An antenna assembly has a plurality of conductive elements to enable use in multiple frequency bands assigned for a mobile wireless communications. The antenna assembly has a six-sided support frame non-electrically conductive material which provides external surfaces on which specific conductive patterns are formed with the patterns on different surface being selectively connected together. The support frame is mounted on one major surface of a dielectric substrate that has an opposite major surface with a conductive layer that serves as ground plane. A portion of the opposite major surface, on which the conductive layer is not applied, forms one surface of the support frame.
|
1. An antenna assembly for a mobile wireless communication device comprising:
a support frame having a first surface, a second surface, a third surface and a fourth surface all extending between a fifth surface and a sixth surface;
a conductive stripe on the first surface;
a first conductive element having conductive sections on the first and fifth surfaces of the support frame and resonating in a first frequency band; and
a second conductive element having conductive sections on the first, third, fifth and sixth surfaces of the support frame and resonating in a second frequency band.
17. An antenna assembly for a mobile wireless communication device comprising:
a non-conductive support frame having a first surface, a second surface, a third surface and a fourth surface all extending between a fifth surface and a sixth surface;
an F-shaped conductive member on the first surface and comprising a conductive stripe from which a first arm and a second arm project in a spaced-apart, parallel manner;
a conductive loop on the fifth surface and connected to the first arm;
a first conductive strip on the fifth surface and connected to the second arm;
a U-shaped conductive member on the third surface and connected to the first conductive strip;
a conductive remote strip on the second surface and connected to the conductive loop; and
a second conductive strip on the sixth surface and connected to the U-shaped conductive member.
2. The antenna assembly as recited in
3. The antenna assembly as recited in
4. The antenna assembly as recited in
5. The antenna assembly as recited in
6. The antenna assembly as recited in
7. The antenna assembly as recited in
8. The antenna assembly as recited in
9. The antenna assembly as recited in
10. The antenna assembly as recited in
11. The antenna assembly as recited in
13. The antenna assembly as recited in
14. The antenna assembly as recited in
15. The antenna assembly as recited in
16. The antenna assembly as recited in
18. The antenna assembly as recited in
19. The antenna assembly as recited in
20. The antenna assembly as recited in
21. The antenna assembly as recited in
22. The antenna assembly as recited in
23. The antenna assembly as recited in
|
Not Applicable
Not Applicable
The present invention relates generally to antennas, and more specifically to multiple-band antennas that are particularly suited for use in wireless mobile communication devices, such as personal digital assistants, cellular telephones, and wireless two-way email communication devices.
Different types of wireless mobile communication devices, such as personal digital assistants, cellular telephones, and wireless two-way email communication apparatus are available. Many of these devices are intended to be easily carried on the person of a user, often fitting in a shirt or coat pocket.
The antenna configuration of a mobile communication device can significantly affect the overall size or footprint of the device. For example, cellular telephones typically have antenna structures that support communication in multiple operating frequency bands. Various types of antennas for mobile devices are used, such as helical, “inverted F”, folded dipole, and retractable antenna structures, for example. Helical and retractable antennas are typically installed outside a mobile device, and inverted F antennas are usually located inside of a case or housing of a device. Generally, internal antennas are often used instead of external antennas for mobile communication devices for mechanical and ergonomic reasons. Internal antennas are protected by the case or housing of the mobile device and therefore tend to be more durable than external antennas. External antennas also may physically interfere with the surroundings of a mobile device and make a mobile device difficult to use, particularly in limited-space environments.
In some types of mobile communication devices, however, known internal structures and design techniques provide relatively poor communication signal radiation and reception, at least in certain operating positions. One of the biggest challenges for mobile device design is to ensure that the antenna operates effectively for various applications, which determines antenna position related to human support frame. Typical operating positions of a mobile device include, for example, a data input position, in which the mobile device is held in one or both hands, such as when a user is entering a telephone number or email message; a voice communication position, in which the mobile device may be held next to a user's head and a speaker and microphone are used to carry on a conversation; and a “set down” position, in which the mobile device is not in use by the user and is set down on a surface, placed in a holder, or held in or on some other storage apparatus. In these positions, parts of a user's support frame and other ambient objects can block the antenna and degrade its performance. Known internal antennas, that are embedded in the device housing, tend to perform relatively poorly, particularly when a mobile device is in a voice communication position. Although the mobile device is not actively being employed by the user when in the set down position, the antenna should still be functional at least receive communication signals.
The desire to maintain the configuration of the mobile communication device to a size that conveniently fits into a hand of the user, presents a challenge to antenna design. This creates a tradeoff between the antenna performance, which dictates a relatively larger size, and the available space for the antenna within the device.
The antenna size versus performance design issue becomes an even bigger challenge when the handheld communication device, which already must operate in multiple frequency bands, is required to accommodate the additional 700 MHz band. A conventional antenna for operation in that frequency range would entail a physical length of about a quarter of a wavelength, which at 700 MHz is approximately 10.7 cm. To accommodate an antenna with such size inside the handheld device is neither feasible nor practical. Moreover, having a single internal antenna that operates in the existing frequency bands, such as GSM/800/900/1800/1900 and UMTS 2100 in addition to the 700 MHz band, presents a design challenge.
An antenna assembly for a mobile wireless communication device has conductive elements on selected surfaces of a support frame, that can be a rectangular polyhedron. The support frame has a first surface, a second surface, a third surface, and a fourth surface all extending between a fifth surface and a sixth surface.
An F-shaped conductive member is located on the first surface and comprises a conductive stripe from which a first arm and a second arm project in a spaced-apart, parallel manner. The first arm is connected to a conductive loop on the fifth surface and the second arm is connected to a first conductive strip also on the fifth surface. The first conductive strip also is connected to a U-shaped conductive member that is located on the third surface.
A rectangular conductive patch is provided on the second surface and is connected to the conductive stripe of the F-shaped conductive member. A conductive remote strip, located on the second surface, is connected to the conductive loop. An L-shaped patch is on the sixth surface and is connected to the conductive remote strip. A second conductive strip, provided on the sixth surface, is connected to the U-shaped conductive member.
In one embodiment, the support frame is contiguous with a first major surface of a sheet of dielectric material that has an opposing second major surface with a conductive layer applied thereto that provides a ground plane. In this embodiment a portion of the second major surface, on which the conductive layer is not applied, forms the sixth surface of the support frame.
The present antenna assembly is specially adapted for use in mobile wireless communication devices, such as personal digital assistants, cellular telephones, and wireless two-way email communication devices, and for brevity those mobile wireless communication devices are referred to herein as mobile devices and individually as a mobile device. Furthermore, the present antenna assembly will be described in the specific context of a cellular telephone.
Referring initially to
The housing 21 contains a main dielectric substrate 22, such as a printed circuit board (PCB) substrate, for example, on which is mounted the primary circuitry 24 for mobile device 20. That primary circuitry 24, as shown in greater detail in
An audio input device, such as a microphone 31, and an audio output device, such as a speaker 33, function as an audio interface to the user and are connected to the primary circuitry 24.
Communication functions are performed through a radio frequency circuit 34 which includes a wireless signal receiver 36 and a wireless signal transmitter 38 that are connected to a multiple-element antenna assembly 40. The antenna assembly 40 can be carried within the lower portion of the housing 21. The antenna assembly will be described in greater detail subsequently herein.
The radio frequency circuit 34 also includes a digital signal processor (DSP) 42 and local oscillators (LOs) 44. The specific design and implementation of the radio frequency circuit 34 is dependent upon the communication network in which the mobile device 20 is intended to operate. For example a device destined for use in North America may be designed to operate within the Mobitex™ mobile communication system or DataTAC™ mobile communication system, whereas a device intended for use in Europe may incorporate a General Packet Radio Service (GPRS) radio frequency circuit.
When required network registration or activation procedures have been completed, the mobile communication device 20 sends and receives signals over the communication network 46. Signals received by the multiple-element antenna from the communication network 46 are input to the receiver 36, which performs signal amplification, frequency down conversion, filtering, channel selection, and analog-to-digital conversion. Analog-to-digital conversion of the received signal allows the DSP 42 to perform more complex communication functions, such as demodulation and decoding. In a similar manner, signals to be transmitted are processed by the DSP 42 and sent to the transmitter 38 for digital-to-analog conversion, frequency up-conversion, filtering, amplification and transmission over the communication network 46 via the multiple-element antenna.
The mobile device 20 also may comprise one or auxiliary input/output devices 48, such as, for example, a WLAN (e.g., Bluetooth®, IEEE. 802.11) antenna and circuits for WLAN communication capabilities, and/or a satellite positioning system (e.g., GPS, Galileo, etc.) receiver and antenna to provide position location capabilities, as will be appreciated by those skilled in the art. Other examples of auxiliary I/O devices 48 include a second audio output transducer (e.g., a speaker for speakerphone operation), and a camera lens for providing digital camera capabilities, an electrical device connector (e.g., USB, headphone, secure digital (SD) or memory card, etc.).
Structures for the antenna assembly 40 described herein are sized and shaped to tune the antenna for operation in multiple frequency bands. In an embodiment described in detail below, the multiple-band antenna includes structures that are primarily associated with different operating frequency bands thereby enabling the multiple-band antenna to function as the antenna in a multi-band mobile device. For example, a multiple-band antenna assembly 40 is adapted for operation at the Global System for Mobile communications (GSM) 900 MHz frequency band and the Digital Cellular System (DCS) frequency band. Those skilled in the art will appreciate that the GSM-900 band includes a 880-915 MHz transmit sub-band and a 925-960 MHz receive sub-band. The DCS frequency band similarly includes a transmit sub-band in the 1710-1785 MHz range and a receive sub-band in the 1805-1880 MHz range. The antenna assembly 40 also functions in the Universal Mobile Telecommunications System (UMTS) 2100 MHz bands and in the 700 MHz frequency band. It will also be appreciated by those skilled in the art that these frequency bands are for illustrative purposes only and the basic concepts of the present antenna assembly can be applied to operate in other pairs of frequency bands.
With reference to
The multi-frequency antenna assembly 40 comprises specific electrically conductive patterns on surfaces of a rectangular polyhedron which forms the support frame 54 of the antenna assembly. In one version, the support frame 54 is constructed of a dielectric material, such as FR-4 laminate which is a continuous glass-woven fabric impregnated with an epoxy resin binder. The rectangular polyhedron support frame 54 may be 30 mm by 15 mm by 9 mm high. In one embodiment, the antenna support frame 54 is hollow being fabricated of five panels of dielectric material that are 1.5 mm thick and secured together at their edges and to the first major surface 50 of the dielectric substrate using appropriate means, such as an adhesive. Alternatively, a solid support frame for the antenna assembly can be utilized. Regardless of the specific construction, the antenna support frame 54 is considered as having six surfaces, including a portion of the second major surface 51 of the dielectric substrate 22 which is directly beneath the remainder of the support frame 54 as seen in
Referring to
The antenna assembly 40 comprises electrically conductive material applied to different surfaces of the support frame 54 in selected patterns to form segments of the antenna assembly 40. There is no conductive pattern on the fourth surface of the support frame 54. As shown in
The first arm 72 of the F-shaped member 70 is connected, at the edge 67 between the first and fifth surfaces 61 and 65, to a corner of a conductive loop 76 on the fifth surface 65. The conductive loop 76 extends to an opposite edge 75 where the fifth surface 65 abuts the third surface 63, and extends along another edge 77 in common with the fifth and second surfaces 65 and 62. The conductive loop 76 is rectangular, however other loop shapes can be employed. The conductive loop 76 extends across approximately two-thirds of the area of the fifth surface 65. A first straight conductive strip 78 also is located on the fifth surface 65 extending between the edge 67 shared with the first surface 61 to the opposite edge 75 shared with the third surface 63. The first conductive strip 78 has one end that is connected at edge 67 to the second arm 73 of the F-shaped member 70.
The opposite end of the first conductive strip 78 extends around edge 75 onto the third surface 63 where, as seen in
With particular reference to
With particular reference to
The conductive components on the antenna support frame 54 can be formed by applying a layer of conductive material, such as copper, to the entirety of the respective surface of the support frame 54 and then using a photolithographic process to etch away the conductive material from areas of that surface where a conductive part is not desired.
The various electrically conductive antenna components combine to form elements of the antenna assembly 40. A first antenna element comprises the first arm 72 of the F-shaped member 70, the conductive loop 76, and the conductive remote strip 84. The first antenna element resonates in the 800 MHz and 900 MHz frequency bands. A second antenna element comprises the second arm 73, the first conductive strip 78, the U-shaped conductive member 80, and the second conductive strip 89. A second antenna element is longer that the first antenna element and resonates in the 700 MHz frequency band. The wrapping of the first and second antenna elements in close proximity to each other widens the bandwidth of the antenna assembly. Sections of the two antenna element resonate at higher frequencies in the 1800 MHz, 1900 MHz and 2100 MHz frequency bands.
The foregoing description was primarily directed to a certain embodiments of the antenna. Although some attention was given to various alternatives, it is anticipated that one skilled in the art will likely realize additional alternatives that are now apparent from the disclosure of these embodiments. Accordingly, the scope of the coverage should be determined from the following claims and not limited by the above disclosure.
Wang, Dong, Rao, Qinjiang, Ali, Shirook M.
Patent | Priority | Assignee | Title |
10468751, | Feb 26 2014 | GALTRONICS USA, INC | Multi-feed antenna assembly |
7994985, | May 26 2009 | City University of Hong Kong | Isolation enhancement technique for dual-polarized probe-fed patch antenna |
8294619, | Aug 19 2009 | ARCADYAN TECHNOLOGY CORPORATION | Unsymmetrical dual band antenna |
9397388, | Dec 23 2008 | SKYCROSS CO , LTD | Dual feed antenna |
9966669, | Dec 22 2011 | Kathrein Automotive GmbH | Patch antenna arrangement |
D824885, | Feb 25 2017 | Airgain Incorporated | Multiple antennas assembly |
Patent | Priority | Assignee | Title |
5547100, | Mar 06 1995 | Beverage can insect cover | |
5633646, | Dec 11 1995 | EMS Technologies Canada, LTD | Mini-cap radiating element |
6593887, | Jan 25 1999 | City University of Hong Kong | Wideband patch antenna with L-shaped probe |
6803881, | Aug 23 2002 | Murata Manufacturing Co., Ltd. | Antenna unit and communication device including same |
6950071, | Apr 12 2001 | Malikie Innovations Limited | Multiple-element antenna |
6950072, | Oct 23 2002 | Murata Manufacturing Co., Ltd. | Surface mount antenna, antenna device using the same, and communication device |
7023387, | May 14 2003 | Malikie Innovations Limited | Antenna with multiple-band patch and slot structures |
7038627, | Jun 26 2003 | Kyocera Corporation | Surface mounting type antenna, antenna apparatus and radio communication apparatus |
7113133, | Dec 31 2004 | Advanced Connectek Inc. | Dual-band inverted-F antenna with a branch line shorting strip |
7283097, | Nov 26 2003 | Malikie Innovations Limited | Multi-band antenna with patch and slot structures |
7352328, | Sep 27 2005 | Samsung Electronics Co., Ltd. | Flat-plate MIMO array antenna with isolation element |
7369089, | May 13 2004 | Malikie Innovations Limited | Antenna with multiple-band patch and slot structures |
7400300, | Jun 12 2003 | Malikie Innovations Limited | Multiple-element antenna with floating antenna element |
7403165, | Jun 02 2004 | Google Technology Holdings LLC | Mobile wireless communications device comprising non-planar internal antenna without ground plane overlap |
7538732, | Jan 05 2005 | Murata Manufacturing Co., Ltd. | Antenna structure and radio communication apparatus including the same |
20040085245, | |||
20060244665, | |||
20070109204, | |||
20080062058, | |||
20080231530, | |||
20080284661, | |||
20080287171, | |||
EP1077505, | |||
EP1162688, | |||
JP20080167393, | |||
JP2008167393, | |||
WO2004015810, | |||
WO2008001169, | |||
WO2008049354, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 24 2008 | Research In Motion Limited | (assignment on the face of the patent) | / | |||
Nov 24 2008 | RAO, QINJIANG | Research In Motion Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021883 | /0900 | |
Nov 24 2008 | ALI, SHIROOK M | Research In Motion Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021883 | /0900 | |
Nov 24 2008 | WANG, DOUG | Research In Motion Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021883 | /0900 | |
Jul 09 2013 | Research In Motion Limited | BlackBerry Limited | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 037940 | /0001 | |
May 11 2023 | BlackBerry Limited | Malikie Innovations Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 064104 | /0103 | |
May 11 2023 | BlackBerry Limited | Malikie Innovations Limited | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS | 064270 | /0001 |
Date | Maintenance Fee Events |
Sep 22 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 24 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 22 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 22 2014 | 4 years fee payment window open |
Sep 22 2014 | 6 months grace period start (w surcharge) |
Mar 22 2015 | patent expiry (for year 4) |
Mar 22 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 22 2018 | 8 years fee payment window open |
Sep 22 2018 | 6 months grace period start (w surcharge) |
Mar 22 2019 | patent expiry (for year 8) |
Mar 22 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 22 2022 | 12 years fee payment window open |
Sep 22 2022 | 6 months grace period start (w surcharge) |
Mar 22 2023 | patent expiry (for year 12) |
Mar 22 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |