A technique involves untethered access points (UAPs) that can broadcast estimated transmission time (ett) that represents an estimated time it would take for a packet to be transmitted from the first UAP to an AP that is wire coupled to a network. The proposed system can offer, among other advantages, accurate ett values for use by UAPs of a wireless network.

Patent
   7912982
Priority
Jun 09 2006
Filed
Nov 22 2006
Issued
Mar 22 2011
Expiry
Dec 08 2029
Extension
1112 days
Assg.orig
Entity
Large
34
270
all paid
1. A method comprising:
receiving, at a current wireless node, an estimated transmission time (ett) from each of a plurality of other wireless nodes that are within a range of the current wireless node, wherein each said ett is a next-hop-to-destination-path ett (ettp) associated with one of said other wireless nodes, wherein each said ettp is a function of a link ett (etti), another ettp and a node transition time (ntt) of one of said other wireless nodes;
at the current wireless node, measuring for each of said other wireless nodes an etti between the current wireless node and a corresponding one of said other wireless nodes;
at the current wireless node, adding for each of said other wireless nodes an etti to a corresponding ettp to determine a node-specific path metric for a corresponding one of said other wireless nodes;
at the current wireless node, selecting a next hop based on the determined node-specific path metrics;
at the current wireless node, calculating an advertised ettp for the current wireless node, based on at least one of the measured etti's, a corresponding at least one of the received ettp's and a calculated ntt for the current wireless node; and
broadcasting the advertised ettp from the current wireless node to a second wireless node.
2. The method of claim 1, wherein measuring an etti comprises:
placing a packet on an egress queue;
taking a first timestamp;
receiving acknowledgement that the packet was transmitted;
taking a second timestamp;
finding the difference between the first timestamp and the second timestamp.
3. The method of claim 2, wherein finding the difference between the first timestamp and the second timestamp includes taking an exponentially decaying average.
4. The method of claim 1, wherein the calculating the advertised ettp comprises:
receiving a packet on an ingress interface;
taking a first timestamp;
forwarding the packet to an appropriate egress interface;
taking a second timestamp;
finding the difference between the first timestamp and the second timestamp.
5. The method of claim 4, wherein finding the difference between the first timestamp and the second timestamp includes taking an exponentially decaying average.

This application claims priority to U.S. Provisional Patent Application No. 60/812,403, filed Jun. 9, 2006, and entitled WIRELESS NETWORK ARCHITECTURE, which application is hereby incorporated by reference.

Next hop selection in a wireless protocol is made by selecting a least cost hop. Historically, cost has been determined by hop count, signal strength, error rate, utilization, and other factors. One technique for wireless routing selection involves defining cost based on expected transmission time (ETT) for some link (ETTI).

For example, link cost may be determined by measuring the transmission time to send a 1 Mbps stream of packets across the link and measuring its transmission time for some number of bytes. An algorithm may measure for each available bandwidth across the link, and the transmission time is defined as the time from when the packet is scheduled (specifically, sent to the radio) and the time that an acknowledgement is received.

The improvement of algorithms for next hop selection are the subject of research. Any improvements may have significant repercussions on the relevant technologies. Accordingly, any improvement in next hop selection would be advantageous.

These are but a subset of the problems and issues associated with wireless routing selection, and are intended to characterize weaknesses in the prior art by way of example. The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools, and methods that are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.

A wireless network system is typically coupled to a wired network at some point. Such a point is sometimes referred to as an access point (AP). A plurality of untethered APs (UAPs) may be coupled to one another, and eventually to the AP, to allow a wireless network to grow to practically any size. However, as the network grows in size using UAPs, it becomes more difficult to figure out a best path from a mobile station, through the UAPs to the AP in an optimal fashion.

Advantageously, UAPs can broadcast estimated transmission time (ETT) that represents an estimated time it would take for a packet to be transmitted from the first UAP to the AP. Thus, a UAP that is right next to the AP should be able to give a low ETT to the AP. As the advertised ETTs percolate through the wireless network, UAPs can eventually settle on optimal paths to the AP. The better the estimate, the more likely the optimally chosen paths are actually optimal.

The proposed system can offer, among other advantages, accurate ETT values for use by UAPs of a wireless network. This and other advantages of the techniques described herein will become apparent to those skilled in the art upon a reading of the following descriptions and a study of the several figures of the drawings.

Embodiments of the invention are illustrated in the figures. However, the embodiments and figures are illustrative rather than limiting; they provide examples of the invention.

FIG. 1 depicts an example of a rate aware wireless system.

FIG. 2 depicts an example of a weighted graph of source, next hop, and destination nodes.

FIG. 3 depicts an example of a system in which an ETTp calculation includes time spent on an output queue.

FIG. 4 depicts a graph that provides a conceptual depiction of queue latency.

FIG. 5 depicts an example of a wireless network system that includes a plurality of untethered APs (UAPs).

FIG. 6 depicts a flowchart of an example of a method for selecting a next hop.

FIG. 7 depicts a flowchart of an example of a method for measuring ETTl to a node.

FIG. 8 depicts a flowchart of an example of a method for advertising an ETTp.

FIG. 9 depicts a flowchart of an example of a method for calculating NTT.

In the following description, several specific details are presented to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or in combination with other components, etc. In other instances, well-known implementations or operations are not shown or described in detail to avoid obscuring aspects of various embodiments, of the invention.

FIG. 1 depicts an example of a rate aware wireless system 100. In the example of FIG. 1, the system 100 includes a node 110, a node 120, and a node 130. For illustrative purposes, the node 110 and the node 130 are currently linked via active link 112, while the node 120 and the node 130 are not currently linked, as represented by the candidate link 122. In an embodiment, the candidate link 122 is periodically measured to determine if it is a better route than the active link 112. Optionally, if the node 130 is a next hop from a source node to a destination node, the node 130 may be linked to another node (not shown) through a next hop link 132.

In the example of FIG. 1, the node 110 advertises an estimated transmission time (ETT) for the path (ETTp) to a destination. ETTp 114 is the sum of ETT for each link (ETTl) from the source (e.g., the node 110) to the destination (not shown). ETTp 124 is the sum of ETTl from the source (e.g., the node 120) to the destination (not shown). Optionally, the node 130 advertises an ETTp 134 that is the ETTp from the node 130 to the destination (passing through either the node 110 or the node 120). ETTp 134 is optional because it will only exist if the node 130 is a next hop node.

FIG. 2 depicts an example of a weighted graph 200 of source, next hop, and destination nodes. The weights of the edges in the graph 200 are ETTl between two nodes of the graph 200. ETTp is the sum of ETTl from a source node 202 to a destination node 206. Typically, there are multiple next hop nodes 204-1 to 204-N (referred to collectively as nodes 204) between the source node 202 and the destination node 206, though it is possible to have none. As is shown in FIG. 2, the ETTl from the source node 202 to the node 204-1 has an ETTl0. In general each of the nodes 204 has an ETTlx to the next hop, where x=the ordinal position of the current node. For example, the ETTl1 is the ETTl from the node 204-1 to the node 204-2. As another example, the ETTlN is the ETTl from the node 204-N to the destination node 206.

In some embodiments, the ETTp calculation is for the time a packet is sent from a radio until the time an acknowledgement is received. This, however, does not include time spent on a queue waiting for the radio to become available. Advantageously, by including the time spent on the queue, the ETTp calculation can take into consideration the real time it takes to transmit a packet based on load and utilization.

FIG. 3 depicts an example of a system 300 in which an ETTp calculation includes time spent on an output queue. In the example of FIG. 3, the system 300 includes a wireless device 302, an access point (AP) 304, and an AP 306, a wireless switch 308, and a wired network 310. It may be noted that the AP 304 is depicted as an untethered AP. In an embodiment, any number of untethered APs could be coupled together to reach the tethered AP 306.

In the example of FIG. 3, the wireless device 302 includes a queue 312, with packets 314-1 to 314-N enqueued thereon. The packet 314-1 is presumably a first packet of a stream of packets tha the wireless device 302 is trying to send to the AP 304. However, the AP 304 may not be available, which results in the packet being enqueued in the queue 312, as shown. The packet 314-N is the last packet to be enqueued prior to the packet 314-1 finally being sent to the AP 304. Thus, the example of FIG. 3 illustrates the queue 312 just before the packet 314-1 is sent to the AP 304 (and dequeued). The time spent waiting may be referred to as radio availability latency because it measures the time it takes for a radio (at the AP 304, in this case) to become available.

The AP 304 has a comparable queue 316, which is coupled to an ETT engine 318. The wireless device 302 may or may not have an ETT engine to determine how long a packet is enqueued on the queue 312, but in the example of FIG. 1, no such engine is present at the wireless device 302. The queue 316 functions in a manner quite similar to that described with reference to the queue 312. At the AP 304, however, the ETT engine 318 actually measures the amount of time a packet is enqueued. This radio availability latency can be added to an advertised ETTp, as described later with reference to FIG. 1, to give a more accurate measure of ETT for a packet.

Advantageously, ETT can be used by a next hop selector to decide upon an optimal next hop. In an embodiment, each AP includes a next hop selector.

FIG. 4 depicts a graph 400 that provides a conceptual depiction of queue latency. In the example of FIG. 4, the graph 400 includes (for illustrative purposes) a flat, or static, link rate 402 and a data rate 404 that increases over time. Where the link rate 402 is greater than the data rate 404, the link is under-utilized, as shown by the shaded link underutilization portion 406 of the graph 400. The link saturation point 408 is at a time where the link rate 402 and the data rate 404 are the same. At the link saturation point 408, the link is fully utilized. Where the link rate 402 is less than the data rate 404, the link is congested, as shown by the shaded link congestion portion 410 of the graph 410. When the link is congested, packets will arrive at an output queue, such as the queue 316 (FIG. 3) at a rate that is greater than the rate at which the packets are dequeued (and transmitted). Thus, the time spent waiting on the queue will grow as the link grows more congested. Advantageously, an ETT engine, such as the ETT engine 318 (FIG. 3) can measure this time spent waiting and incorporate the measurement into an ETT calculation.

From “A Radio Aware Routing Protocol for Wireless Mesh Networks” by Kulkarni et al. defines cost based on ETTl, and how ETTl can be aggregated to determine ETTp. However, the algorithm used by Kulkarni et al. can be improved in some specific cases. For example, the choice of 1 Mbps load rate for link cost calculation is arbitrary and may be significantly off. In an embodiment, expected load rate (ELR) is used instead. ELR is the load that a link would be subject to if it was selected as a next-hop.

Referring once again to the example of FIG. 1, an ELR 10-30 136 and an ELR 30-10 138 are associated with the active link 112. The ELR 10-30 136 is intended to illustrate ELR from the node 110 to the node 130 and the ELR 30-10 138 is intended to illustrate ELR from the node 130 to the node 110. In an embodiment, the ETT of a link will vary greatly depending on how much traffic is inserted into it. The more traffic you insert into a link, the higher the probability for collisions on the link. Accordingly, the ELR 10-30 136 is calculated dynamically based on current load conditions of the active link 112 from the node 110 to the node 130, and the ELR 30-10 138 is calculated dynamically based on current load conditions of the active link 112 from the node 130 to the node 110. The calculated ELR may be averaged in an exponentially decaying fashion to allow route selection stabilization.

In the example of FIG. 1, conceptually, the node 130 is trying to select the least cost link to some destination reachable through both the node 110 and the node 120. As shown in the system 100, the active link 112 has an ELR 10-30 136 and an ELR 30-10 138. The ELR 10-30 136 and the ELR 30-10 138 can be used to respectively calculate an effective data rate (EDR) 10-30 116 and an EDR 30-10 118.

EDR is the rate determined by a rate selection algorithm. In general, the rate selection algorithm should meet the following goals: 1) To the extent possible, the selected rate should produce optimal throughput of packets transmitted to a client. This is not necessarily the same thing as minimizing retries. For instance, retransmitting one time a large packet at 54 Mbps may result in better throughput than transmitting the same large packet at a 1 Mbps with no retries. 2) To the extent possible, the algorithm should be computationally light. That is, it should not consume a lot of CPU time to determine a rate to use.

An example of a rate selection algorithm is as follows (though any applicable known or convenient rate selection algorithm could be used): The rate selection algorithm seeks to minimize retransmissions. For each client it maintains a ‘best rate’ value. The rate selection algorithm is a control system that lowers the best rate when the rate of retransmissions exceeds 50% and raises the best rate when the rate of retransmissions is less than 50%. For each transmitted packet, there are one of three possible outcomes. 1) The packet is successfully transmitted with no retransmissions, 2) the packet is successfully transmitted with one or more retransmissions, 3) the packet transmission is unsuccessful after all retransmission attempts.

For each client, a counter is maintained. When a packet is successfully transmitted with no retransmissions, this counter is incremented by 3. When a packet is successfully transmitted but with retransmissions, the counter is decremented by 6. When a packet is not successfully transmitted, the counter is not changed. When the counter reached a value of −50, then the next lower rate is made the best rate. When the counter reaches a value of 100, the next higher rate is used as the best rate; however, the best rate is not increased if it has been increased in the past 60 seconds. This prevents the best rate from increasing too fast.

For each packet, transmissions are attempted using up to four rates.

This rate fall back schedule has the following properties. 1) If the best rate is successful, then there are no retries and the client's counter is increased. 2) If the best rate fails, then the next lower rate is used multiple times. The range of the next best rate is better than the best rate, and so the next best rate has a higher probability of success. The client's counter will be decremented in this case to reflect that the best rate was unsuccessful. 3) The radio's lowest rate has the best range, and so if it fails, then the client is not reachable or the failure is due to factors not related to distance. In this case, the client's counter is unchanged because the failure is not related to rate.

If the EDR is actually determined ELR, the algorithm further reduces the bandwidth required to compute ETTl, since the EDR need not be calculated through synthesized load. Notably, as shown in FIG. 1, the EDR 20-30 126 uses the ELR 10-30 136, and the EDR 30-20 128 uses the ELR 30-10 138. Accordingly, for the candidate link 122 as well, a synthesized load is not used. Advantageously, in both cases, ELR is calculated based on existing traffic.

It should be noted that sensing all data rates is less efficient than using the techniques described herein. Advantageously, by using EDR, all possible rates need not be tested, making this technique more efficient. Moreover, selected rates may not be the rate actually selected by a radio transmission module. For example, if data rate selection does not yield an answer that matches an algorithm such as Kulkarni's, the actual ETTl will be different than the expected ETTl and the algorithm will make suboptimal decisions. So using EDR can lead to performance improvements as well.

In an embodiment, the ETTp calculation can be improved by considering the amount of time a packet spends being processed in intermediate nodes. This is the time it takes to receive a packet on some interface and queue it on its egress interface. This time is referred to as node transit time (NTT). Therefore, in a non-limiting embodiment, ETTp=ETTI+ETTp_nh +NTT, where ETTI is the link between a node and a next hop node, ETTp_nh is the ETTp advertised by the next hop node (e.g., the best advertised ETTp of potential next hop nodes), and NTT is the time a packet spends transiting a node. As was previously described, the ETT calculations include the time a packet spends in a queue waiting for a radio to become available. Conceptually, the NTT is the time a packet spends in a node waiting to be enqueued.

The techniques described herein work best when there are relatively few interesting destinations. Advantageously, this is exactly the case in most IP network environments. Most hosts are trying to communicate to their next hop IP router, which is typically eventually accessed over a wired network. Hence, the techniques described herein help answer the question “how do I get to the wired network?” Only a single destination need be evaluated and only a single value to ELR needs to be maintained.

FIG. 5 depicts an example of a wireless network system 500 that includes a plurality of untethered APs (UAPs). In the example of FIG. 5, the system 500 includes a UAP 502, a UAP 504, a plurality of UAPs 506-1 to 506-N (referred to collectively as UAPs 506), and an AP 508. For illustrative purposes only, a path for wireless traffic from a station 510 to the AP 508 is depicted as a dashed line. Potential paths for wireless traffic from the station 510 to the AP 508 are depicted as dotted lines.

In the example of FIG. 5, wireless traffic from the station 510 is directed to an AP with which the station 510 has associated. Typically, though not always, the AP with which the station associates is the one that is closest to the station 510 (or the one that detects the highest RSSI from the station 510). In the example of FIG. 5, the closest station is presumed to be the UAP 502.

In the example of FIG. 5, presumably, at some stage it was determined that the best path from the station 510 to the AP 508 was from the USP 502 to the UAP 504 and finally to the AP 508. However, the system 500 continuously or occasionally measures ETT for various nodes, as was described above. Thus, it may be determined that a different path (through one of the UAPs 506) is better. It should be noted that, depending upon the implementation and/or embodiment, a tethered AP could be rejected as a next hop in favor of a UAP, followed by an eventual hop to some other AP. This would be the case if ETTp from the UAP was better than the ETTp directly to the tethered AP. Presumably, this would be unusual, but not impossible.

At the UAP 502, the goal is to send traffic to the least expensive AP that is wired to a network. By least expensive, what is intended is that a weighted graph with edges that are ETT between nodes, would yield the smallest result possible (or practical). This AP may or may not be the AP closest to the UAP 502. The UAP 502, for illustrative purposes, is illustrated as a large circle with various components. However, the UAP 504, the UAPs 506, and/or the AP 508 may have similar components (not shown).

In the example of FIG. 5, the UAP 502 includes an ingress interface 512, an ETTp engine 514, a next hop selector 516, and an egress interface 518. The ETTp engine 514 includes an ETTp_nh module 520, an NTT module 522, and an ETTl module 524. In operation, in a non-limiting embodiment, the UAP 504 and the UAPs 506 have broadcast advertised ETTp values that are associated with the path from the respective nodes to a destination, such as the wired network. The ETTp_nh module 520 receives each of the advertised ETTps.

Some time later (or concurrently) the station 510 sends packets to the UAP 502, which are received at the ingress interface 512. The NTT module 522 receives an indication, such as a first timestamp, that a first packet has been received. As much as is practical, it would probably be valuable to have the timestamp represent the exact time the first packet was received at the ingress queue 512, though an estimate may be used. At this point, the ETTp engine 514 knows only ETTp values for the UAP 504 and UAPs 506, but has no link information. It should be noted that in practice there will typically be link information as described later. Nevertheless, assuming for a moment that no link information is available, the ETTp engine 514 can provide the advertised ETTp values to the next hop selector 516, which picks an appropriate optimal path to the destination based on the advertised ETTp values. Specifically, the next hop selector 516 chooses the shortest (e.g., lowest weight) path to the destination.

The first packet is enqueued at the egress interface 518, as appropriate. It may be noted that the first packet may or may not need to be enqueued in a case where the relevant link is underutilized (or saturated but not congested). In any case, when the first packet is received at the egress interface 518, the NTT module 522 receives an indication, such as a second timestamp, that the first packet has been received at the egress interface 518. At this point, the NTT module 522, by comparing, for example, a first timestamp and a second timestamp, can calculate the amount of time that the first packet spent at the UAP 502. This information is useful for purposes that are described below.

The first packet is sent from the egress interface 518 to the UAP 504. For illustrative purposes, it is assumed that the UAP 504 is the next hop in an optimal path. In a non-limiting embodiment, the UAP 504 sends an acknowledgement, as soon as the first packet is received, that the first packet was received. The acknowledgement is received at an acknowledgement interface 526. It should be noted that the acknowledgement interface 526 may be part of a radio interface that includes the ingress interface 512 (or even the egress interface 518). In any case, the acknowledgement interface 526 provides the ETTl module 524 with an indication, such as a timestamp, that an acknowledgement was received from the next hop node. The ETTl module 524 uses the indication (e.g., second timestamp) that was generated when the first packet was enqueued on the egress interface 518 and the indication (e.g., third timestamp) that was generated upon receipt of the acknowledgement to provide an ETTl value.

At this point, the ETTp engine 514 has enough information to know ETTp from the UAP 502 to the destination. Specifically, ETTl+NTT+ETTp_nh=ETTp from the UAP 502 to the destination. This ETTp value can be provided to an ETTp broadcast engine 528. In the example of FIG. 5, the broadcast engine 528 is not providing any value to the station 510 (unless the station 510 includes a means for making use of the broadcast ETTp). However, the UAP 504, for example, may have a broadcast engine that functions similarly. Such an engine could be used to provide the advertised ETTp to the ETTp_nh module 520, as described previously.

FIG. 6 depicts a flowchart 600 of an example of a method for selecting a next hop. In the example of FIG. 6, the flowchart 600 starts at module 602 where ETTp is received from nodes that are within range. In an embodiment, the node at which a next hop is being selected listens for any node within range. In an alternative, the potential next hop nodes may be restricted in some manner.

In the example of FIG. 6, the flowchart 600 continues to module 604 where ETTl is measured to each node within range. Since the ETTl is an actual measurement (rather than a guess), the ETTl is a relatively accurate representation of actual link characteristics. Any applicable known or convenient technique may be used to measure ETTl. An example of a method for measuring ETTl to a node is described later with reference to FIG. 7.

In the example of FIG. 6, the flowchart 600 continues to module 606 where ETTl is added to ETTp from each node to arrive at a node-specific path metric, and to module 608 where a next hop is selected that is associated with a minimum of the node-specific path metrics. Notably, the lowest ETTp plus a corresponding ETTl is not necessarily lower than some other ETTp plus a corresponding ETTl.

FIG. 7 depicts a flowchart 700 of an example of a method for measuring ETTl to a node. In the example of FIG. 7, the flowchart 700 starts at module 702 where a packet is placed on an egress queue. Packets are placed on egress queues when they are ready to be transmitted to a next hop or destination.

In the example of FIG. 7, the flowchart 700 continues to modules 704 where a first timestamp is taken. The first timestamp represents the approximate time at which the packet was placed on the egress queue. The packets may be left on an egress queue for a relatively long time if they are enqueued at a faster rate than they are dequeued (and transmitted). Typically, if a packet remains in the egress queue for a relatively long period of time, a link between the current queue and the next hop or destination is congested.

In the example of FIG. 7, the flowchart 700 continues to module 706 where an acknowledgement is received that the packet was transmitted. The acknowledgement may be in the form of, by way of example but not limitation, an 802.11 ack. Other protocols may have other techniques or terminologies, but any applicable known or convenient means for acknowledging that the packet was received may be used, depending upon the implementation and/or embodiment.

In the example of FIG. 7, the flowchart 700 continues to module 708 where a second timestamp is taken. The second timestamp represents the approximate time at which the packet that was placed on the egress queue, plus the time to reach the next hop, plus the time to receive the acknowledgement (which is normally sent immediately upon receipt of the packet). Alternatively, the second timestamp could be placed in the acknowledgement such that the time to receive the acknowledgement is omitted.

In the example of FIG. 7, the flowchart 700 continues to module 710 where a difference between the first timestamp and the second timestamp is found. In a non-limiting embodiment, this entails calculating an exponentially decaying average of the difference. In any case, the value found may be used as an ETTl.

FIG. 8 depicts a flowchart 800 of an example of a method for advertising an ETTp. In the example of FIG. 8, the flowchart 800 starts at module 802 where an advertised ETTp is calculated. ETTp is calculated by selecting an advertised ETTp from some other node and adding local NTT. NTT may be, by way of example but not limitation, an exponentially weighted average of the time it takes to transmit a packet from an ingress to an egress queue in a node. An example of a method for calculating NTT is described later with reference to FIG. 9.

In the example of FIG. 8, the flowchart 800 continues to module 804 where the advertised ETTp is broadcast. In an alternative embodiment, the ETTp may be multicast to a subset of nodes within broadcast range. Any nodes within range may use the advertised ETTp when selecting a next hop, if applicable.

FIG. 9 depicts a flowchart 900 of an example of a method for calculating NTT. In the example of FIG. 9, the flowchart 900 starts at module 902 with receiving a packet on an ingress interface. The packet may be received from a wireless station, such as a mobile device or UAP.

In the example of FIG. 9, the flowchart 900 continues to module 904 where a first timestamp is taken. The first timestamp represents the point in time when the packet is first received at the node.

In the example of FIG. 9, the flowchart 900 continues to module 906 where the packet is forwarded to an appropriate egress interface. Techniques for forwarding packets to egress interfaces are well known in the relevant art, and are not described herein. It is assumed that some applicable known or convenient technique is used.

In the example of FIG. 9, the flowchart 900 continues to module 908 where a second timestamp is taken. The second timestamp represents the point in time when the packet has been enqueued for sending to a next hop or destination.

In the example of FIG. 9, the flowchart 900 continues to module 910 where a difference between the first timestamp and the second timestamp is found. In a non-limiting embodiment, an exponentially decaying average is used. In an y case, the derived value may be used as the local NTT.

As used herein, access point (AP) refers to receiving points for any known or convenient wireless access technology. Specifically, the term AP is not intended to be limited to 802.11 APs.

Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.

The algorithms and techniques described herein also relate to apparatus for performing the algorithms and techniques. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.

As used herein, the term “embodiment” means an embodiment that serves to illustrate by way of example but not limitation.

It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting to the scope of the present invention. It is intended that all permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present invention. It is therefore intended that the following appended claims include all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.

Murphy, James, Morain, Gary

Patent Priority Assignee Title
10327202, Jun 09 2006 Trapeze Networks, Inc. AP-local dynamic switching
10484143, Mar 03 2016 SISVEL INTERNATIONAL S A Method and device for short-latency communications in UE and base station
10638304, Jun 09 2006 Trapeze Networks, Inc. Sharing data between wireless switches system and method
10798650, Jun 09 2006 Trapeze Networks, Inc. AP-local dynamic switching
10834585, Jun 09 2006 Trapeze Networks, Inc. Untethered access point mesh system and method
11432147, Jun 09 2006 Juniper Networks, Inc Untethered access point mesh system and method
11627461, Jun 09 2006 Juniper Networks, Inc. AP-local dynamic switching
11758398, Jun 09 2006 Juniper Networks, Inc Untethered access point mesh system and method
11811642, Jul 27 2018 goTenna, Inc. Vineā„¢: zero-control routing using data packet inspection for wireless mesh networks
11824884, Oct 05 2020 Bank of America Corporation System for generating responsive actions based on unauthorized access events associated with imitation networks
8116275, Oct 13 2005 TRAPEZE NETWORKS, INC System and network for wireless network monitoring
8126481, Nov 21 2007 Trapeze Networks, Inc. Wireless station location detection
8150357, Mar 28 2008 TRAPEZE NETWORKS, INC Smoothing filter for irregular update intervals
8161278, Mar 15 2005 TRAPEZE NETWORKS, INC System and method for distributing keys in a wireless network
8218449, Oct 13 2005 TRAPEZE NETWORKS, INC System and method for remote monitoring in a wireless network
8238298, Aug 29 2008 TRAPEZE NETWORKS, INC Picking an optimal channel for an access point in a wireless network
8238942, Nov 21 2007 TRAPEZE NETWORKS, INC Wireless station location detection
8320949, Jun 01 2006 Juniper Networks, Inc. Wireless load balancing across bands
8332196, Nov 30 2007 Google Technology Holdings LLC Method and apparatus for enhancing the accuracy and speed of a ray launching simulation tool
8340110, Sep 15 2006 TRAPEZE NETWORKS, INC Quality of service provisioning for wireless networks
8446890, Oct 16 2006 Juniper Networks, Inc. Load balancing
8457031, Oct 13 2005 TRAPEZE NETWORKS, INC System and method for reliable multicast
8514827, Oct 13 2005 Trapeze Networks, Inc. System and network for wireless network monitoring
8635444, Mar 15 2005 Trapeze Networks, Inc. System and method for distributing keys in a wireless network
8638762, Feb 08 2006 TRAPEZE NETWORKS, INC System and method for network integrity
8670383, Dec 28 2006 Trapeze Networks, Inc. System and method for aggregation and queuing in a wireless network
8818322, Jun 09 2006 Juniper Networks, Inc Untethered access point mesh system and method
8902904, Sep 07 2007 TRAPEZE NETWORKS, INC Network assignment based on priority
8964747, May 03 2006 TRAPEZE NETWORKS, INC System and method for restricting network access using forwarding databases
8966018, May 19 2006 TRAPEZE NETWORKS, INC Automated network device configuration and network deployment
8978105, Jul 25 2008 TRAPEZE NETWORKS, INC Affirming network relationships and resource access via related networks
9191799, Jun 09 2006 TRAPEZE NETWORKS, INC Sharing data between wireless switches system and method
9258702, Jun 09 2006 Juniper Networks, Inc AP-local dynamic switching
9838942, Jun 09 2006 Trapeze Networks, Inc. AP-local dynamic switching
Patent Priority Assignee Title
3641433,
4168400, Mar 31 1977 Compagnie Europeenne de Teletransmission (C.E.T.T.) Digital communication system
4176316, Mar 30 1953 ITT Corporation Secure single sideband communication system using modulated noise subcarrier
4247908, Dec 08 1978 Motorola, Inc. Re-linked portable data terminal controller system
4291401, Nov 30 1978 ETA S A Device for securing a watch dial to a watch-movement plate
4291409, Jun 20 1978 The MITRE Corporation Spread spectrum communications method and apparatus
4409470, Jan 25 1982 SYMBOL TECHNOLOGIES, INC , A CORP OF DELAWARE Narrow-bodied, single-and twin-windowed portable laser scanning head for reading bar code symbols
4460120, Jan 25 1982 SYMBOL TECHNOLOGIES, INC , A CORP OF DELAWARE Narrow bodied, single- and twin-windowed portable laser scanning head for reading bar code symbols
4475208, Jan 18 1982 Wired spread spectrum data communication system
4494238, Jun 30 1982 General Dynamics Decision Systems, Inc Multiple channel data link system
4500987, Nov 24 1981 Nippon Electric Co., Ltd. Loop transmission system
4503533, Aug 20 1981 CNR-STIBNOT, A CORP OF ITALY; BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, A CORP OF CA Local area communication network utilizing a round robin access scheme with improved channel utilization
4550414, Apr 12 1983 Charles Stark Draper Laboratory, Inc. Spread spectrum adaptive code tracker
4562415, Jun 22 1984 General Dynamics Decision Systems, Inc Universal ultra-precision PSK modulator with time multiplexed modes of varying modulation types
4630264, Sep 21 1984 WAH, BENJAMIN WAN-SANG; JUANG, JIE-YONG Efficient contention-resolution protocol for local multiaccess networks
4635221, Jan 18 1985 Allied Corporation Frequency multiplexed convolver communication system
4639914, Dec 06 1984 AT&T Bell Laboratories Wireless PBX/LAN system with optimum combining
4644523, Mar 23 1984 WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT System for improving signal-to-noise ratio in a direct sequence spread spectrum signal receiver
4672658, Oct 16 1985 Avaya Technology Corp Spread spectrum wireless PBX
4673805, Jan 25 1982 Mile High Equipment Company Narrow-bodied, single- and twin-windowed portable scanning head for reading bar code symbols
4707839, Sep 26 1983 Harris Corporation Spread spectrum correlator for recovering CCSK data from a PN spread MSK waveform
4730340, Oct 31 1980 Harris Corporation Programmable time invariant coherent spread symbol correlator
4736095, Jan 25 1982 SYMBOL TECHNOLOGIES, INC , A CORP OF DELAWARE Narrow-bodied, single- and twin-windowed portable laser scanning head for reading bar code symbols
4740792, Aug 27 1986 HUGHES AIRCRAFT COMPANY, A DE CORP Vehicle location system
4758717, Jan 25 1982 SYMBOL TECHNOLOGIES, INC , A CORP OF DELAWARE Narrow-bodied, single-and twin-windowed portable laser scanning head for reading bar code symbols
4760586, Dec 29 1984 Kyocera Corporation Spread spectrum communication system
4789983, Mar 05 1987 Avaya Technology Corp Wireless network for wideband indoor communications
4829540, May 27 1986 Fairchild Weston Systems, Inc. Secure communication system for multiple remote units
4850009, May 12 1986 MCKESSON INFORMATION SOLUTIONS INC Portable handheld terminal including optical bar code reader and electromagnetic transceiver means for interactive wireless communication with a base communications station
4872182, Mar 08 1988 Harris Corporation Frequency management system for use in multistation H.F. communication network
4894842, Oct 15 1987 The Charles Stark Draper Laboratory, Inc. Precorrelation digital spread spectrum receiver
4901307, Oct 17 1986 QUALCOMM INCORPORATED A CORPORATION OF DELAWARE Spread spectrum multiple access communication system using satellite or terrestrial repeaters
4933952, Apr 08 1988 LMT Radioprofessionnelle Asynchronous digital correlator and demodulators including a correlator of this type
4933953, Sep 10 1987 Kabushiki Kaisha Kenwood Initial synchronization in spread spectrum receiver
4995053, Feb 11 1987 Hillier Technologies Limited Partnership Remote control system, components and methods
5008899, Jun 29 1990 Futaba Denshi Kogyo Kabushiki Kaisha Receiver for spectrum spread communication
5029183, Jun 29 1989 Symbol Technologies, Inc. Packet data communication network
5103459, Jun 25 1990 QUALCOMM INCORPORATED A CORPORATION OF DELAWARE System and method for generating signal waveforms in a CDMA cellular telephone system
5103461, Jun 29 1989 Symbol Technologies, Inc. Signal quality measure in packet data communication
5109390, Nov 07 1989 QUALCOMM INCORPORATED A CORPORATION OF DELAWARE Diversity receiver in a CDMA cellular telephone system
5142550, Jun 29 1989 SYMBOL TECHNOLOGIES, INC , 116 WILBUR PLACE, BOHEIMIA, NY 11716-3300, A DE CORP Packet data communication system
5151919, Dec 17 1990 ERICSSON-GE MOBILE COMMUNICATIONS HOLDING INC , A CORP OF NJ CDMA subtractive demodulation
5157687, Jun 29 1989 Symbol Technologies, Inc. Packet data communication network
5187675, Sep 18 1991 ERICSSON GE MOBILE COMMUNICATIONS HOLDING, INC A CORPORATION OF NJ Maximum search circuit
5231633, Jul 11 1990 Motorola, Inc Method for prioritizing, selectively discarding, and multiplexing differing traffic type fast packets
5280498, Jun 29 1989 SYMBOL TECHNOLOGIES, INC A CORPORATION OF DE Packet data communication system
5285494, Jul 31 1992 CELLCO PARTNERSHIP, INC ; Cellco Partnership Network management system
5329531, Mar 06 1993 MOSAID TECHNOLOGIES INC Method of accessing a communication medium
5339316, Nov 13 1992 NCR Corporation Wireless local area network system
5371783, May 29 1991 Video Technology Engineering, Ltd. Method for continually monitoring the status of a radio frequency link
5418812, Jun 26 1992 Symbol Technologies, Inc. Radio network initialization method and apparatus
5448569, Apr 12 1994 International Business Machines Corporation Handoff monitoring in cellular communication networks using slow frequency hopping
5450615, Dec 22 1993 AT&T IPM Corp Prediction of indoor electromagnetic wave propagation for wireless indoor systems
5465401, Dec 15 1992 Texas Instruments Incorporated Communication system and methods for enhanced information transfer
5479441, Jun 29 1989 Symbol Technologies Packet data communication system
5483676, Aug 04 1988 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Mobile radio data communication system and method
5491644, Sep 07 1993 Georgia Tech Research Corporation Cell engineering tool and methods
5517495, Dec 06 1994 Alcatel Lucent Fair prioritized scheduling in an input-buffered switch
5519762, Dec 21 1994 PMJ FAMILY LIMITED PARTNERSHIP Adaptive power cycling for a cordless telephone
5528621, Jun 29 1989 Symbol Technologies, Inc Packet data communication system
5561841, Jan 23 1992 Nokia Siemens Networks Oy Method and apparatus for planning a cellular radio network by creating a model on a digital map adding properties and optimizing parameters, based on statistical simulation results
5568513, May 11 1993 Ericsson Inc. Standby power savings with cumulative parity check in mobile phones
5584048, Aug 17 1990 Motorola, Inc. Beacon based packet radio standby energy saver
5598532, Oct 21 1993 Optimal Networks Method and apparatus for optimizing computer networks
5630207, Jun 19 1995 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Methods and apparatus for bandwidth reduction in a two-way paging system
5640414, Mar 05 1992 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
5649289, Jul 10 1995 Google Technology Holdings LLC Flexible mobility management in a two-way messaging system and method therefor
5668803, Jun 29 1989 Symbol Technologies, Inc Protocol for packet data communication system
5715304, Dec 17 1992 Kabushiki Kaisha Toshiba Private branch exchange
5774460, Aug 05 1993 IQ Wireless GmbH Local ISDN radio transmission system
5793303, Jun 20 1995 LENOVO INNOVATIONS LIMITED HONG KONG Radio pager with touch sensitive display panel inactive during message reception
5794128, Sep 20 1995 The United States of America as represented by the Secretary of the Army; ARMY, UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE Apparatus and processes for realistic simulation of wireless information transport systems
5812589, Jun 26 1992 Symbol Technologies, LLC Radio network initialization method and apparatus
5815811, Jun 29 1989 Symbol Technologies, Inc. Preemptive roaming in a cellular local area wireless network
5828960, Mar 31 1995 Google Technology Holdings LLC Method for wireless communication system planning
5838907, Feb 20 1996 Hewlett Packard Enterprise Development LP Configuration manager for network devices and an associated method for providing configuration information thereto
5844900, Sep 23 1996 GOOGLE LLC Method and apparatus for optimizing a medium access control protocol
5875179, Oct 29 1996 GOOGLE LLC Method and apparatus for synchronized communication over wireless backbone architecture
5887259, Feb 24 1994 GTE WIRELESS SERVICE CORP Multiple mode personal wireless communications system
5896561, Apr 06 1992 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Communication network having a dormant polling protocol
5915214, Feb 23 1995 Apple Inc Mobile communication service provider selection system
5920821, Dec 04 1995 Verizon Patent and Licensing Inc Use of cellular digital packet data (CDPD) communications to convey system identification list data to roaming cellular subscriber stations
5933607, Jun 07 1993 TELSTRA TECHNOLOGIES PTY LTD Digital communication system for simultaneous transmission of data from constant and variable rate sources
5949988, Jul 16 1996 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Prediction system for RF power distribution
5953669, Dec 11 1997 Google Technology Holdings LLC Method and apparatus for predicting signal characteristics in a wireless communication system
5960335, Jul 21 1995 Fujitsu Mobile Communications Limited Digital radio communication apparatus with a RSSI information measuring function
5982779, May 28 1997 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Priority access for real-time traffic in contention-based networks
5987062, Dec 15 1995 AVAYA Inc Seamless roaming for wireless local area networks
5987328, Apr 24 1997 MARYLAND, UNIVERSITY OF Method and device for placement of transmitters in wireless networks
5999813, May 04 1995 LGC Wireless, Inc Overlay cellular communication system
6005853, Oct 13 1995 GWcom, Inc. Wireless network access scheme
6011784, Dec 18 1996 Google Technology Holdings LLC Communication system and method using asynchronous and isochronous spectrum for voice and data
6041240, Jan 05 1994 Thomson Consumer Electronics Inc. Clear channel selection system for a cordless telephone
6078568, Feb 25 1997 Telefonaktiebolaget L M Ericsson Multiple access communication network with dynamic access control
6088591, Jun 28 1996 Cisco Technology, Inc Cellular system hand-off protocol
6101539, Oct 02 1998 RPX CLEARINGHOUSE LLC Dynamic presentation of management objectives based on administrator privileges
6118771, Mar 14 1996 Kabushiki Kaisha Toshiba System and method for controlling communication
6119009, Sep 18 1997 Alcatel-Lucent USA Inc Method and apparatus for modeling the propagation of wireless signals in buildings
6160804, Nov 13 1998 Alcatel-Lucent USA Inc Mobility management for a multimedia mobile network
6188694, Dec 23 1997 Cisco Technology, Inc Shared spanning tree protocol
6199032, Jul 23 1997 EDX WIRELESS, LLC Presenting an output signal generated by a receiving device in a simulated communication system
6208629, Apr 30 1996 Hewlett Packard Enterprise Development LP Method and apparatus for assigning spectrum of a local area network
6208841, May 03 1999 Qualcomm Incorporated Environmental simulator for a wireless communication device
6212395, May 04 1995 LGC Wireless, Inc Cellular communication system
6218930, Mar 07 2000 NETWORK-1 SECURITY SOLUTIONS, INC Apparatus and method for remotely powering access equipment over a 10/100 switched ethernet network
6240078, Aug 20 1997 NEC Corporation ATM switching architecture for a wireless telecommunications network
6240083, Feb 25 1997 Unwired Planet, LLC Multiple access communication network with combined contention and reservation mode access
6256300, Nov 13 1998 Alcatel-Lucent USA Inc Mobility management for a multimedia mobile network
6256334, Mar 18 1997 Fujitsu Limited Base station apparatus for radiocommunication network, method of controlling communication across radiocommunication network, radiocommunication network system, and radio terminal apparatus
6262988, Mar 11 1998 Cisco Technology, Inc. Method and system for subnetting in a switched IP network
6285662, May 14 1999 Nokia Siemens Networks Oy Apparatus, and associated method for selecting a size of a contention window for a packet of data system
6304596, May 09 1997 Qualcomm Incorporated Method and apparatus for reducing signal processing requirements for transmitting packet-based data with a modem
6317599, May 26 1999 Extreme Networks, Inc Method and system for automated optimization of antenna positioning in 3-D
6336035, Nov 19 1998 RPX CLEARINGHOUSE LLC Tools for wireless network planning
6336152, May 27 1994 Microsoft Technology Licensing, LLC Method for automatically configuring devices including a network adapter without manual intervention and without prior configuration information
6347091, Jun 19 1998 Telefonaktiebolaget LM Ericsson Method and apparatus for dynamically adapting a connection state in a mobile communications system
6356758, Dec 31 1997 RPX CLEARINGHOUSE LLC Wireless tools for data manipulation and visualization
6393290, Jun 30 1999 Lucent Technologies Inc.; Lucent Technologies Inc Cost based model for wireless architecture
6404772, Jul 27 2000 Extreme Networks, Inc Voice and data wireless communications network and method
6473449, Feb 17 1994 Proxim Wireless Corporation High-data-rate wireless local-area network
6493679, May 26 1999 Extreme Networks, Inc Method and system for managing a real time bill of materials
6496290, Jan 31 1998 LG Telecom, Inc. Optic repeater system for extending coverage
6512916, Feb 23 2000 LANDIS+GYR TECHNOLOGY, INC ; LANDIS+GYR INNOVATIONS, INC Method for selecting markets in which to deploy fixed wireless communication systems
6535732, May 04 1995 CommScope Technologies LLC Cellular network having a concentrated base transceiver station and a plurality of remote transceivers
6580700, Oct 27 1995 Symbol Technologies, Inc. Data rate algorithms for use in wireless local area networks
6587680, Nov 23 1999 Nokia Technologies Oy Transfer of security association during a mobile terminal handover
6614787, Mar 30 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P System and method for efficiently handling multicast packets by aggregating VLAN context
6624762, Apr 11 2002 Unisys Corporation Hardware-based, LZW data compression co-processor
6625454, Aug 04 2000 Extreme Networks, Inc Method and system for designing or deploying a communications network which considers frequency dependent effects
6631267, Nov 04 1999 Lucent Technologies Inc Road-based evaluation and interpolation of wireless network parameters
6659947, Jul 13 2000 GE Medical Systems Information Technologies Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities
6661787, May 21 1998 3Com Technologies Integrated data table in a network
6687498, Aug 14 2000 Qualcomm Incorporated Communique system with noncontiguous communique coverage areas in cellular communication networks
6697415, Jun 03 1996 INNOVATIO IP VENTURES Spread spectrum transceiver module utilizing multiple mode transmission
6725260, Sep 11 1998 RPX Corporation Method and apparatus for configuring configurable equipment with configuration information received from a remote location
6747961, Nov 13 1998 Alcatel-Lucent USA Inc Mobility management for a multimedia mobile network
6760324, Sep 10 1999 CHEMTRON RESEARCH LLC Method, system, and computer program product for providing voice over the internet communication
6785275, Mar 13 2000 International Business Machines Corporation Method and system for creating small group multicast over an existing unicast packet network
6839338, Mar 20 2002 Fortinet, INC Method to provide dynamic internet protocol security policy service
6839348, Apr 30 1999 Cisco Technology, Inc System and method for distributing multicasts in virtual local area networks
6879812, Feb 08 2002 JPMORGAN CHASE BANK, N A ; MORGAN STANLEY SENIOR FUNDING, INC Portable computing device and associated method for analyzing a wireless local area network
6957067, Sep 24 2002 Hewlett Packard Enterprise Development LP System and method for monitoring and enforcing policy within a wireless network
6973622, Sep 25 2000 Extreme Networks, Inc System and method for design, tracking, measurement, prediction and optimization of data communication networks
6978301, Dec 06 2000 FOCUS GLOBAL SOLUTIONS LLC System and method for configuring a network device
6996630, Jun 18 1999 Massachusetts Institute of Technology Integrated network system
7020438, Jan 09 2003 Nokia Technologies Oy Selection of access point in a wireless communication system
7020773, Jul 17 2000 Citrix Systems, Inc Strong mutual authentication of devices
7024199, Dec 30 1999 GOLDMAN SACHS LENDING PARTNERS LLC, AS COLLATERAL AGENT; ALTER DOMUS US LLC, AS COLLATERAL AGENT System and method of querying a device, checking device roaming history and/or obtaining device modem statistics when device is within a home network and/or complementary network
7024394, Jul 07 2000 International Business Machines Corporation System and method for protecting user logoff from web business transactions
7027773, May 28 1999 AFX TECHNOLOGY GROUP, INTERNATIONAL , INC On/off keying node-to-node messaging transceiver network with dynamic routing and configuring
7062566, Oct 24 2002 VALTRUS INNOVATIONS LIMITED System and method for using virtual local area network tags with a virtual private network
7068999, Aug 02 2002 Extreme Networks, Inc System and method for detection of a rogue wireless access point in a wireless communication network
7089322, Oct 28 1999 XRS Corporation System and method of aggregating data from a plurality of data generating machines
7110756, Oct 03 2003 Cisco Technology, Inc Automated real-time site survey in a shared frequency band environment
7116979, Feb 24 2003 Intellectual Ventures II LLC Wireless channel selection method and system using scanning for identifying access point
7146166, Feb 18 2004 Intellectual Ventures II LLC Transmission channel selection program
7155518, Jan 08 2001 NYTELL SOFTWARE LLC Extranet workgroup formation across multiple mobile virtual private networks
7221927, Feb 13 2004 TRAPEZE NETWORKS, INC Station mobility between access points
7224970, Oct 26 2004 Google Technology Holdings LLC Method of scanning for beacon transmissions in a WLAN
7263366, Aug 06 2003 NEC Corporation Channel selection method, and wireless station and wireless terminal employing it
7280495, Aug 18 2000 Malikie Innovations Limited Reliable broadcast protocol in a wireless local area network
7317914, Sep 24 2004 Microsoft Technology Licensing, LLC Collaboratively locating disconnected clients and rogue access points in a wireless network
7324468, Sep 10 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED System and method for medium access control in a power-save network
7324487, Feb 12 2002 MAXELL HOLDINGS, LTD ; MAXELL, LTD Wireless LAN system and method for roaming in a multiple base station
7359676, Apr 21 2003 Extreme Networks, Inc Systems and methods for adaptively scanning for wireless communications
7370362, Mar 03 2005 Cisco Technology, Inc. Method and apparatus for locating rogue access point switch ports in a wireless network
7376080, May 11 2004 CA, INC Packet load shedding
7421248, Nov 12 2002 Cisco Technology, Inc. Method and apparatus for adjusting operational parameter of a wireless device bases upon a monitored characteristic
7466678, Dec 29 2003 Lenovo PC International System and method for passive scanning of authorized wireless channels
7489648, Mar 11 2004 Cisco Technology, Inc. Optimizing 802.11 power-save for VLAN
7509096, Jul 26 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Wireless access point setup and management within wireless local area network
7529925, Mar 15 2005 TRAPEZE NETWORKS, INC System and method for distributing keys in a wireless network
7551619, Oct 13 2005 TRAPEZE NETWORKS, INC Identity-based networking
7570656, Jun 18 2001 Yitran Communications LTD Channel access method for powerline carrier based media access control protocol
7573859, Oct 13 2005 TRAPEZE NETWORKS, INC System and method for remote monitoring in a wireless network
7577453, Jun 01 2006 TRAPEZE NETWORKS, INC Wireless load balancing across bands
7724704, Jul 17 2006 TRAPEZE NETWORKS, INC Wireless VLAN system and method
20010024953,
20020052205,
20020060995,
20020069278,
20020095486,
20020101868,
20020176437,
20020191572,
20030014646,
20030018889,
20030055959,
20030107590,
20030134642,
20030135762,
20030174706,
20030227934,
20040003285,
20040019857,
20040025044,
20040047320,
20040053632,
20040062267,
20040064560,
20040068668,
20040095914,
20040095932,
20040120370,
20040143428,
20040165545,
20040208570,
20040221042,
20040230370,
20040236702,
20040255167,
20040259555,
20050030929,
20050037818,
20050054326,
20050058132,
20050059405,
20050059406,
20050064873,
20050068925,
20050073980,
20050097618,
20050122977,
20050128989,
20050157730,
20050180358,
20050181805,
20050193103,
20050223111,
20050239461,
20050240665,
20050245269,
20050259597,
20050276218,
20060045050,
20060104224,
20060128415,
20060161983,
20060174336,
20060189311,
20060200862,
20060245393,
20060248331,
20060276192,
20070025265,
20070064718,
20070070937,
20070083924,
20070086378,
20070091889,
20070189222,
20070260720,
20080002588,
20080008117,
20080013481,
20080056200,
20080056211,
20080096575,
20080107077,
20080114784,
20080117822,
20080151844,
20080162921,
20090031044,
20090198999,
WO3085544,
WO2004095192,
WO2004095800,
WO9403986,
WO9911003,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 22 2006Trapeze Networks, Inc.(assignment on the face of the patent)
Nov 22 2006MURPHY, JAMESTRAPEZE NETWORKSASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0186370763 pdf
Nov 22 2006MORAIN, GARYTRAPEZE NETWORKSASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0186370763 pdf
Dec 21 2009TRAPEZE NETWORKS, INC BELDEN INCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0239850751 pdf
Nov 08 2010BELDEN INCTRAPEZE NETWORKS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0253270302 pdf
Date Maintenance Fee Events
Jun 30 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 12 2018REM: Maintenance Fee Reminder Mailed.
Jan 29 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 29 2019M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.
Aug 19 2022M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 22 20144 years fee payment window open
Sep 22 20146 months grace period start (w surcharge)
Mar 22 2015patent expiry (for year 4)
Mar 22 20172 years to revive unintentionally abandoned end. (for year 4)
Mar 22 20188 years fee payment window open
Sep 22 20186 months grace period start (w surcharge)
Mar 22 2019patent expiry (for year 8)
Mar 22 20212 years to revive unintentionally abandoned end. (for year 8)
Mar 22 202212 years fee payment window open
Sep 22 20226 months grace period start (w surcharge)
Mar 22 2023patent expiry (for year 12)
Mar 22 20252 years to revive unintentionally abandoned end. (for year 12)