b]pyrazin-2-yl]-amide. The general procedures as described in these Examples were followed. 1H NMR (DMSO-d6): δ 12.7 (s, 1H), 10.4 (s, 1H), 9.05 (s, 1H), 8.43 (d, J=3.3 Hz, 1H), 2.68-2.55 (m, 1H), 1.90-1.20 (m, 11H), 1.39 (s, 9H); MS [M+H]+: 329.

##STR00051##

The general procedures as described in these Examples were followed. 1H NMR (DMSO): δ 12.85 (br s, 1H), 10.9 (s, 1H), 8.96 (S, 1H), 8.50 (s, 1H), 8.14-8.12 (m, 2H), 1.62 (s) ppm, 7.765-7.53 (m, 3H), 1.40 (s, 9H); MS [M+H]+: 323.

##STR00052##

Step 1: A mixture of 1-[2-Bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.25 g, 0.61 mmol), benzenesulfonamide (0.143 g, 0.91 mmol, 1.5 equiv.), CuI (0.023 g, 0.12 mmol, 20 mol %), N,N-dimethylglycine (0.013 g, 0.12 mmol, 20 mol %) and K3PO4 (0.323 g, 1.53 mmol, 2.5 equiv.) in DMF (2 mL) was heated under an argon atmosphere in a microwave oven at 153° C. overnight. After cooling to room temperature, the reaction mixture was diluted with H2O and extracted with DCM. The combined organic extracts was washed with H2O and concentrated. The residue was purified by flash column chromatography on silica gel with EtOAc in hexane (15% to 50% gradient over 20 min) to give 0.215 g of product as a pale yellow foam. 1H NMR (CDCl3): δ 8.50 (s, 1H), 8.29 (s, 1H), 7.99-7.96 (m, 2H), 7.61-7.47 (m, 3H), 5.67 (s, 2H), 2.64-3.58 (m, 2H), 1.38 (s, 9H), 1.00-0.94 (m, 2H), 0 (s, 9H); MS [M+H]+: 489.

##STR00053##

The general procedures as described in these Examples were followed except replacing benzenesulfonamide with N-methylbenzenesulfonamide in step 1. 1H NMR (CDCl3): δ 8.75 (s, 1H), 8.49 (d, J=3.2 Hz, 1H), 7.56-7.53 (m, 3H), 7.44-7.40 (m, 2H), 3.36 (s, 3H), 1.23 (s, 9H); [M+H]+: 373.

##STR00054##

A mixture of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.051 g, 0.12 mmol), phenol (0.017 g, 0.18 mmol), potassium phosphate (0.056 g, 0.26 mmol), 2-di-tert-butylphosphino-2′-(N,N-dimethylamino)biphenyl (0.0041 g, 0.012 mmol) and Pd(OAc)2 (0.002 g, 0.009 mmol) in 1 mL of toluene was stirred at 100° C. for 13 h, then at 150° C. for 4 h. The resulting dark orange mixture was partitioned between 10 mL of ethyl acetate and 10 mL of water. The organic layer was dried over MgSO4, filtered and concentrated to an orange oil. Column chromatography (0-20% EtOAc/hexanes) afforded 0.032 g (62%) of impure 2,2-dimethyl-1-[2-phenoxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one as a yellow oil, which was used without further purification.

##STR00055##

A solution of impure 2,2-dimethyl-1-[2-phenoxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one, prepared according to general procedures as described in these Examples, (0.032 g, “0.075 mmol”) in 1 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 13 h, then concentrated to a yellow-green oil, which was partitioned between 5 mL of a sat. aq. NaHCO3 solution and 5 mL of dichloromethane. The aqueous layer was extracted with 5 mL of dichloromethane, and the combined organic layers were dried over MgSO4, filtered and concentrated to a pale yellow oil. The oil was dissolved in 1 mL of ethanol and treated with sodium acetate trihydrate (0.103 g, 0.756 mmol). The mixture was stirred for 2 h, then concentrated. The residue was partitioned between 5 mL of water and 5 mL of dichloromethane. The aqueous layer was extracted with 5 mL of dichloromethane, and the combined organic layers were dried over MgSO4, filtered and concentrated to a pale yellow oil. The oil was again dissolved in 1 mL of ethanol and treated with sodium acetate trihydrate (0.101 g, 0.745 mmol). The mixture was stirred for 4 h, then concentrated. The residue was partitioned between 5 mL of water and 5 mL of dichloromethane. The aqueous layer was extracted with 5 mL of dichloromethane, and the combined organic layers were dried over MgSO4, filtered and concentrated to an off-white solid. Column chromatography (0→33% EtOAc/hexanes) afforded 0.014 g (65% from impure; 40% 2-step) of 2,2-dimethyl-1-(2-phenoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-propan-1-one as an off-white solid.

##STR00056##

A solution of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.051 g, 0.123 mmol) and methylcyclopentylamine (0.050 mL, 0.44 mmol) in 1 mL of N-methyl pyrrolidinone in a sealed tube was stirred at 200° C. for 20 h. Additional methylcyclopentylamine (0.100 mL, 0.88 mmol) was added, and the solution stirred at 200° C. for 3 d. After cooling, the dark orange solution was partitioned between 10 mL of ethyl acetate and 10 mL of a 10% citric acid solution. The organic layer was sequentially washed with three 10 mL portions of water and 10 mL of a sat. aq. NaCl solution, dried over MgSO4, filtered and concentrated to an orange oil. Column chromatography (0-20% EtOAc/hexanes) afforded 0.030 g (58%) of impure 1-[2-(cyclopentyl-methyl-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one, which was used without further purification.

##STR00057##

A solution of impure 1-[2-(cyclopentyl-methyl-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one, prepared according to general procedures as described in these Examples, (0.030 g, 0.071 mmol) in 1 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 3 h, then concentrated, chasing with toluene, to a yellow oil. The oil was dissolved in 1 mL of ethanol and treated with sodium acetate trihydrate (0.103 g, 0.760 mmol). The yellow mixture was stirred for 16 h, then concentrated to a yellow solid. Column chromatography (two columns: first run, 0→40% EtOAc/hexanes; second run, 66% ether/hexanes) afforded 0.0045 g (21% from impure, 12% two-step) of 1-[2-(cyclopentyl-methyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a white solid.

##STR00058##

A mixture of 7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilanyl-ethoxymethyl)-1,5-dihydro-pyrrolo[2,3-b]pyrazin-2-one (0.080 g, 0.23 mmol), iodoethane (0.018 mL, 0.24 mmol) and potassium carbonate (0.038 g, 0.28 mmol) in 3 mL of acetone was stirred at reflux overnight, then concentrated. The residue was partitioned between 30 mL of ethyl acetate and 30 mL of water. The organic layer was dried over MgSO4, filtered and concentrated to 0.075 g (86%) of crude 1-[2-ethoxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a yellow oil that was used without further purification.

##STR00059##

A solution of crude 1-[2-ethoxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.075 g, 0.20 mmol) in 2 mL of dichloromethane and 2 mL of trifluoroacetic acid was stirred for 3 h, then concentrated, chasing with toluene. The resulting residue was dissolved in 3 mL of ethanol and treated with sodium acetate trihydrate (0.270 g, 1.98 mmol). The mixture was stirred overnight, then concentrated to a residue. Column chromatography (0→30% EtOAc/hexanes) afforded 0.039 g (80%) of 1-(2-ethoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one as a white solid.

##STR00060##

A mixture of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.206 g, 0.50 mmol), potassium carbonate (0.152 g, 1.10 mmol), copper (I) iodide (0.014 g, 0.075 mmol), proline (0.017 g, 0.15 mmol) and aniline (0.46 mL, 5 mmol) in 1 mL of dimethylsulfoxide was stirred at 90° C. for 5 d, then allowed to cool. The mixture was partitioned between 50 mL of ethyl acetate and 30 mL of water, and the organic layer was washed with 30 mL of a sat. aq. NaCl solution, dried over MgSO4, and concentrated to a residue. Column chromatography (0→45% EtOAc/hexanes) afforded 0.102 g (48%) of 2,2-dimethyl-1-[2-phenylamino-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one as a pale orange solid.

##STR00061##

A solution of 2,2-dimethyl-1-[2-phenylamino-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one (0.102 g, 0.240 mmol) in 2 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 14 h, then concentrated. Column chromatography (20→70% EtOAc/hexanes afforded 0.055 g of the formaldehyde adduct of the desired product. This intermediate was dissolved in 1 mL of ethanol and treated with sodium acetate trihydrate (0.327 g, 2.40 mmol). The mixture was stirred for 24 h, and solid was isolated by filtration, rinsing with water and ethanol, and dried to afford 0.010 g (14%) of 2,2-dimethyl-1-(2-phenylamino-5H-pyrrolo[2,3-b]pyrazin-7-yl)-propan-1-one as a yellow solid.

##STR00062##

A mixture of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.053 g, 0.129 mmol), N-methylaniline (0.021 mL, 0.19 mmol), Pd2(dba)3 (0.012 g, 0.013 mmol), BINAP (0.012 g, 0.019 mmol) and cesium carbonate (0.084 g, 0.258 mmol) in 2 mL of toluene was stirred at 120° C. in a microwave for 1 h, then at 150° C. in a microwave for 1 h, then at 180° C. in a microwave for 1 h, then concentrated to a residue. Column chromatography (0→30% EtOAc/hexanes) afforded 0.021 g (37%) of 2,2-dimethyl-1-[2-(methyl-phenyl-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one as a yellow oil.

##STR00063##

A solution of 2,2-dimethyl-1-[2-(methyl-phenyl-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one (0.021 g, 0.048 mmol) in 1 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 1 h, then concentrated. The residue was dissolved in 0.5 mL of ethanol and treated with sodium acetate trihydrate (0.065 g, 0.48 mmol). The mixture was stirred for 15 h, then concentrated to a residue. Column chromatography (50→100% EtOAc/hexanes) afforded 0.009 g (61%) of 2,2-dimethyl-1-[2-(methyl-phenyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one as a yellow solid.

##STR00064##

A mixture of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.576 g, 1.40 mmol), benzophenone imine (0.26 mL, 1.54 mmol), cesium carbonate (0.912 g, 2.80 mmol), palladium acetate (0.031 g, 0.14 mmol) and BINAP (0.087 g, 0.14 mmol) in 14 mL of tetrahydrofuran was stirred at 90° C. in a sealed tube for 64 h then concentrated. The resulting residue was taken up in 30 mL of ethyl acetate and sequentially washed with 30 mL of water and 30 mL of a sat. aq. NaCl solution, dried over MgSO4, filtered and concentrated to a residue. Column chromatography (10→25% EtOAc/hexanes) afforded 0.670 g (93%) of 1-[2-(benzhydrylidene-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a yellow oil.

##STR00065##

A mixture of 1-[2-(benzhydrylidene-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.670 g, 1.31 mmol), sodium acetate (0.258 g, 3.14 mmol) and hydroxylamine hydrochloride (0.164 g, 2.36 mmol) in 13 mL of methanol was stirred for 1 h, then concentrated to a residue. Column chromatography (10→50% EtOAc/hexanes) afforded 0.359 g (79%) of 1-[2-amino-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a white solid.

##STR00066##

A solution of 1-[2-amino-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.100 g, 0.287 mmol) and cyclohexyl isocyanate (0.37 mL, 2.9 mmol) in 3 mL of dichloroethane was stirred at reflux for 19 h, then concentrated to a residue. Column chromatography (10→50% EtOAc/hexanes) afforded 0.103 g (76%) of 1-cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea as a brown solid.

##STR00067##

A solution of 1-cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea (0.102 g, 0.215 mmol) in 2 mL of dichloromethane and 2 mL of trifluoroacetic acid was stirred for 1 h, then concentrated, chasing twice with toluene. The residue was dissolved in 2 mL of ethanol and treated with sodium acetate trihydrate (0.293 g, 2.15 mmol). The mixture was stirred for 16 h, then concentrated to a residue. Column chromatography (50→80% EtOAc/hexanes) afforded 0.050 g (68%) of 1-cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea as a white solid.

Compound prepared in similar fashion as 1-cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea:

Cycloheptyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea

JAK Assay Information

Determination of IC50 of Janus Kinase (JAK) Inhibition:

Enzymes and peptide substrate used are described below:

Assay conditions used are described below:

All concentrations are final in the reaction mixture and all incubations are carried at room temperature. Assay steps are described below:

Representative IC50 results are in Table II below:

TABLE II
IC50 h-jak2- IC50 h-jak3-
Compound sf21-c sf21-c
I-1 0.1289 0.0592
I-34 0.47099
I-35 0.49753

SYK Assay Information
Determination of IC50 of Spleen Tyrosine Kinase (SYK) Inhibition:

SYK kinase assay is a standard kinase assay adapted to a 96 well plate format. This assay is performed in 96-well format for IC50 determination with 8 samples which represented 10 half log dilutions and a 40 μL reaction volume. The assay measures the incorporation of radiolabeled 33P γATP into an N-terminally biotinylated peptide substrate, derived from naturally occurring phosphoacceptor consensus sequence (Biotin-11aa DY*E). Phosphorylated products were detected upon termination of reactions with EDTA and the addition of Streptavidin coated beads. Representative results are in Table II above.

In 40 μL volume, 26 μL of ADB diluted, purified recombinant human SYK360-635 [0.5 nM] was mixed with 4 μL of 10× concentrations of the test compounds, [usually 100 μM-0.003 μM] in [10%] DMSO and the mixture was incubated for 10 min at RT.

The kinase reaction was initiated by the addition of 10 μL 4× substrate cocktail containing the DYE peptide substrate [0 or 5 μM], ATP [20 μM] and 33PγATP [2 μCi/rxn]. After incubation at 30° C. for 15 min, the reaction was terminated by the transfer of 25 μL pf the reaction sample to a 96 well 0.65 μm Millipore MADVNOB membrane/plate containing 200 μL 5 mM EDTA and 20% Streptavidine coated beads in PBS.

The unbound radionucleotides were washed under vacuum with 3×250 μL 2M NaCl; 2×250 μL 2M NaCl+1% phosphoric acid; 1×250 μL H2O. After the last wash membrane/plates were transferred to an adaptor plate, heat dried for 15 min at 60° C., and 50 μL scintillation cocktail was added to each well and 4 h later the amount of radioactivity was counted in a top counter.

The percent inhibition was calculated based on the uninhibited enzyme rate:
% Inhibition=100/(1+(IC50/Inhibitor conc)n)

The foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity and understanding. It will be obvious to one of skill in the art that changes and modifications may be practiced within the scope of the appended claims. Therefore, it is to be understood that the above description is intended to be illustrative and not restrictive. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the following appended claims, along with the full scope of equivalents to which such claims are entitled.

All patents, patent applications and publications cited in this application are hereby incorporated by reference in their entirety for all purposes to the same extent as if each individual patent, patent application or publication were so individually denoted.

Lou, Yan, Soth, Michael, Hendricks, Robert Than, Yang, Hanbiao, Elworthy, Todd Richard, Kondru, Rama K., Owens, Timothy D.

Patent Priority Assignee Title
10017517, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-α]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluorethyl)pyrrolidine-1-carboxamide and solid state forms thereof
10093676, Jun 05 2014 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
10150783, Jan 23 2015 ACLARIS THERAPEUTICS, INC Heterocyclic ITK inhibitors for treating inflammation and cancer
10160760, Dec 06 2013 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
10202393, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-α]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
10202394, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
10208027, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Processes for preparing ATR inhibitors
10344036, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-#a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-#carboxamide and solid state forms thereof
10392391, Dec 07 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
10435397, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Processes for preparing ATR inhibitors
10478430, Apr 05 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase and combination therapies thereof
10479784, Dec 19 2008 VERTEX PHARMACEUTICALS INCORPORATED Substituted pyrazin-2-amines as inhibitors of ATR kinase
10519164, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3,ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
10550126, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-A]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
10597400, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carb oxamide and solid state forms thereof
10730883, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
10787452, Dec 07 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
10800781, Jun 05 2014 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
10813929, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Treating cancer with ATR inhibitors
10815239, Dec 06 2013 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
10822331, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Processes for preparing ATR inhibitors
10961232, Dec 19 2008 VERTEX PHARMACEUTICALS INCORPORATED Substituted pyrazines as ATR kinase inhibitors
10981923, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[l,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
10981924, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
10995095, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carb oxamide and solid state forms thereof
11110086, Apr 05 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase and combination therapies thereof
11117900, Dec 07 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
11179394, Jun 17 2014 VERTEX PHARMACEUTICALS INCORPORATED Method for treating cancer using a combination of Chk1 and ATR inhibitors
11186584, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11198697, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11365198, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11370798, Dec 07 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
11464774, Sep 30 2015 VERTEX PHARMACEUTICALS EUROPE LIMITED Method for treating cancer using a combination of DNA damaging agents and ATR inhibitors
11485739, Dec 06 2013 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
11512092, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11524964, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11535624, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-α]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11535625, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11535626, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1 carboxamide and solid state forms thereof
11661425, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11680069, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11718627, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11767326, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11773105, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]- pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11773106, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11780847, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1- carboxamide and solid state forms thereof
11780848, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1- carboxamide and solid state forms thereof
11787815, Oct 16 2015 AbbVie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
11795175, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
8329699, May 20 2010 Hoffmann-La Roche Inc. Pyrrolopyrazine kinase inhibitors
8410112, Nov 10 2008 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8481541, Mar 22 2010 Hoffmann-La Roche Inc. Pyrrolopyrazine kinase inhibitors
8518945, Mar 22 2010 Hoffmann-La Roche Inc. Pyrrolopyrazine kinase inhibitors
8623869, Jun 23 2010 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8658646, Sep 01 2011 Hoffmann-LaRoche Inc. Pyrrolopyrazine kinase inhibitors
8765751, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8822469, Jun 22 2011 VERTEX PHARMACEUTICALS INCORPORATED Pyrrolo[2,3-B]pyrazines useful as inhibitors of ATR kinase
8841308, Dec 19 2008 VERTEX PHARMACEUTICALS INCORPORATED Pyrazin-2-amines useful as inhibitors of ATR kinase
8841337, Nov 09 2011 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8841449, Nov 09 2011 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8841450, Nov 09 2011 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8846686, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8846917, Nov 09 2011 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8846918, Nov 09 2011 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8853217, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8877759, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Aminopyrazines as ATR kinase inhibitors
8901124, Jan 10 2012 Hoffmann-La Roche Inc. Pyridazine amide compounds useful as SYK inhibitors
8912198, Oct 16 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8962631, May 12 2010 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
8969356, May 12 2010 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9035053, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Processes for making compounds useful as inhibitors of ATR kinase
9062008, May 12 2010 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9096584, May 12 2010 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9096602, Jun 22 2011 VERTEX PHARMACEUTICALS INCORPORATED Substituted pyrrolo[2,3-B]pyrazines as ATR kinase inhibitors
9169259, Nov 01 2011 Hoffmann-La Roche Inc. Imidazopyridazine compounds
9309250, Jun 22 2011 VERTEX PHARMACEUTICALS INCORPORATED Substituted pyrrolo[2,3-b]pyrazines as ATR kinase inhibitors
9334244, May 12 2010 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9340546, Dec 07 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9365557, Dec 19 2008 VERTEX PHARMACEUTICALS INCORPORATED Substituted pyrazin-2-amines as inhibitors of ATR kinase
9630956, May 12 2010 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9650381, Dec 07 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9663519, Mar 15 2013 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9670215, Jun 05 2014 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9701674, Dec 19 2008 VERTEX PHARMACEUTICALS INCORPORATED Substituted pyrazines as ATR kinase inhibitors
9718827, Dec 07 2012 VERTEX PHARMACEUTICALS INCORPORATED Compounds useful as inhibitors of ATR kinase
9791456, Oct 04 2012 VERTEX PHARMACEUTICALS INCORPORATED; University of Newcastle Upon Tyne Method for measuring ATR inhibition mediated increases in DNA damage
9862709, Sep 30 2011 VERTEX PHARMACEUTICALS INCORPORATED Processes for making compounds useful as inhibitors of ATR kinase
9879018, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-α]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl and solid state forms thereof
9879019, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-α]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
9951080, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-alpha]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
9963459, Oct 16 2015 AbbVie Inc Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-alpla]pyrrolo[2,3-e]-pyrazin-8-YL)-N-(2,2,2-Trifluoroethyl)pyrrol and solid state forms thereof
Patent Priority Assignee Title
20060148801,
20070049615,
20090215724,
WO147922,
WO3000688,
WO3082868,
WO2005063746,
WO2006112828,
WO2008033798,
WO2008063888,
WO2008079903,
WO2008079909,
////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 20 2009Roche Palo Alto LLC(assignment on the face of the patent)
Mar 23 2009LOU, YANRoche Palo Alto LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0225800889 pdf
Mar 23 2009SOTH, MICHAELRoche Palo Alto LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0225800889 pdf
Mar 25 2009KONDRU, RAMA K Roche Palo Alto LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0225800889 pdf
Mar 25 2009OWENS, TIMOTHY D Roche Palo Alto LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0225800889 pdf
Mar 27 2009HENDRICKS, ROBERT THANRoche Palo Alto LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0225800889 pdf
Apr 01 2009ELWORTHY, TODD RICHARDRoche Palo Alto LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0225800889 pdf
Apr 01 2009YANG, HANBIAORoche Palo Alto LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0225800889 pdf
Date Maintenance Fee Events
Aug 25 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 29 2018REM: Maintenance Fee Reminder Mailed.
Apr 15 2019EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 08 20144 years fee payment window open
Sep 08 20146 months grace period start (w surcharge)
Mar 08 2015patent expiry (for year 4)
Mar 08 20172 years to revive unintentionally abandoned end. (for year 4)
Mar 08 20188 years fee payment window open
Sep 08 20186 months grace period start (w surcharge)
Mar 08 2019patent expiry (for year 8)
Mar 08 20212 years to revive unintentionally abandoned end. (for year 8)
Mar 08 202212 years fee payment window open
Sep 08 20226 months grace period start (w surcharge)
Mar 08 2023patent expiry (for year 12)
Mar 08 20252 years to revive unintentionally abandoned end. (for year 12)