A system, method and computer-readable medium for practicing a method of emotion detection during a natural language dialog between a human and a computing device are disclosed. The method includes receiving an utterance from a user in a natural language dialog between a human and a computing device, receiving contextual information regarding the natural language dialog which is related to changes of emotion over time in the dialog, and detecting an emotion of the user based on the received contextual information. Examples of contextual information include, for example, differential statistics, joint statistics and distance statistics.

Patent
   7912720
Priority
Jul 20 2005
Filed
Jul 20 2005
Issued
Mar 22 2011
Expiry
Apr 19 2027
Extension
638 days
Assg.orig
Entity
Large
295
21
EXPIRED
1. A method for emotion detection during a natural language dialog between a user and a computing device, the method comprising:
receiving an utterance from the user as part of the natural language dialog between the user and the computing device;
identifying, based on the utterance, an identified group comprising one of a social group, an ethnic group and a geographic group, the identified group having separate identifiable concepts of an individual emotion;
receiving non-repetitive dialog acts in the natural-language dialog, wherein the non-repetitive dialog acts are prompts by the computing device; and
detecting, via the computing device, an emotion of the user based on the identified group and at least in part on the non-repetitive dialog acts.
9. A non-transitory computer-readable medium, storing instructions for controlling a computing device to detect emotion during a natural language dialog between a user and the computing device, the instructions comprising:
receiving an utterance from the user in a human-computing device natural language dialog;
identifying, based on the utterance, an identified group comprising one of a social group, an ethnic group and a geographic group, the identified group having separate identifiable concepts of an individual emotion;
receiving non-repetitive dialog acts in the natural-language dialog, wherein the non-repetitive dialog acts are prompts by the computing device; and
detecting an emotion of the user based on the identified group and at least in part on the non-repetitive dialog acts.
17. A computing device that detects emotion during a natural language dialog between a user and the computing device, the computing device comprising:
a first module configured to receive an utterance from a user in a human-computing device natural language dialog;
a second module configured to identify, based on the utterance, an identified group comprising one of a social group, an ethnic group and a geographic group, the identified group having separate identifiable concepts of an individual emotion;
a third module configured to receive non-repetitive dialog acts in the natural language dialog, wherein the non-repetitive dialog acts are prompts by the computing device; and
a fourth module configured to detect an emotion of the user based on the identified group and at least in part on the non-repetitive dialog acts.
2. The method of claim 1, wherein the non-repetitive dialog acts comprise at least one of: greeting, re-prompt, specification, acknowledgement, and informative.
3. The method of claim 2, wherein detecting the emotion of the user further is based on prosodic and lexical features extracted from the received utterance.
4. The method of claim 1, further comprising receiving contextual information used for detecting the emotion of the user, the context of information comprising one of differential statistics, joint statistics, distance statistics, and statistics collected during a prior dialog between the user and the computing device including (1) differential information of prosodic features, (2) temporal variation of emotion indicators inter-utterance, and (3) temporal variation of emotion indicators intra-utterance.
5. The method of claim 4, wherein differential statistics relate to a rate of change of prosodic values from one turn to another in the natural language dialog.
6. The method of claim 4, wherein the joint statistics relate to examining a discrete-value feature in the current utterance with reference to at least one previous value for the discrete-value feature.
7. The method of claim 6, wherein the discrete-value feature is one of a dialog act, a number of dialogs, a number of user turns, and a number of words per turn.
8. The method of claim 4, wherein the distance statistics relate to similarities in lexical features between the current utterances and at least one previous utterance.
10. The non-transitory computer-readable medium of claim 9, wherein the non-repetitive dialog acts comprise at least one of: greeting, re-prompt, specification, acknowledgement, and informative.
11. The non-transitory computer-readable medium of claim 10, wherein detecting the emotion of the user further is based on prosodic and lexical features extracted from the received utterance.
12. The non-transitory computer-readable medium of claim 9, further comprising receiving contextual information used for detecting the emotion of the user, the contextual information comprising at least one of differential statistics, joint statistics, distance statistics, and statistics collected during a prior dialog between the human and the computing device including (1) differential information of prosodic features, (2) temporal variation of emotion indicators inter-utterance, and (3) temporal variation of emotion indicators intra-utterance.
13. The non-transitory computer-readable medium of claim 12, wherein differential statistics relate to a rate of change of prosodic values from one turn to another in the natural language dialog.
14. The non-transitory computer-readable medium of claim 13, wherein the joint statistics relate to examining a discrete-value feature in the current utterance with reference to at least one previous value for the discrete-value feature.
15. The non-transitory computer-readable medium of claim 14, wherein the discrete-value feature is one of a dialog act, a number of dialogs, a number of user turns, and a number of words per turn.
16. The non-transitory computer-readable medium of claim 12, wherein the distance statistics relate to similarities in lexical features between the current utterances and at least one previous utterance.
18. The computing device of claim 17, wherein the non-repetitive dialog acts comprise at least one of: greeting, re-prompt, specification, acknowledgement, and informative.
19. The computing device of claim 18, wherein the fourth module is further configured to detect the emotion of the user based on prosodic and lexical features extracted from the received utterance.
20. The computing device of claim 17, wherein the third module is further configured to receive contextual information used for detecting the emotion of the user, the contextual information comprising at least one of differential statistics, joint statistics, distance statistics, and statistics collected during a prior dialog between the human and the computing device including (1) differential information of prosodic features, (2) temporal variation of emotion indicators inter-utterance, and (3) temporal variation of emotion indicators intra-utterance.

1. Field of the Invention

The present invention relates to a system and method of providing a more natural interaction between a human and a computing device by providing an improved method of detecting emotion.

2. Introduction

Some studies have been performed on the topic of understanding the affective component of human-machine communication. The affective component relates to understanding the emotion in speech. In normal conversation, people gather much information not just from the actual words spoken but also from how they are spoken. We learn from pitch, volume, intensity and so forth about the meaning of the words spoken by an individual.

In state-of-the-art spoken dialog systems, the dimension related to emotion is usually ignored though it plays a major role in engaging users in communicating with machines. Speech researchers are becoming increasingly interested in human emotion. There is an ever growing body of research pointing to useful indicators of emotional speech; most specifically, prosodic (pitch, energy, speaking rate) and lexical features. However, most of this research has used data elicited from actors. Notwithstanding, a few researchers have begun to look at emotions as they develop and evolve in more natural settings in spoken dialog systems. Currently, there are three open research issues in emotion processing.

Regarding emotion annotation, studies show that although researchers have created protocols for various degrees of emotion states, their distributions are very skewed and, more importantly, inter-labeler agreement is relatively low. In the area of emotion prediction, studies show that given the nature of the problem, there is not a dominant predictive feature and the studies present the use of very large feature sets that exhibit low correlations. Thus, researchers tend to reduce the problem to a binary decision (negative vs. positive state). Such a binary decision does not provide the depth of information necessary to improve the spoken dialog. Finally, a computational model of affective computing has been studied and should be able to predict the user's current state and act upon it. The action should move the user to the next internal state of the dialog which is most likely to lead to a successful dialog in terms of the dialog goal and the user (positive) state.

What is needed in the art is an improved system and method of improving a spoken dialog system according to user emotion.

Additional features and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth herein.

The present invention addresses the deficiencies in the prior art. In human-machine communication, a typical computing device can neither express feelings nor understand them. More importantly, a typical computing device cannot take actions upon emotions. The emotional channel is the untapped source of information to engage users in efficient and effective interactions. The present invention improves upon emotion prediction by grounding prosodic, lexical and discourse features within a spoken dialog using contextual and dynamic features. Multivariate statistics from the dialog history (trace) are used to calculate features that are user-dependent and thus overcome the data sparseness and labeling problems. Another aspect of the invention relates to data generation. The spoken dialog corpora collected is spontaneous in contrast to acted or emotion-elicited corpora that have most often been used in research.

The invention provides for a system, method and computer readable medium storing instructions related to emotions in a spoken dialog system. The method embodiment of the invention is a method for emotion detection during a natural language dialog between a human and a computing device. The method comprises receiving an utterance from a user in a natural language dialog, receiving contextual information regarding the natural language dialog and detecting an emotion of the user based at least in part on the received contextual information.

The invention includes an aspect related to predicting human emotions in human-machine conversations and thus enables a more natural flow of dialogs. Emotions or paralinguistic information is helpful in determining, among other things, a customer's state which could be used to elicit correct information and provide friendly user experience.

In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIG. 1 illustrates a spoken dialog system;

FIG. 2 illustrates a system embodiment of the invention; and

FIG. 3 illustrates a method embodiment of the invention.

Various embodiments of the invention are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the spirit and scope of the invention.

Spoken dialog systems aim to identify human intent expressed in natural language, take actions accordingly and to satisfy their requests. FIG. 1 is a functional block diagram of an exemplary natural language spoken dialog system 100. Natural language spoken dialog system 100 may include an automatic speech recognition (ASR) module 102, a spoken language understanding (SLU) module 104, a dialog management (DM) module 106, a spoken language generation (SLG) module 108 and a text-to-speech (TTS) module 110.

ASR module 102 may analyze speech input and may provide a transcription of the speech input as output. SLU module 104 may receive the transcribed input and may use a natural language understanding model to analyze the group of words that are included in the transcribed input to derive a meaning from the input. The role of DM module 106 is to interact in a natural way and help the user to achieve the task that the system is designed to support. DM module 106 may receive the meaning of the speech input from SLU module 104 and may determine an action, such as, for example, providing a response, based on the input. SLG module 108 may generate a transcription of one or more words in response to the action provided by DM 106. TTS module 110 may receive the transcription as input and may provide generated audible speech as output based on the transcribed speech.

Thus, the modules of system 100 may recognize speech input, such as speech utterances, may transcribe the speech input, may identify (or understand) the meaning of the transcribed speech, may determine an appropriate response to the speech input, may generate text of the appropriate response and from that text, may generate audible “speech” from system 100, which the user then hears. In this manner, the user can carry on a natural language dialog with system 100. Those of ordinary skill in the art will understand the programming languages and means for generating and training ASR module 102 or any of the other modules in the spoken dialog system. Further, the modules of system 100 may operate independent of a full dialog system. For example, a computing device such as a smartphone (or any processing device having a phone or communication capability) may have an ASR module wherein a user may say “call mom” and the smartphone may act on the instruction without a “spoken dialog.”

The invention is related to a computing device and how a user interacts with the device. The following discussion is intended to provide a brief, general description of a suitable computing environment in which the invention may be implemented. Although not required, the invention will be described, at least in part, in the general context of computer-executable instructions, such as program modules, being executed by a computing device such as a desktop or laptop computer. Generally, program modules include routine programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the invention may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.

Several aspects of the invention make it unique. One aspect of the invention involves predicting the user's state from pre-labeled data as well as from a just-in-time computation of what the user state is. It revolutionizes the state-of-the-art of human-machine communication by opening a paralinguistic channel between the human and the machine. The problem is difficult because the user state is not stable across user population and is in general a relative concept within a social and/or ethnic and/or geographical group. Therefore, the inventors consider an aspect of their invention to identify through means such as accent, other user input, or from the dialog itself, one of a social and/or ethnic and/or geographical group that has separate identifiable concepts of emotion. If the computing device that is operating under the principles of the invention therefore identifies the appropriate group, it can apply algorithms for that group to further enhance the user experience. Other means of identifying the appropriate group and making the appropriate modifications and adjustments to the computing device are also contemplated.

With reference to FIG. 2, an exemplary system for implementing the invention includes a general purpose computing device 200, including a processing unit (CPU) 220, a system memory 230, and a system bus 210 that couples various system components including the system memory 230 to the processing unit 220. It can be appreciated that the invention may operate on a computing device with more than one CPU 220 or on a group or cluster of computing devices networked together to provide greater processing capability. The system bus 210 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system may also include other memory such as read only memory (ROM) 240 and random access memory (RAM) 250. A basic input/output (BIOS), containing the basic routine that helps to transfer information between elements within the computing device 200, such as during start-up, is typically stored in ROM 240. The computing device 200 further includes storage means such as a hard disk drive 260, a magnetic disk drive, an optical disk drive, tape drive or the like. The storage device 260 is connected to the system bus 210 by a drive interface. The drives and the associated computer-readable media provide nonvolatile storage of computer readable instructions, data structures, program modules and other data for the computing device 200. The basic components are known to those of skill in the art and appropriate variations are contemplated depending on the type of device, such as whether the device is a small, handheld computing device, a desktop computer or a computer server.

Although the exemplary environment described herein employs the hard disk, it should be appreciated by those skilled in the art that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, cartridges, random access memories (RAMs), read only memory (ROM), a cable or wireless signal containing a bitstream and the like, may also be used in the exemplary operating environment.

To enable user interaction with the computing device 200, an input device 260 represents any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse and so forth. The device output 270 can also be one or more of a number of output means. For example, speech output via a speaker, visual output through a graphical display. In some instances, multi-modal systems enable a user to provide multiple types of input to communicate with the computing device 200. The communications interface 280 generally governs and manages the user input and system output.

The present inventors have studied the affective component of human-machine communication. In typical spoken dialog systems, the affective component dimension is usually ignored although it plays a major role in engaging users in communicating with machines. Past research in the prediction of human emotion in spoken language has tended to exploit only isolated speech utterances (whether they are acted or spontaneous), using little or no contextual information. The present invention utilizes the dynamic nature of emotion as it is manifested in human-machine spoken communication. The traditional emotion indicators, such as prosody and language, are augmented with contextual information. Contextual information may comprise temporal variations of emotion indicators inter- and intra-utterance.

Using the principles of the invention, the inventors have observed an improvement in the prediction of negative user state using dialog acts over lexical and prosodic information alone and a further improvement using additional innovative contextual features. Overall performance accuracy using all features is around 80%.

Next is described an aspect of the invention related to feature modeling. Features are extracted from the corpus. Three conceptually different sets of features are described: baseline, state-of the art and contextual. All acoustic features were extracted using methods known in the art such as, for example, the method taught in P. Boersma, “Praat, a system for doing phonetics by computer,” Glot International, vol. 5, no. 9/10, pp. 341-345, 2001, incorporated herein by reference.

The baseline feature set comprises lexical features (n-grams) as well as at least the following prosodic features extracted from the current user utterance: (1) Pitch: overall minimum, maximum, median, standard deviation; mean absolute slope; slope of final voiced section; mean over longest vowel; (2) Energy: overall minimum, maximum, mean, standard deviation; mean over longest vowel; (3) Speaking Rate: vowels-per-second, mean vowel length, ration of voiced frames to total frames, percent of internal silence (hesitation); and (4) Other: local jitter over longest vowel. Other lexical feature may also be associated with the baseline feature set.

Certain prosodic features utilized automatic segmentation in order to isolate vowels in the utterance. One aspect of the invention involves aligning the speech utterance with the reference transcriptions. This information was used for some speaking rate measurements as well as locating the longest normalized vowel in the utterance. Furthermore, all prosodic features are preferably normalized by gender using standard normalization whose values were represented as z-scores.

The state-of-the-art features set builds upon the baseline set by adding dialog acts, such as, for example: greeting, re-prompt, confirmation, specification, acknowledgment, disambiguation, informative. Other dialog acts are also contemplated as part of the invention as well.

Finally, a second dimension to the feature space is introduced as shown in Table 1, which is a representation of feature set space in two dimensions. Columns represent the conceptual feature types and rows represent the context these features types are defined by—such as the current utterance alone or in relation to past utterances. Capital letters indicate to which concept group each feature set belongs: the baseline system (B), the state-of-the-art system (S), or the contextual System (C).

TABLE 1
Feature Set
Context Prosodic Lexical Discourse
turni B  S  C B  S  C −S  C
turni−1 turni —  C —  C −S  C
turni−2 turni —  C —  C —  C
. . . . . . . . . . . .

The contextual feature set uses information about the history of the dialog instead of simply the current utterance. Contextual features are realized differendy depending on the type of non-contextual feature from which they are derived. Several example statistical analyses are mentioned. Others may be used as well.

Calculations based on differential statistics are calculations used for continuous-valued features and as such represent the rate of change of prosodic values such as mean pitch from one turn to another. Preferably, both first and second order differences are considered. Joint Statistics may also be used. For discrete-valued features, such as dialog acts, contextual features are calculated by examining the joint information with the previous N values for that feature. In this way, dialog history was exploited, enabling the detection of changes in each speaker's feature values. These contextual features are supposed to model the speaker-dependent dimension. While joint statistic can be calculated up to any length, one aspect of the invention involves restricting the history length to some degree. For example, the history length may be restricted to N=2 because dialogs in the corpus average only 3.5 user utterances in length (see Table 2). Distance statistics may also be used. This information is used for lexical features. A distance, such as the Levenshtein edit distance, is calculated between the current utterance transcription and previous utterance transcriptions as a way to approximate the similarity between the content of two user utterances. The distance is normalized by the utterance length. Those of skill in the art will understand the Levenshtein edit distance.

Example research tools for testing and generating the present invention may include human-machine natural language dialogs from AT&T′s “How May I Help YouSM” (HMIHY) corpus annotated with “voice signature” information. See I. Shafran, M. Riley, and M. Mohri, “Voice signatures,” in Proceedings of the 8th IEEE Automatic Speech Recognition and Understanding Workshop (ASRU 2003), St. Thomas, U.S. Virgin Islands, November 2003, incorporated herein by reference. The HMIHY corpus consists of data from a deployed customer care system. Voice signature information is considered the caller's age, gender, accent type, and emotional state in a given turn. The following represents an example dialog from the corpus:

System: How may I help you?

User: I need to find out about a number that I don't recognize.

System: Would you like to look up a number you don't recognize on your bill?

User: Yes I would.

System: Are you calling from your home phone?

User: Yes I am.

System: . . .

The HMIHY corpus is divided into a training and testing corpus based on temporal information—the training dialogs occur at dates previous to the dialogs in the testing corpus. This was designed to simulate real life system development and evaluation. No dialogs are split between training and testing sets. Table 2 lists some corpus statistics, such as the size of the training and testing sets in terms of user turns as well as the average number of user turns per dialog and words per utterance. The statistics from the HMIHY corpus were augmented with voice signature information, including user state (emotion).

TABLE 2
Statistics Training Testing
number of dialogs 4,259 1.431
number of user turns 15,013 5,000
number of turns per dialog 3.5 3.5
number of words per turn 9.0 9.9

Table 3 displays some of the most significant lexical correlations in the HMIHY corpus. This information is presented as an indication of the type of interactions in the corpus as well as to motivate the use of lexical features in the prediction of user state. Some of the more interesting correlations are words that indicate that a caller is speaking about their bill (“dollars”, “cents”, “call”) and those that indicate that the caller wished to be transferred to a human operator (“person”, “human”, “speak”, “talking”, “machine”). Also, Table 3 shows that some filled pauses such as “oh” and non-speech human noises such as sign ([.brth]) are also correlated with negative user state. Table 3 shows a ranked list of significant correlations (p<0.001) between negative user state and lexical items and filled pauses).

TABLE 3
Lexical Item Correlation
me 0.146
don't 0.139
person 0.127
yes −0.120
not 0.109
talk 0.101
why 0.097
speak 0.091
talking 0.085
human 0.083
dollars 0.080
cents 0.079
call 0.079
[oh] 0.037
[.brth] 0.035

The present inventors ran experiments to evaluate the effect of contextual features on the performance accuracy of predicting negative user state. Each user utterance in the HMIHY corpus was labeled with the following emotion labels: somewhat frustrated, very frustrated, somewhat angry, very angry, somewhat other negative, very other negative, positive/neutral. It is well appreciated that other emotional labels may be used as well. However, due to the non-uniform distribution of the emotion labels, as shown in Table 4, the inventors adopted a binary classification scheme. The positive/neutral label was re-labeled as non-negative and all remaining labels were collapsed to negative. 73.1% of all utterances in the test set are labeled as non-negative. This percentage is different from the 82.8% in Table 4 which accounts for the combined training and test sets. Table 4 shows the percentage of HMIHY corpus labeled with each of the original 7 emotion states.

TABLE 4
Label Percentage
positive/neutral 82.8%
somewhat frustrated 12.0%
somewhat angry 3.9%
somewhat other negative 0.9%
very frustrated 0.2%
very angry 0.2%
very other negative 0.1%

It is preferable to use Boostexter, a known boosting algorithm utilizing weak learners, for automatic classification. See, e.g., R. E. Schapire and Y. Singer, “Boostexter: A boosting-based system for text categorization,” Machine Learning, vol. 39, no. 2/3, pp. 135-168, 2000, incorporated herein by reference. Features values were both continuous and discrete (e.g. word n-grams). All performance accuracies are reported after 2,000 iterations.

Classification experiments were run for each of the conceptual feature sets presented above. Table 5 compares the performance accuracy of each feature set. The chance performance is the result of always guessing non-negative user state. The baseline system consisting of prosodic and lexical information of the current utterance performs better than chance and the more discourse and contextual information (dialog acts in the case of the state-of-the-art feature set and prior statistics, differentials, and edit distance in the case of contextual feature set), the more prediction accuracy of negative user state increases. Table 5 shows the performance accuracy summary by feature set for the chance, baseline, state-of-the-art and the contextual system. For the latter three systems feature sets are additively augmented.

TABLE 5
Relative Improvement
Feature Set Accuracy over Baseline
Chance 73.1% NA
Baseline 76.1% NA
State-of-the-Art 77.0% 1.2%
Contextual 79.0% 3.8%

There is a need for using more contextual information in the prediction of negative user state in real life human-machine dialog. A baseline system has been re-created consisting of prosodic and lexical features extracted from the current utterance and demonstrated that such information is useful in the prediction of user state insomuch as such a system outperforms chance. An aspect of the invention involves augmenting in the form of dialog acts. The relative classification improvement of this state-of-the-art system over the baseline system is on par with the results presented in the literature.

Most importantly, though, the invention shows how the idea of using dialog history can be expanded beyond dialog acts to encompass both prior statistics of discourse information as well as differential information of prosodic features. With such contextual information, the inventors observed even larger performance gains. These results show that using ever more informed context-dependent information will only continue to increase the accuracy of emotion detection in human-machine dialog systems and will be a necessary component of a computational model of human emotion. With the above description in mind, FIG. 3 illustrates an example of some basic steps of the invention. A dialog system receives an utterance from a user in a natural language dialog between the user and a computing device (302). The system receives contextual information regarding the natural language dialog (304) and detects an emotion of the user based at least in part on the received contextual information (306). The contextual information may relate to such features as dialog acts in the natural language dialog, differential statistics (such as, for example, statistics related to a rate of change of prosodic values from one turn to another in the natural language dialog), joint statistic (such as, for example, statistics related to examining a discrete-value feature in the current utterance with reference to at least one previous value for that feature), distance statistics, and so forth. The joint statistic discrete-value feature may be one of a dialog act, a number of dialogs, a number of user turns a number of words per turn. Other data may be utilized in the contextual information such as temperature of the room or perceived temperature of the user, audio levels (is the user yelling), and so forth. Detecting the emotion may be further based on prosodic and lexical features extracted from the received utterance. The distance statistics may relate to similarities in lexical features between the current utterances and at least one previous utterance. As can be appreciated, a variety of data may be utilized and processed to detect emotion in a spoken dialog.

Embodiments within the scope of the present invention may also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions or data structures. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or combination thereof) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of the computer-readable media.

Computer-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Computer-executable instructions also include program modules that are executed by computers in stand-alone or network environments. Generally, program modules include routines, programs, objects, components, and data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps.

Those of skill in the art will appreciate that other embodiments of the invention may be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. Embodiments may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination thereof) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.

Although the above description may contain specific details, they should not be construed as limiting the claims in any way. Other configurations of the described embodiments of the invention are part of the scope of this invention. Accordingly, the appended claims and their legal equivalents should only define the invention, rather than any specific examples given.

Hakkani-Tur, Dilek Z., Riccardi, Guiseppe, Liscombe, Jackson J.

Patent Priority Assignee Title
10043516, Sep 23 2016 Apple Inc Intelligent automated assistant
10049663, Jun 08 2016 Apple Inc Intelligent automated assistant for media exploration
10049668, Dec 02 2015 Apple Inc Applying neural network language models to weighted finite state transducers for automatic speech recognition
10049675, Feb 25 2010 Apple Inc. User profiling for voice input processing
10057736, Jun 03 2011 Apple Inc Active transport based notifications
10067938, Jun 10 2016 Apple Inc Multilingual word prediction
10074360, Sep 30 2014 Apple Inc. Providing an indication of the suitability of speech recognition
10078631, May 30 2014 Apple Inc. Entropy-guided text prediction using combined word and character n-gram language models
10079014, Jun 08 2012 Apple Inc. Name recognition system
10083688, May 27 2015 Apple Inc Device voice control for selecting a displayed affordance
10083690, May 30 2014 Apple Inc. Better resolution when referencing to concepts
10089072, Jun 11 2016 Apple Inc Intelligent device arbitration and control
10101822, Jun 05 2015 Apple Inc. Language input correction
10102359, Mar 21 2011 Apple Inc. Device access using voice authentication
10108612, Jul 31 2008 Apple Inc. Mobile device having human language translation capability with positional feedback
10127220, Jun 04 2015 Apple Inc Language identification from short strings
10127911, Sep 30 2014 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
10169329, May 30 2014 Apple Inc. Exemplar-based natural language processing
10176167, Jun 09 2013 Apple Inc System and method for inferring user intent from speech inputs
10185542, Jun 09 2013 Apple Inc Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant
10186254, Jun 07 2015 Apple Inc Context-based endpoint detection
10192552, Jun 10 2016 Apple Inc Digital assistant providing whispered speech
10223066, Dec 23 2015 Apple Inc Proactive assistance based on dialog communication between devices
10241644, Jun 03 2011 Apple Inc Actionable reminder entries
10241752, Sep 30 2011 Apple Inc Interface for a virtual digital assistant
10249300, Jun 06 2016 Apple Inc Intelligent list reading
10255907, Jun 07 2015 Apple Inc. Automatic accent detection using acoustic models
10269345, Jun 11 2016 Apple Inc Intelligent task discovery
10276170, Jan 18 2010 Apple Inc. Intelligent automated assistant
10276190, Jun 19 2017 International Business Machines Corporation Sentiment analysis of mental health disorder symptoms
10283110, Jul 02 2009 Apple Inc. Methods and apparatuses for automatic speech recognition
10297253, Jun 11 2016 Apple Inc Application integration with a digital assistant
10303715, May 16 2017 Apple Inc Intelligent automated assistant for media exploration
10311144, May 16 2017 Apple Inc Emoji word sense disambiguation
10311871, Mar 08 2015 Apple Inc. Competing devices responding to voice triggers
10318871, Sep 08 2005 Apple Inc. Method and apparatus for building an intelligent automated assistant
10332518, May 09 2017 Apple Inc User interface for correcting recognition errors
10354011, Jun 09 2016 Apple Inc Intelligent automated assistant in a home environment
10354652, Dec 02 2015 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
10356243, Jun 05 2015 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
10360305, Mar 26 2010 Microsoft Technology Licensing, LLC Performing linguistic analysis by scoring syntactic graphs
10366158, Sep 29 2015 Apple Inc Efficient word encoding for recurrent neural network language models
10381016, Jan 03 2008 Apple Inc. Methods and apparatus for altering audio output signals
10390213, Sep 30 2014 Apple Inc. Social reminders
10395654, May 11 2017 Apple Inc Text normalization based on a data-driven learning network
10403278, May 16 2017 Apple Inc Methods and systems for phonetic matching in digital assistant services
10403283, Jun 01 2018 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
10410637, May 12 2017 Apple Inc User-specific acoustic models
10417266, May 09 2017 Apple Inc Context-aware ranking of intelligent response suggestions
10417344, May 30 2014 Apple Inc. Exemplar-based natural language processing
10417405, Mar 21 2011 Apple Inc. Device access using voice authentication
10431204, Sep 11 2014 Apple Inc. Method and apparatus for discovering trending terms in speech requests
10438595, Sep 30 2014 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
10445429, Sep 21 2017 Apple Inc. Natural language understanding using vocabularies with compressed serialized tries
10446141, Aug 28 2014 Apple Inc. Automatic speech recognition based on user feedback
10446143, Mar 14 2016 Apple Inc Identification of voice inputs providing credentials
10453443, Sep 30 2014 Apple Inc. Providing an indication of the suitability of speech recognition
10474753, Sep 07 2016 Apple Inc Language identification using recurrent neural networks
10475446, Jun 05 2009 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
10482874, May 15 2017 Apple Inc Hierarchical belief states for digital assistants
10489112, Nov 28 2012 GOOGLE LLC Method for user training of information dialogue system
10490187, Jun 10 2016 Apple Inc Digital assistant providing automated status report
10496705, Jun 03 2018 Apple Inc Accelerated task performance
10496753, Jan 18 2010 Apple Inc.; Apple Inc Automatically adapting user interfaces for hands-free interaction
10497365, May 30 2014 Apple Inc. Multi-command single utterance input method
10503470, Nov 28 2012 GOOGLE LLC Method for user training of information dialogue system
10504518, Jun 03 2018 Apple Inc Accelerated task performance
10509862, Jun 10 2016 Apple Inc Dynamic phrase expansion of language input
10521466, Jun 11 2016 Apple Inc Data driven natural language event detection and classification
10529321, Jan 31 2013 Microsoft Technology Licensing, LLC Prosodic and lexical addressee detection
10529332, Mar 08 2015 Apple Inc. Virtual assistant activation
10552013, Dec 02 2014 Apple Inc. Data detection
10553209, Jan 18 2010 Apple Inc. Systems and methods for hands-free notification summaries
10553215, Sep 23 2016 Apple Inc. Intelligent automated assistant
10567477, Mar 08 2015 Apple Inc Virtual assistant continuity
10568032, Apr 03 2007 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
10580409, Jun 11 2016 Apple Inc. Application integration with a digital assistant
10580435, Jun 19 2017 International Business Machines Corporation Sentiment analysis of mental health disorder symptoms
10592604, Mar 12 2018 Apple Inc Inverse text normalization for automatic speech recognition
10593346, Dec 22 2016 Apple Inc Rank-reduced token representation for automatic speech recognition
10607140, Jan 25 2010 NEWVALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
10607141, Jan 25 2010 NEWVALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
10636424, Nov 30 2017 Apple Inc Multi-turn canned dialog
10643611, Oct 02 2008 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
10657328, Jun 02 2017 Apple Inc Multi-task recurrent neural network architecture for efficient morphology handling in neural language modeling
10657961, Jun 08 2013 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
10657966, May 30 2014 Apple Inc. Better resolution when referencing to concepts
10659851, Jun 30 2014 Apple Inc. Real-time digital assistant knowledge updates
10671428, Sep 08 2015 Apple Inc Distributed personal assistant
10679605, Jan 18 2010 Apple Inc Hands-free list-reading by intelligent automated assistant
10681212, Jun 05 2015 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
10684703, Jun 01 2018 Apple Inc Attention aware virtual assistant dismissal
10691473, Nov 06 2015 Apple Inc Intelligent automated assistant in a messaging environment
10692504, Feb 25 2010 Apple Inc. User profiling for voice input processing
10699717, May 30 2014 Apple Inc. Intelligent assistant for home automation
10705794, Jan 18 2010 Apple Inc Automatically adapting user interfaces for hands-free interaction
10706373, Jun 03 2011 Apple Inc. Performing actions associated with task items that represent tasks to perform
10706841, Jan 18 2010 Apple Inc. Task flow identification based on user intent
10714095, May 30 2014 Apple Inc. Intelligent assistant for home automation
10714117, Feb 07 2013 Apple Inc. Voice trigger for a digital assistant
10720160, Jun 01 2018 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
10726832, May 11 2017 Apple Inc Maintaining privacy of personal information
10733375, Jan 31 2018 Apple Inc Knowledge-based framework for improving natural language understanding
10733982, Jan 08 2018 Apple Inc Multi-directional dialog
10733993, Jun 10 2016 Apple Inc. Intelligent digital assistant in a multi-tasking environment
10741181, May 09 2017 Apple Inc. User interface for correcting recognition errors
10741185, Jan 18 2010 Apple Inc. Intelligent automated assistant
10747498, Sep 08 2015 Apple Inc Zero latency digital assistant
10748546, May 16 2017 Apple Inc. Digital assistant services based on device capabilities
10755051, Sep 29 2017 Apple Inc Rule-based natural language processing
10755703, May 11 2017 Apple Inc Offline personal assistant
10769385, Jun 09 2013 Apple Inc. System and method for inferring user intent from speech inputs
10789041, Sep 12 2014 Apple Inc. Dynamic thresholds for always listening speech trigger
10789945, May 12 2017 Apple Inc Low-latency intelligent automated assistant
10789959, Mar 02 2018 Apple Inc Training speaker recognition models for digital assistants
10791176, May 12 2017 Apple Inc Synchronization and task delegation of a digital assistant
10795541, Jun 03 2011 Apple Inc. Intelligent organization of tasks items
10803850, Sep 08 2014 Microsoft Technology Licensing, LLC Voice generation with predetermined emotion type
10810274, May 15 2017 Apple Inc Optimizing dialogue policy decisions for digital assistants using implicit feedback
10818288, Mar 26 2018 Apple Inc Natural assistant interaction
10839159, Sep 28 2018 Apple Inc Named entity normalization in a spoken dialog system
10847142, May 11 2017 Apple Inc. Maintaining privacy of personal information
10873728, Jan 06 2016 VIVINT, INC. Home automation system-initiated calls
10878809, May 30 2014 Apple Inc. Multi-command single utterance input method
10892996, Jun 01 2018 Apple Inc Variable latency device coordination
10904611, Jun 30 2014 Apple Inc. Intelligent automated assistant for TV user interactions
10909171, May 16 2017 Apple Inc. Intelligent automated assistant for media exploration
10909331, Mar 30 2018 Apple Inc Implicit identification of translation payload with neural machine translation
10928918, May 07 2018 Apple Inc Raise to speak
10930282, Mar 08 2015 Apple Inc. Competing devices responding to voice triggers
10942702, Jun 11 2016 Apple Inc. Intelligent device arbitration and control
10942703, Dec 23 2015 Apple Inc. Proactive assistance based on dialog communication between devices
10944859, Jun 03 2018 Apple Inc Accelerated task performance
10978090, Feb 07 2013 Apple Inc. Voice trigger for a digital assistant
10984326, Jan 25 2010 NEWVALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
10984327, Jan 25 2010 NEW VALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
10984780, May 21 2018 Apple Inc Global semantic word embeddings using bi-directional recurrent neural networks
10984798, Jun 01 2018 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
11009970, Jun 01 2018 Apple Inc. Attention aware virtual assistant dismissal
11010127, Jun 29 2015 Apple Inc. Virtual assistant for media playback
11010550, Sep 29 2015 Apple Inc Unified language modeling framework for word prediction, auto-completion and auto-correction
11010561, Sep 27 2018 Apple Inc Sentiment prediction from textual data
11012942, Apr 03 2007 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
11023513, Dec 20 2007 Apple Inc. Method and apparatus for searching using an active ontology
11025565, Jun 07 2015 Apple Inc Personalized prediction of responses for instant messaging
11025863, Jan 06 2016 VIVINT, INC. Home automation system-initiated calls
11037565, Jun 10 2016 Apple Inc. Intelligent digital assistant in a multi-tasking environment
11048473, Jun 09 2013 Apple Inc. Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant
11069336, Mar 02 2012 Apple Inc. Systems and methods for name pronunciation
11069347, Jun 08 2016 Apple Inc. Intelligent automated assistant for media exploration
11070949, May 27 2015 Apple Inc. Systems and methods for proactively identifying and surfacing relevant content on an electronic device with a touch-sensitive display
11080012, Jun 05 2009 Apple Inc. Interface for a virtual digital assistant
11080485, Feb 24 2018 Twenty Lane Media, LLC Systems and methods for generating and recognizing jokes
11087759, Mar 08 2015 Apple Inc. Virtual assistant activation
11120372, Jun 03 2011 Apple Inc. Performing actions associated with task items that represent tasks to perform
11126400, Sep 08 2015 Apple Inc. Zero latency digital assistant
11127397, May 27 2015 Apple Inc. Device voice control
11133008, May 30 2014 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
11140099, May 21 2019 Apple Inc Providing message response suggestions
11145294, May 07 2018 Apple Inc Intelligent automated assistant for delivering content from user experiences
11152002, Jun 11 2016 Apple Inc. Application integration with a digital assistant
11169616, May 07 2018 Apple Inc. Raise to speak
11170166, Sep 28 2018 Apple Inc. Neural typographical error modeling via generative adversarial networks
11200885, Dec 13 2018 Amazon Technologies, Inc Goal-oriented dialog system
11204787, Jan 09 2017 Apple Inc Application integration with a digital assistant
11217251, May 06 2019 Apple Inc Spoken notifications
11217255, May 16 2017 Apple Inc Far-field extension for digital assistant services
11227589, Jun 06 2016 Apple Inc. Intelligent list reading
11231904, Mar 06 2015 Apple Inc. Reducing response latency of intelligent automated assistants
11237797, May 31 2019 Apple Inc. User activity shortcut suggestions
11257504, May 30 2014 Apple Inc. Intelligent assistant for home automation
11269678, May 15 2012 Apple Inc. Systems and methods for integrating third party services with a digital assistant
11281993, Dec 05 2016 Apple Inc Model and ensemble compression for metric learning
11289073, May 31 2019 Apple Inc Device text to speech
11301477, May 12 2017 Apple Inc Feedback analysis of a digital assistant
11307752, May 06 2019 Apple Inc User configurable task triggers
11314370, Dec 06 2013 Apple Inc. Method for extracting salient dialog usage from live data
11321116, May 15 2012 Apple Inc. Systems and methods for integrating third party services with a digital assistant
11348573, Mar 18 2019 Apple Inc Multimodality in digital assistant systems
11348582, Oct 02 2008 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
11350253, Jun 03 2011 Apple Inc. Active transport based notifications
11360577, Jun 01 2018 Apple Inc. Attention aware virtual assistant dismissal
11360641, Jun 01 2019 Apple Inc Increasing the relevance of new available information
11360739, May 31 2019 Apple Inc User activity shortcut suggestions
11380310, May 12 2017 Apple Inc. Low-latency intelligent automated assistant
11386266, Jun 01 2018 Apple Inc Text correction
11388291, Mar 14 2013 Apple Inc. System and method for processing voicemail
11405466, May 12 2017 Apple Inc. Synchronization and task delegation of a digital assistant
11410053, Jan 25 2010 NEWVALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
11423886, Jan 18 2010 Apple Inc. Task flow identification based on user intent
11423908, May 06 2019 Apple Inc Interpreting spoken requests
11430438, Mar 22 2019 Samsung Electronics Co., Ltd. Electronic device providing response corresponding to user conversation style and emotion and method of operating same
11431642, Jun 01 2018 Apple Inc. Variable latency device coordination
11462215, Sep 28 2018 Apple Inc Multi-modal inputs for voice commands
11468282, May 15 2015 Apple Inc. Virtual assistant in a communication session
11475884, May 06 2019 Apple Inc Reducing digital assistant latency when a language is incorrectly determined
11475898, Oct 26 2018 Apple Inc Low-latency multi-speaker speech recognition
11487364, May 07 2018 Apple Inc. Raise to speak
11488406, Sep 25 2019 Apple Inc Text detection using global geometry estimators
11495218, Jun 01 2018 Apple Inc Virtual assistant operation in multi-device environments
11496600, May 31 2019 Apple Inc Remote execution of machine-learned models
11500672, Sep 08 2015 Apple Inc. Distributed personal assistant
11516537, Jun 30 2014 Apple Inc. Intelligent automated assistant for TV user interactions
11526368, Nov 06 2015 Apple Inc. Intelligent automated assistant in a messaging environment
11532306, May 16 2017 Apple Inc. Detecting a trigger of a digital assistant
11550542, Sep 08 2015 Apple Inc. Zero latency digital assistant
11556230, Dec 02 2014 Apple Inc. Data detection
11580990, May 12 2017 Apple Inc. User-specific acoustic models
11587559, Sep 30 2015 Apple Inc Intelligent device identification
11599331, May 11 2017 Apple Inc. Maintaining privacy of personal information
11636869, Feb 07 2013 Apple Inc. Voice trigger for a digital assistant
11638059, Jan 04 2019 Apple Inc Content playback on multiple devices
11656884, Jan 09 2017 Apple Inc. Application integration with a digital assistant
11657813, May 31 2019 Apple Inc Voice identification in digital assistant systems
11657820, Jun 10 2016 Apple Inc. Intelligent digital assistant in a multi-tasking environment
11670289, May 30 2014 Apple Inc. Multi-command single utterance input method
11671920, Apr 03 2007 Apple Inc. Method and system for operating a multifunction portable electronic device using voice-activation
11675829, May 16 2017 Apple Inc. Intelligent automated assistant for media exploration
11699448, May 30 2014 Apple Inc. Intelligent assistant for home automation
11705130, May 06 2019 Apple Inc. Spoken notifications
11710482, Mar 26 2018 Apple Inc. Natural assistant interaction
11727219, Jun 09 2013 Apple Inc. System and method for inferring user intent from speech inputs
11749275, Jun 11 2016 Apple Inc. Application integration with a digital assistant
11765209, May 11 2020 Apple Inc. Digital assistant hardware abstraction
11798547, Mar 15 2013 Apple Inc. Voice activated device for use with a voice-based digital assistant
11809483, Sep 08 2015 Apple Inc. Intelligent automated assistant for media search and playback
11809783, Jun 11 2016 Apple Inc. Intelligent device arbitration and control
11810562, May 30 2014 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
11842734, Mar 08 2015 Apple Inc. Virtual assistant activation
11853536, Sep 08 2015 Apple Inc. Intelligent automated assistant in a media environment
11853647, Dec 23 2015 Apple Inc. Proactive assistance based on dialog communication between devices
11854539, May 07 2018 Apple Inc. Intelligent automated assistant for delivering content from user experiences
11886805, Nov 09 2015 Apple Inc. Unconventional virtual assistant interactions
11888791, May 21 2019 Apple Inc. Providing message response suggestions
11900923, May 07 2018 Apple Inc. Intelligent automated assistant for delivering content from user experiences
8412530, Feb 21 2010 NICE LTD Method and apparatus for detection of sentiment in automated transcriptions
8538755, Jan 31 2007 TELECOM ITALIA S P A Customizable method and system for emotional recognition
8676565, Mar 26 2010 Microsoft Technology Licensing, LLC Semantic clustering and conversational agents
8694304, Mar 26 2010 Microsoft Technology Licensing, LLC Semantic clustering and user interfaces
8788270, Jun 16 2009 UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC Apparatus and method for determining an emotion state of a speaker
9105042, Feb 07 2013 Verizon Patent and Licensing Inc. Customer sentiment analysis using recorded conversation
9196245, Mar 26 2010 Microsoft Technology Licensing, LLC Semantic graphs and conversational agents
9262612, Mar 21 2011 Apple Inc.; Apple Inc Device access using voice authentication
9275042, Mar 26 2010 Microsoft Technology Licensing, LLC Semantic clustering and user interfaces
9311680, Jul 29 2011 SAMSUNG ELECTRONIS CO., LTD. Apparatus and method for generating emotion information, and function recommendation apparatus based on emotion information
9318108, Jan 18 2010 Apple Inc.; Apple Inc Intelligent automated assistant
9330720, Jan 03 2008 Apple Inc. Methods and apparatus for altering audio output signals
9338493, Jun 30 2014 Apple Inc Intelligent automated assistant for TV user interactions
9348816, Oct 14 2008 HONDA MOTOR CO , LTD Dialog coherence using semantic features
9378202, Mar 26 2010 Microsoft Technology Licensing, LLC Semantic clustering
9432325, Apr 08 2013 AVAYA LLC Automatic negative question handling
9438732, Apr 08 2013 AVAYA LLC Cross-lingual seeding of sentiment
9483461, Mar 06 2012 Apple Inc.; Apple Inc Handling speech synthesis of content for multiple languages
9491256, Mar 05 2008 Sony Corporation Method and device for personalizing a multimedia application
9495129, Jun 29 2012 Apple Inc. Device, method, and user interface for voice-activated navigation and browsing of a document
9524291, Oct 06 2010 Microsoft Technology Licensing, LLC Visual display of semantic information
9535906, Jul 31 2008 Apple Inc. Mobile device having human language translation capability with positional feedback
9548050, Jan 18 2010 Apple Inc. Intelligent automated assistant
9582608, Jun 07 2013 Apple Inc Unified ranking with entropy-weighted information for phrase-based semantic auto-completion
9620104, Jun 07 2013 Apple Inc System and method for user-specified pronunciation of words for speech synthesis and recognition
9626152, Jan 19 2015 NCSOFT Corporation Methods and systems for recommending responsive sticker
9626955, Apr 05 2008 Apple Inc. Intelligent text-to-speech conversion
9633660, Feb 25 2010 Apple Inc. User profiling for voice input processing
9633674, Jun 07 2013 Apple Inc.; Apple Inc System and method for detecting errors in interactions with a voice-based digital assistant
9646609, Sep 30 2014 Apple Inc. Caching apparatus for serving phonetic pronunciations
9646614, Mar 16 2000 Apple Inc. Fast, language-independent method for user authentication by voice
9668024, Jun 30 2014 Apple Inc. Intelligent automated assistant for TV user interactions
9668121, Sep 30 2014 Apple Inc. Social reminders
9697820, Sep 24 2015 Apple Inc. Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks
9715492, Sep 11 2013 AVAYA LLC Unspoken sentiment
9715875, May 30 2014 Apple Inc Reducing the need for manual start/end-pointing and trigger phrases
9721566, Mar 08 2015 Apple Inc Competing devices responding to voice triggers
9760559, May 30 2014 Apple Inc Predictive text input
9761247, Jan 31 2013 Microsoft Technology Licensing, LLC Prosodic and lexical addressee detection
9785630, May 30 2014 Apple Inc. Text prediction using combined word N-gram and unigram language models
9798393, Aug 29 2011 Apple Inc. Text correction processing
9818400, Sep 11 2014 Apple Inc.; Apple Inc Method and apparatus for discovering trending terms in speech requests
9842101, May 30 2014 Apple Inc Predictive conversion of language input
9842105, Apr 16 2015 Apple Inc Parsimonious continuous-space phrase representations for natural language processing
9858925, Jun 05 2009 Apple Inc Using context information to facilitate processing of commands in a virtual assistant
9865248, Apr 05 2008 Apple Inc. Intelligent text-to-speech conversion
9865280, Mar 06 2015 Apple Inc Structured dictation using intelligent automated assistants
9886432, Sep 30 2014 Apple Inc. Parsimonious handling of word inflection via categorical stem + suffix N-gram language models
9886953, Mar 08 2015 Apple Inc Virtual assistant activation
9899019, Mar 18 2015 Apple Inc Systems and methods for structured stem and suffix language models
9934775, May 26 2016 Apple Inc Unit-selection text-to-speech synthesis based on predicted concatenation parameters
9946511, Nov 28 2012 GOOGLE LLC Method for user training of information dialogue system
9953028, Jan 09 2015 International Business Machines Corporation Cognitive contextualization of emergency management system communications
9953088, May 14 2012 Apple Inc. Crowd sourcing information to fulfill user requests
9966060, Jun 07 2013 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
9966065, May 30 2014 Apple Inc. Multi-command single utterance input method
9966068, Jun 08 2013 Apple Inc Interpreting and acting upon commands that involve sharing information with remote devices
9971774, Sep 19 2012 Apple Inc. Voice-based media searching
9972304, Jun 03 2016 Apple Inc Privacy preserving distributed evaluation framework for embedded personalized systems
9986419, Sep 30 2014 Apple Inc. Social reminders
Patent Priority Assignee Title
5860064, May 13 1993 Apple Computer, Inc. Method and apparatus for automatic generation of vocal emotion in a synthetic text-to-speech system
5918222, Mar 17 1995 Kabushiki Kaisha Toshiba Information disclosing apparatus and multi-modal information input/output system
5987415, Mar 23 1998 Microsoft Technology Licensing, LLC Modeling a user's emotion and personality in a computer user interface
6151571, Aug 31 1999 Accenture Global Services Limited System, method and article of manufacture for detecting emotion in voice signals through analysis of a plurality of voice signal parameters
6173266, May 06 1997 Nuance Communications, Inc System and method for developing interactive speech applications
6665644, Aug 10 1999 International Business Machines Corporation Conversational data mining
6721704, Aug 28 2001 Koninklijke Philips Electronics N.V. Telephone conversation quality enhancer using emotional conversational analysis
6721706, Oct 30 2000 KONINKLIJKE PHILIPS ELECTRONICS N V Environment-responsive user interface/entertainment device that simulates personal interaction
6876728, Jul 02 2001 Microsoft Technology Licensing, LLC Instant messaging using a wireless interface
7197132, Mar 21 2002 Wilmington Trust, National Association, as Administrative Agent Adaptive transaction guidance
7289949, Oct 09 2001 Oracle OTC Subsidiary LLC Method for routing electronic correspondence based on the level and type of emotion contained therein
7298256, Jun 01 2004 SAMSUNG ELECTRONICS CO , LTD Crisis monitoring system
7451079, Jul 13 2001 SONY FRANCE S A Emotion recognition method and device
7664627, Oct 04 2002 AGI INC Inspirational model device, spontaneous emotion model device, and related methods and programs
7684984, Feb 13 2002 Sony Deutschland GmbH Method for recognizing speech/speaker using emotional change to govern unsupervised adaptation
20020095295,
20030033145,
20030154076,
20030182122,
20030182123,
20060122834,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 29 2005LISCOMBE, JACKSON J AT&T CorpASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0167990670 pdf
Jul 11 2005HAKKANI-TUR, DILEK Z AT&T CorpASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0167990670 pdf
Jul 11 2005RICCARDI, GUISEPPEAT&T CorpASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0167990670 pdf
Jul 20 2005AT&T Intellectual Property II, L.P.(assignment on the face of the patent)
Feb 04 2016AT&T CorpAT&T Properties, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0382750238 pdf
Feb 04 2016AT&T Properties, LLCAT&T INTELLECTUAL PROPERTY II, L P ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0382750310 pdf
Dec 14 2016AT&T INTELLECTUAL PROPERTY II, L P Nuance Communications, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0415120608 pdf
Date Maintenance Fee Events
Feb 22 2011ASPN: Payor Number Assigned.
Aug 25 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 12 2018REM: Maintenance Fee Reminder Mailed.
Apr 29 2019EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 22 20144 years fee payment window open
Sep 22 20146 months grace period start (w surcharge)
Mar 22 2015patent expiry (for year 4)
Mar 22 20172 years to revive unintentionally abandoned end. (for year 4)
Mar 22 20188 years fee payment window open
Sep 22 20186 months grace period start (w surcharge)
Mar 22 2019patent expiry (for year 8)
Mar 22 20212 years to revive unintentionally abandoned end. (for year 8)
Mar 22 202212 years fee payment window open
Sep 22 20226 months grace period start (w surcharge)
Mar 22 2023patent expiry (for year 12)
Mar 22 20252 years to revive unintentionally abandoned end. (for year 12)