An optical tomography system for viewing an object of interest includes a microcapillary tube viewing area for positioning the object of interest in an optical path including a detector. A motor is located to attach to and rotate a microcapillary tube. A device is arranged for transmitting broadband light having wavelengths between 550 nm and 620 nm into the microcapillary tube viewing area. A hyperchromatic lens is located to receive light transmitted through the microcapillary tube viewing area. A tube lens is located to focus light rays transmitted through the hyperchromatic lens, such that light rays from multiple object planes in the microcapillary tube viewing area simultaneously focus on the at least one detector.
|
1. An optical tomography system for viewing a biological cell comprising:
a microcapillary tube having a viewing area for positioning the biological cell;
at least one detector;
a motor arranged to rotate the microcapillary tube;
means for transmitting broadband light having wavelengths between 550 nm and 620 nm into the microcapillary tube viewing area;
a hyperchromatic lens located to receive light transmitted through the microcapillary tube viewing area; and
a tube lens located to focus light rays transmitted through the hyperchromatic lens, such that light rays from multiple object planes in the microcapillary tube viewing area simultaneously focus on the at least one detector; wherein the hyperchromatic lens and the tube lens operate to simultaneously focus multiple object planes from the microcapillary tube viewing area on the at least one detector; wherein the biological cell is stained to impart an absorption coefficient of at least one wavelength that registers on the at least one detector; and wherein an interval spanned by the multiple object planes comprises an interval spanning the thickness of the biological cell.
2. The system of
3. The system of
4. The system of
5. The system of
|
The present invention is a divisional of co-pending U.S. application Ser. No. 11/876,658 to Rahn, et al. entitled “Depth of Field Extension for Optical Tomography,” and hereby claims the benefit of the right of priority to the filing date of application Ser. No. 11/876,658. Application Ser. No. 11/876,658 is hereby incorporated by reference.
The present invention relates to optical tomographic imaging systems in general, and, more particularly, to optical projection tomography, in which a small object, such as a biological cell, is positioned in a capillary tube for imaging by a microscope.
Advances in imaging biological cells using optical tomography have been developed by Nelson as disclosed, for example, in U.S. Pat. No. 6,522,775, issued Feb. 18, 2003, and entitled “Apparatus and method for imaging small objects in a flow stream using optical tomography,” the full disclosure of which is incorporated by reference. Further developments in the field are taught in Fauver et al., U.S. patent application Ser. No. 10/716,744, filed Nov. 18, 2003 and published as US Publication No. US-2004-0076319-A1 on Apr. 22, 2004, entitled “Method and apparatus of shadowgram formation for optical tomography,” (Fauver '744) and Fauver et al., U.S. patent application Ser. No. 11/532,648, filed Sep. 18, 2006, entitled “Focal plane tracking for optical microtomography,” (Fauver '648) the full disclosures of which are also incorporated by reference.
Processing in such an optical tomography system begins with specimen preparation. Typically, specimens taken from a patient are received from a hospital or clinic and processed to remove non-diagnostic elements, fixed and then stained. Stained specimens are then mixed with an optical gel, inserted into a micro-capillary tube and images of objects, such as cells, in the specimen are produced using an optical tomography system. The resultant images comprise a set of extended depth of field images from differing perspectives called “pseudo-projection images.” The set of pseudo-projection images can be reconstructed using backprojection and filtering techniques to yield a 3D reconstruction of a cell of interest.
The 3D reconstruction then remains available for analysis in order to enable the quantification and the determination of the location of structures, molecules or molecular probes of interest. An object such as a biological cell may be labeled with at least one stain or tagged molecular probe, and the measured amount and location of this probe may yield important information about the disease state of the cell, including, but not limited to, various cancers such as lung, breast, prostate, cervical and ovarian cancers.
In Optical Projection Tomography Microscopy (OPTM) systems as described, for example, in Fauver '648, about 250 sample images taken over a 180-degree rotation are required to adequately sample the volume of a cell nucleus randomly distributed in a flow stream within a 50 micron capillary tube.
The present disclosure provides new and novel techniques for providing higher resolution and improved signal to noise ratio in order to reduce sampling requirements while maintaining acceptable resolution.
In one type of optical tomography system, as described in Fauver '744 and constructed by VisionGate, Inc., the depth of field of the imaging optics is extended by scanning an objective lens transverse to a capillary tube containing a specimen. A piezoelectric transducer (PZT) actuator transversely moves the objective lens sinusoidally several times per second in order to scan a series of focal planes though a specimen. By using a PZT actuator to move the objective lens, a focal plane moving through the specimen has its speed limited by inertia inherent in moving the objective lens mass rapidly along the optical axis through the specimen. Typically, an upper limit of the scan rate is roughly 60 cycles per second. With well-synchronized rotation and objective scanning, an image can be acquired on the down-stroke as well as the up-stroke of the PZT actuator, allowing up to 120 images per second to be acquired. While this is a useful acquisition rate, it can be significantly improved through the apparatus, systems and methods disclosed herein.
An optical tomography system for viewing an object of interest includes a microcapillary tube viewing area for positioning the object of interest in an optical path including a detector. A motor is located to attach to and rotate a microcapillary tube. A device is arranged for transmitting broadband light having wavelengths between 550 nm and 620 nm into the microcapillary tube viewing area. A hyperchromatic lens is located to receive light transmitted through the microcapillary tube viewing area. A tube lens is located to focus light rays transmitted through the hyperchromatic lens, such that light rays from multiple object planes in the microcapillary tube viewing area simultaneously focus on the at least one detector.
In the drawings, identical reference numbers identify similar elements or components. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
The following disclosure describes several embodiments and systems for imaging an object of interest. Several features of methods and systems in accordance with example embodiments of the invention are set forth and described in the Figures. It will be appreciated that methods and systems in accordance with other example embodiments of the invention can include additional procedures or features different than those shown in Figures. Example embodiments are described herein with respect to biological cells. However, it will be understood that these examples are for the purpose of illustrating the principals of the invention, and that the invention is not so limited.
Additionally, methods and systems in accordance with several example embodiments of the invention may not include all of the features shown in these Figures. Throughout the Figures, like reference numbers refer to similar or identical components or procedures.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense that is as “including, but not limited to.”
Reference throughout this specification to “one example” or “an example embodiment,” “one embodiment,” “an embodiment” or various combinations of these terms means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
Definitions
Generally as used herein the following terms have the following meanings when used within the context of optical microscopy processes:
Most simple lenses will produce wavelength-dependent focal positions known as chromatic focal shift. Chromatic aberrations are typically undesirable in a lens. However, for a sufficiently broad absorption spectrum in a biological sample, the dispersion of chromatic aberration can in effect extend the depth of field image of an absorptive object or feature.
Wavelength-dependent lens material will produce a lens with chromatic aberrations. Nearly all lens materials can have both positive and negative index shifts with wavelength. Lens designers typically choose lens materials to compensate for the chromatic focal plane shifts, resulting in a net chromatic focal shift near zero. For an example of an immersion microscope objective which is corrected for spherical and axial chromatic aberrations see U.S. Pat. No. 5,517,360 issued May 14, 1996 to T Suzuki, entitled “Immersion microscope objective.”
Changing the design parameters to emphasize, rather than minimize, the chromatic focal shift can create large chromatic, or hyperchromatic, aberrations in the optical path. Such hyperchromatic aberrations can simultaneously focus multiple focal depths on a detector, with each optical wavelength forming an image at the detector of a separate focal plane within the object. This widens the range of focal positions over a limited desired wavelength range. For a specimen with a narrow absorption peak in the stain or contrast agent, a lens can be designed to include optical field extension elements to extend the dispersion over many microns to form an extended depth of field optical system for a narrow range of wavelengths. The optical components and materials are chosen to optimize chromatic dispersion within the stain absorption range.
When employing chromatic aberration, it may be advantageous to alter the relative makeup of the spectral components to compensate for factors that may affect the composition of the image. These may include, but are not limited to, wavelength dependencies of the contrast agent or stain, the camera response, and transmission through the optical materials. The spectral composition may be altered by, for example, incorporating in the illumination, collection, and/or imaging optics a filter that attenuates some wavelengths more than others.
As an example, a limited extension of the depth of field can be achieved for a narrow range of wavelengths accommodating existing stain absorption curves, such as the hematoxylin family of stains. Stains in the hematoxylin family exhibit a peak absorption in the wavelength range from 550 to 620 nanometers.
One example of a hyperchromatic objective lens 103, suitable for use in a hyperchromatic system, is depicted in
Material
Front Radius
Back Radius
Center
(Schott
of Curvature
of Curvature
Thickness
Element
designation)
(mm)
(mm)
(mm)
1
SF57
200
−3.17
3.54
LAK14
3.17
−5.92
5.08
Air
—
—
1
3
KZFSN4
104.5
−6.55
3.64
4
SF6
6.55
−13.77
1
Air
—
—
1
5
SF64
10.73
6.27
4.75
6
LASF40
−6.27
4.47
7.88
Air
—
—
2.24
7
SK2
7.23
−3.95
9.05
8
F2
3.95
19.37
8.83
The location of the aperture stop may be chosen to provide telecentricity, and to minimize lateral color (also known as chromatic difference of magnification). Component materials are commercially available from, for example, Schott North America, Inc. Elmsford, N.Y. 10523.
As shown in the examples described hereinbelow with reference to the figures, lens system 103, when placed in front of a tube lens having a focal length of 180 mm, will provide 60× magnification at numerical aperture (NA) equal to 0.9 over a wavelength range from 550 nm to 620 nm, provided that the space between the front surface of the first element 1 and the top of a cover slip positioned in the field of view of the lens is filled with water. The cover slip is typically about 130 microns thick, while the water-filled space between the cover slip and the lens may be about 200 microns thick. An object is focused on the imaging plane of the camera over a range of 15 microns at separate wavelengths over a 200-micron diameter field of view. In this example embodiment, the portion of the object in a first plane is focused by the 550-nm portion of the incident light, a second plane located 5 microns below the first plane is focused by the 573-nm portion of the incident light, a third plane located 10 microns below the first plane is focused by the 597-nm portion of the incident light, and a fourth plane located 15 microns below the first plane is focused by the 620-nm portion of the incident light.
System MTFs
Referring now to
Referring now to
The hyperchromatic optical system may advantageously be incorporated into an OPTM system. A translation device, such as, for example, a piezoelectric transducer (PZT) may be used to apply a single, low-speed translation of the objective lens over the course of a 360-degree set of scans. The lens translation keeps the object of interest within a focus interval of about 15 microns, even while the tube rotation causes the object to translate along the optical axis by as much as the internal diameter of the rotating capillary during the 360-degree scan. In contrast to earlier embodiments, a high-speed scan taken at each perspective is no longer required. As a result, image acquisition speed is no longer limited by the speed of the PZT translation device. In addition, synchronization between the tube rotation and translation motion of the lens no longer needs to be as precise, thereby reducing the complexity of the OPTM instrument control system.
Now referring to
In one example embodiment, an assembly 121 preferably includes the microcapillary tube 107 placed in a viewing area between a first flat optical surface 120, which may comprise a standard microscope slide, and a second flat optical surface 108, which may comprise a standard microscope coverslip. The interstices between the tube 107 and the flat surfaces 108, 120 are filled with optical oil 124, or an equivalent, having an index of refraction that also substantially matches those of the tube 107, the flat surfaces 108, 120, and the optical gel 123. The assembly 121 can be mounted on a microscope, and an optical immersion fluid 109, comprising, for example, oil, water, or air, is placed on the side of the assembly 121 that faces hyperchromatic optics (as shown in
Broadband light 130 having wavelengths between a first wavelength λ1 (e.g., λ1=about 550 nm) and a second wavelength λ2 (e.g., λ2=about 620 nm) is transmitted into the tube 107 by means of, for example, a condenser lens system. A first set of ray paths 105 of light having wavelength λ1 travel from the first object plane Z1 and into the immersion fluid 109. A second set of ray paths 106 of light having wavelength λ2 travel from the second object plane Z2 and into the immersion fluid 109. Although not depicted in
With reference to
Light having a wavelength λn, where the λn wavelength is a wavelength having a value between λ1 and λ2, will travel from intermediate object planes, Zn, located between plane Z1 and plane Z2, along ray paths similar to 105 and 106, and also come to a focus on image plane 104. The wavelength of λn, relative to λ1 and λ2, determines where the intermediate object plane is located, relative to object planes Z1 and Z2, in order for it to be focused on image plane 104.
Now referring to
Those skilled in the art and having the benefit of this disclosure will appreciate that the system depicted in
Another embodiment employs the hyperchromatic optical path described previously, having an aberration that produces focus over the thickness of the object (e.g., 15 microns) for wavelengths within the range of constant absorption by the stain. This embodiment further includes a Chromatic Filter Array (CFA) in the optical path, preferably located just before the image plane 104. The CFA may consist of two or more types of pixels, each pixel having a size corresponding to the pixel size of the camera 112 imaging surface 104. Each type of pixel passes a separate range of wavelengths. An example of a CFA, having much wider bandpass ranges than the one described as part of this invention, is the Bayer filter, as described in U.S. Pat. No. 4,081,277, “Method for making a solid-state color imaging device having an integral color filter and the device” issued on Mar. 28, 1978 to Brault, et al.
Referring now to
With reference jointly to
The inclusion of the CFA 201 makes it possible to separate the signals from two or more (in this example, four) focal ranges, thereby decreasing the amount of defocusing that contaminates the in-focus signal. By saving each focal range separately, they may be combined digitally during post-acquisition processing, permitting an increase in the dynamic range of the combined images, and consequently improving the spatial resolution and contrast of the combined images. Alternatively, the images that result from each wavelength can be processed as two or more separate sets of data, and not combined until after each has been separately tomographically reconstructed, thus providing an improvement in spatial resolution and contrast.
Referring now jointly to
Owing to the existence of the multiple pixel types in the unit cell of the CFA, each pixel type only collects light from a portion of the interval between the object planes Z5 and Z6. For the four-color CFA 201 shown in
As an example, if the focal plane separation is 50 microns, and the wavelength range is 550 to 618 nm, then camera pixels lying directly behind pixel type 203 will detect only light having wavelengths between 550 and 567 nm, corresponding to object planes between object plane Z5 and Z5+12.5. In a similar manner, camera pixels lying directly behind pixel type 204 will detect only light having wavelengths between 567 and 584 nm, corresponding to focal planes between object planes located between Z5+12.5 microns and Z5+25 microns. Camera pixels lying directly behind pixel type 205 will detect only light having wavelengths between 584 and 601 nm, corresponding to object planes between Z5+25 microns and Z5+37.5 microns; and camera pixels lying directly behind pixel type 206 will detect only light having wavelengths between 601 and 618 nm, corresponding to object planes between Z5+37.5 microns and Z6 (i.e., Z5+50 microns).
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now jointly to
Focus Score
One characteristic of an OPTM system incorporating extended depth of field optics is that a fixed-focal plane image can no longer be acquired through the extended depth of field optical path. The focus quality of a flat object is retained over a wide range of focal positions. This property is sometimes referred to as focus invariance.
For an object that is not confined to a single focal plane, it is still necessary to find the midpoint of the object of interest so that it may be kept within the focus interval throughout the data acquisition. One method of accomplishing this is to split the optical path prior to introducing the chromatic aberration, so that a separate optical path, incorporating a detector, is available. This separate optical path, being free of chromatic aberration, allows the system to acquire fixed-focal plane images. In a similar method that can be incorporated into a hyperchromatic imaging system, the optical path can be split and one arm chromatically filtered to near-monochromaticity, so that a single focal plane can be imaged by a separate camera, while the other arm provides the pseudo-projection. Another approach includes panning the objective lens over a wide range prior to beginning the scan, acquiring an image at each position, and assigning a focus score to each image. Focus scoring methods may employ autocorrelation, entropy, and/or other equivalent methods.
Referring now to
Repetitive focus scoring is not necessary for a system having a depth of field exceeding the inner diameter of a microcapillary tube, provided that the upper and lower boundaries 602, 603 of the focus invariance region do not pass through the interior of the microcapillary tube. This condition can be verified by an initial focus scoring when the instrument is first configured.
Referring now to
Referring now to
Referring now to
Referring now to
In one embodiment, light rays are directed by a primary beam splitter 2028, a secondary beam splitter 2030 and a mirror 2032. Light rays directed to the image camera 2020 are filtered by a first filter 2022, where the first filter passes light having wavelengths between 550 nm and 620 nm through a first image forming lens 2023. Light rays directed to the first autofocusing camera 2002 are filtered by a second filter 2024, where the second filter passes light having wavelengths between 585 nm and 620 nm through a second imaging lens 2025. Light rays impinging mirror 2032 are directed to the second autofocusing camera 2004 after being filtered by a third filter 2026, where the third filter passes light having wavelengths between 550 nm and 585 nm through a third imaging lens 2027.
Referring now to
The Fourier spatial filters 2052, 2058 operate on two focus paths to provide analog feedback to the focus control controller 2042 via the photo-diodes 2054. Spatial filtering ensures that the photodiodes only receive the high-spatial frequency components of a focal plane. High spatial frequency content is associated with well-focused objects. The high frequency content of the upper and lower halves of the focal range, 2012, 2014 respectively, is compared in signal conditioning and difference amplification processor 2062. The difference amplification processor 2062 provides output 2040 which is used as above to control drive 2042 to cause the transducer 2016 to position the objective lens 2103 until the high-frequency intensities of the two focal regions are sufficiently similar. Under continuous illumination, this method has the advantage of tracking motion of an object keeping it in focus balance at all times.
Polarization-Dependent Optics (Birefringent) for 3D Imaging
The location of the focal plane is dependent on the polarization of the light. This system can be implemented using birefringent optics, in which the index of refraction varies according to the electric-field polarization of the optical wavefront. An example of a birefringent optical material is calcite (CaCO3), for which the index of refraction at 590 nm is either 1.658 or 1.486, depending on the polarization.
Embodiments analogous to those of the hyperchromatic systems described above may be employed. With these techniques, the polarization of the imaged light will depend on the object focal plane from which it originated. For example, the horizontally-polarized (electric-field vector at zero degrees) component of the light may provide the in-focus image for an object plane ZH, whereas the vertically-polarized (electric-field vector at 90 degrees) component of the light may provide the in-focus image for an object plane ZV, located, for example, 15 microns closer to the detector than plane ZH. Light having polarizations between zero and 90 degrees would provide in-focus images for object planes between ZH and ZV.
The polarization of the illuminating light can be varied over time by using a spinning polarizing filter, the collected (unpolarized) light passes through a polarizing filter before it reaches the image sensor, or the entire focal range can be collected simultaneously.
In one embodiment, the focal range may be comparable to the thickness of the object, e.g., 15 microns. In this embodiment, a PZT can be incorporated to compensate for rotation-induced translation of the cell, in a system analogous to that depicted in
In another embodiment, analogous to that depicted in
In yet another embodiment, the range of the focal planes can be equivalent to the diameter of the microcapillary tube, and the polarization of the light varied over time while a series of synchronized camera exposures acquires the object planes as they come into focus on the detector.
2.5-D Imaging
In any OPTM system incorporating extended depth of field optics, post-acquisition processing may be incorporated to perform pixel-by-pixel analysis to compute a mosaic of in-focus features in the field of view. An example of one type of 2.5-D imaging is found in R J Pieper and A Korpel, “Image processing for extended depth of field,” Applied Optics 22, 1449 (1983). The 2.5-D imaging approach may be most advantageously employed in those embodiments that make use of a Chromatic or Polarization Filter Array (CFA or PFA) and covering a wide focal range, and in the embodiments that make use of multiple camera exposures. In these systems, the weight assigned to an element type can vary from one pseudo-projection to the next, as the object is rotated through different focal plane regions.
To accomplish this, individual features are identified in the collection of short-focal-plane images that form an image stack. The same feature may appear in several images within the stack, but only a subset of those images will contain a well-focused representation of that feature.
Referring now to
The process is repeated for all the image stacks, until all image stacks (S1) S2 . . . Skmax) have been analyzed and their associated composite images (PP1, PP2 . . . PPkmax) have been computed 1105. The tomographic reconstruction can then be computed, using the set of PPk as the input images 1106. In one example using this method, each 2×2 block of a 4-color CFA or PFA can be processed by selecting the single pixels containing the best focus, or as a weighted sum of two or more pixels.
Beam Split Multiple Focal Plane
There are several fundamental advantages of shorter integrated pseudo-projections for OPTM performance. First, smaller magnitude pseudo-projections (integrated optical axis scans) reduce the effect of the low frequency information dominating in the spatial spectrum. Second, adding more images that sample the same volume improves the signal to noise proportionally to the square root of the number of images used. Third, multiple images enable the detection and compensation for unusual hot spots in images due to refractive contrast.
The separation of the depth of field into segments allows many other depth of field extenders to work to supply a more limited solution, working better with less complication.
A reduced range of motion or an extended depth is possible with direct objective scan and multiple camera focal planes.
The creation of multiple focal ranges does not necessarily require multiple cameras. With adequate camera sensor area it is possible to merge the images and capture them on a single sensor. This can be done using a fiber optic faceplate splitting the sensor into zones, or a folded optical system merging the multiple images onto a single CCD.
Referring now to
Two-Stage Magnification
Acquiring images separated by 10 microns in object space would require, for a 100× lens, a difference in image-space path length proportional to magnification squared (i.e., 100 mm). If the tube lenses have the same focal lengths, but different back focal planes, then the two halves of the camera will acquire focused images having substantially identical magnifications, but originating from different focal planes in object space. As an illustration, placing the camera 100 mm closer to the second tube lens than to the first tube lens will result in a difference in focal planes of 100/m2 microns, where M is the lateral magnification. If M=100, then 100/m2=10 microns.
However, a much more modest change in optical axis can be achieved using two 10× magnification stages and changing the focal plane of the secondary objective only slightly. A 10-micron shift in the specimen plane at 10× magnification image is achieved with a one-millimeter shift of the intermediate image plane.
Using a split focal plane approach allows two or more cameras (four are shown in the example of
In an example of this embodiment, shown in
Each ray path passes through two beam-splitter thicknesses, and each ray path undergoes either two or zero reflections, either through the beam-splitters or by the mirrors. The equivalence of the ray path-lengths through the beam-splitters means that the aberrations due to passing through the glass are equivalent. The number of reflections being always even (or always odd) means that all four images retain the same orientation at the image planes of the four cameras 1309. Space between first tube lens and secondary objective differs for each ray path, so that a different object plane is focused on each camera. A reduced range of motion or an extended depth is possible with focal plane scanning behind the objective and multiple camera focal planes.
Extending the multiple camera optics to greater than 20 focal planes can, in theory, sample a ten-micron depth of field every 500 nm. The arrangement of multiple cameras allows two simultaneous modalities of volumetric sampling that can each be used to contribute their relative strengths to a more accurate volumetric reconstruction. Specifically, the contrast generated by refractive and diffractive effects in the sample media interfaces may be sorted out from the purely absorptive effects and all data captured rapidly and without focal plane motion or rotational blur.
Wavefront Coded Optics
Referring now to
The limit of wavefront coding is about a 12:1 improvement in the depth of field. For an optical tomography application such an improvement will provide about half of the required depth. Thus wavefront coding may advantageously be combined with one of the many other embodiments described herein to deliver a complete solution.
The point of the first contrast-reversal (MTF less than zero) occurs, for matched condenser and objective NA's, at 0.64 waves of defocus, as detailed in V N Mahajan, “Aberration Theory Made Simple” (Bellingham, Wash.: SPIE Press, 1991). This point is readily expressed in terms of the change in the optical depth, Δz, as
Δz=±1.28λn/(NAobj)2
where λ is the wavelength of the light being collected, n is the refractive index of the region between the objective lens and the object, and NAobj is the numerical aperture of the objective lens. For λ=550 nm, n=1, and NAobj=0.9, this distance is Δz=±0.87 microns. Then for a 12-micron-deep object, we require at least a 5× improvement in the depth of field to avoid contrast reversal at 6-micron defocus (roughly 4.4 waves of defocus).
Another embodiment of imaging with wavefront coding incorporates digital enhancement of the image with a complementary transfer function to boost the suppressed high frequency components to recover a sharply focused image while retaining the extended depth.
Another embodiment uses multiple cameras, such as is shown above, that take advantage of the wavefront coded optics approach to extended depth of field by coding each optical path with lens transfer function, thus extending the depth of field from one segment to the next. This mechanism allows for a single brief exposure such as a strobed illuminator to quickly sample a wide depth of field without mechanical motion.
The invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles of the present invention, and to construct and use such exemplary and specialized components as are required. However, it is to be understood that the invention may be carried out by specifically different equipment, and devices, and that various modifications, both as to the equipment details and operating procedures, may be accomplished without departing from the true spirit and scope of the present invention.
Rahn, J. Richard, Hayenga, John W.
Patent | Priority | Assignee | Title |
10334216, | Nov 06 2014 | Sony Corporation | Imaging system including lens with longitudinal chromatic aberration, endoscope and imaging method |
10408676, | Oct 01 2015 | National Security Technologies, LLC | Long-pulse-width variable-wavelength chirped pulse generator and method |
10659751, | Dec 14 2018 | WOVEN BY TOYOTA, U S , INC | Multichannel, multi-polarization imaging for improved perception |
10850128, | Apr 11 2016 | The Regents of the University of California | Real-time, parallel x-ray tomosynthesis |
11069054, | Dec 30 2015 | Visiongate, Inc | System and method for automated detection and monitoring of dysplasia and administration of immunotherapy and chemotherapy |
11570416, | Dec 14 2018 | WOVEN BY TOYOTA, U S , INC | Multichannel, multi-polarization imaging for improved perception |
11714271, | Sep 14 2020 | Singular Genomics Systems, Inc. | Methods and systems for multidimensional imaging |
8576323, | Apr 19 2007 | RAMOT AT TEL AVIV UNIVERSITY LTD | Optical imaging system with an extended depth-of-field and method for designing an optical imaging system |
8761333, | Aug 12 2011 | General Electric Company | Low resolution scintillating array for CT imaging and method of implementing same |
8942341, | Sep 01 2011 | General Electric Company | Method of dose reduction for CT imaging and apparatus for implementing same |
9552961, | Apr 10 2015 | International Business Machines Corporation | Scanning transmission electron microscope having multiple beams and post-detection image correction |
9615074, | Oct 01 2013 | Wistron Corporation | Method for generating translation image and portable electronic apparatus thereof |
9706094, | Dec 05 2014 | National Security Technologies, LLC | Hyperchromatic lens for recording time-resolved phenomena |
Patent | Priority | Assignee | Title |
3470373, | |||
3497690, | |||
3598471, | |||
3657537, | |||
3748468, | |||
3833762, | |||
3960449, | Jun 05 1975 | The Board of Trustees of Leland Stanford Junior University | Measurement of angular dependence of scattered light in a flowing stream |
3999047, | Sep 05 1972 | Method and apparatus utilizing color algebra for analyzing scene regions | |
4081277, | Oct 08 1976 | Eastman Kodak Company | Method for making a solid-state color imaging device having an integral color filter and the device |
4175860, | May 31 1977 | Rush-Presbyterian-St. Luke's Medical Center | Dual resolution method and apparatus for use in automated classification of pap smear and other samples |
4183623, | Oct 11 1977 | Tomographic cross-sectional imaging using incoherent optical processing | |
4200353, | Jun 05 1974 | Modulation contrast microscope with three regions | |
4293221, | Apr 17 1979 | Research Corporation | Multidimensional slit-scan flow system |
4360885, | Jan 02 1980 | Micro-optical tomography | |
4702598, | Feb 25 1985 | Ludwig Institute for Cancer Research | Flow cytometer |
4714345, | Jun 29 1984 | Sample arrangement for spectrometry, method for the measurement of luminescence and scattering and application of the sample arrangement | |
4858128, | Aug 11 1986 | General Electric Company | View-to-view image correction for object motion |
4873653, | Apr 09 1986 | Carl-Zeiss-Stiftung | Microscope system for providing three-dimensional resolution |
4891829, | Nov 19 1986 | Exxon Research and Engineering Company | Method and apparatus for utilizing an electro-optic detector in a microtomography system |
5141609, | Nov 16 1990 | TRUSTEES OF LELAND STANFORD JUNIOR UNIVERSITY, THE, A CORP OF CA | Method and device employing time-delayed integration for detecting sample components after separation |
5148502, | Feb 23 1988 | Olympus Optical Co., Ltd. | Optical image input/output apparatus for objects having a large focal depth |
5281517, | Nov 04 1985 | Cell Analysis Systems, Inc. | Methods for immunoploidy analysis |
5308990, | May 15 1991 | Hitachi, Ltd. | Method for measuring microparticles, quantitative measuring method therefor and instrument for measuring microparticles |
5312535, | Jul 17 1992 | Beckman Instruments, Inc.; BECKMAN INSTRUMENTS, INC A CORP OF DE | Capillary electrophoresis detection |
5321501, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample |
5333164, | Dec 11 1991 | General Electric Company | Method and apparatus for acquiring and processing only a necessary volume of radon data consistent with the overall shape of the object for efficient three dimensional image reconstruction |
5390226, | Jul 02 1992 | General Electric Company | Method and apparatus for pre-processing cone beam projection data for exact three dimensional computer tomographic image reconstruction of a portion of an object |
5402460, | Aug 02 1993 | UNIVERSITY OF WASHINGTON, THE | Three-dimensional microtomographic analysis system |
5428447, | Jul 31 1992 | FUJIFILM Corporation | Method and apparatus for obtaining three-dimensional information of samples using computer tomography |
5539800, | Mar 24 1995 | The Regents of the University of California, Office of Technology | Pseudolocal tomography |
5548395, | Sep 20 1991 | TOA Medical Electronics Co., Ltd. | Particle analyzer |
5552605, | Nov 18 1994 | Picker International, Inc.; PICKER INTERNATIONAL, INC | Motion correction based on reprojection data |
5644388, | Apr 19 1994 | TOA Medical Electronics Co., Ltd. | Imaging flow cytometer nearly simultaneously capturing a plurality of images |
5668887, | May 29 1992 | Eastman Kodak Company | Coating density analyzer and method using non-synchronous TDI camera |
5673300, | Jun 11 1996 | VENTURE INVESTORS EARLY STAGE FUND III LIMITD PARTNERSHIP; ADVANTAGE CAPITAL WISCONSIN PARTNERS I LIMITED PARTNERSHIP; AVALON TECHNOLOGY, LLC A MICHIGAN LIMITED LIABILITY COMPANY | Method of registering a radiation treatment plan to a patient |
5680484, | Jun 09 1992 | Olympus Optical Co., Ltd. | Optical image reconstructing apparatus capable of reconstructing optical three-dimensional image having excellent resolution and S/N ratio |
5710429, | Apr 06 1995 | RESEARCH FOUNDATION OF CITY COLLEGE OF NEW YORK, THE | Ultrafast optical imaging of objects in or behind scattering media |
5741411, | May 19 1995 | Iowa State University Research Foundation | Multiplexed capillary electrophoresis system |
5760901, | Jan 28 1997 | Zetetic Institute | Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation |
5760951, | Sep 01 1992 | BIOMEDICAL PHOTOMETRICS INC | Apparatus and method for scanning laser imaging of macroscopic samples |
5784352, | Jul 21 1995 | Massachusetts Institute of Technology | Apparatus and method for accessing data on multilayered optical media |
5828408, | Jan 04 1996 | Commissariat a l'Energie Atomique | Device for reading detector arrays with TDI effect |
5831723, | Apr 03 1996 | TOA Medical Electronics Co., Ltd. | Particle analyzer |
5848123, | Nov 21 1995 | Planmed Oy | Methods and apparatus for use in imaging an object |
5878103, | Jun 30 1997 | Siemens Medical Solutions USA, Inc | Adaptive detector masking for speed-up of cone beam reconstruction |
5880838, | Jun 05 1996 | California Institute of California | System and method for optically measuring a structure |
5909476, | Sep 22 1997 | Research Foundation of State University of New York | Iterative process for reconstructing cone-beam tomographic images |
5915048, | Jun 05 1996 | GE Healthcare Bio-Sciences Corp | Method and apparatus for discriminating in-focus images from out-of-focus light signals from background and foreground light sources |
5956355, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser |
5987158, | Sep 20 1994 | TRIPATH IMAGING, INC | Apparatus for automated identification of thick cell groupings on a biological specimen |
6005617, | Mar 11 1996 | Matsushita Electric Industrial Co., Ltd. | Electronic camera with mechanical subscanner |
6026174, | Oct 14 1992 | PERCEPTRONIX MEDICAL INC | System and method for automatically detecting malignant cells and cells having malignancy-associated changes |
6037579, | Nov 13 1997 | Biophotonics Information Laboratories, Ltd. | Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media |
6038067, | May 23 1996 | Los Alamos National Security, LLC | Scanning computed confocal imager |
6047080, | Jun 19 1996 | Arch Development Corp | Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images |
6072624, | Jan 09 1992 | Biomedical Photometrics Inc. | Apparatus and method for scanning laser imaging of macroscopic samples |
6078681, | Mar 18 1996 | Marine Biological Laboratory | Analytical imaging system and process |
6091983, | Nov 06 1996 | RESEARCH FOUNDATION OF CITY COLLEGE OF NEW YORK, THE | Imaging of objects in turbid media based upon the preservation of polarized luminescence emitted from contrast agents |
6111645, | Apr 29 1991 | Massachusetts Institute of Technology | Grating based phase control optical delay line |
6130958, | Nov 29 1996 | Imaging Diagnostic Systems, Inc.; IMAGING DIAGNOSTIC SYSTEMS, INC | Method for reconstructing the image of an object scanned with a laser imaging apparatus |
6134003, | Apr 29 1991 | General Hospital Corporation, The | Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope |
6160826, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for performing optical frequency domain reflectometry |
6165734, | Dec 12 1995 | Applied Spectral Imaging Ltd. | In-situ method of analyzing cells |
6192144, | Jan 15 1997 | U.S. Philips Corporation | MR method for the image-assisted monitoring of the displacement of an object, and MR device for carry out the method |
6201628, | Nov 19 1997 | Washington, University of | High throughput optical scanner |
6211955, | Jan 24 2000 | CYTEK BIOSCIENCES, INC | Imaging and analyzing parameters of small moving objects such as cells |
6215587, | Feb 14 1994 | Microscope imaging inside highly scattering media | |
6239871, | Aug 24 1999 | Waters Technologies Corporation | Laser induced fluorescence capillary interface |
6248988, | May 05 1998 | KLA-Tencor Corporation | Conventional and confocal multi-spot scanning optical microscope |
6249341, | Jan 25 1999 | CYTEK BIOSCIENCES, INC | Imaging and analyzing parameters of small moving objects such as cells |
6251586, | Oct 02 1995 | HEALTH AND HUMAN SERVICES, UNITED STATES OF AMERICA, THE, AS REPESENTED BY THE SECRETARY; Johns Hopkins University, The | Epithelial protein and DNA thereof for use in early cancer detection |
6251615, | Feb 20 1998 | ALLVIVO, INC | Cell analysis methods |
6252979, | Jun 07 1995 | TRIPATH IMAGING, INC | Interactive method and apparatus for sorting biological specimens |
6282011, | Apr 29 1991 | Massachusetts Institute of Technology | Grating based phase control optical delay line |
6291824, | Apr 08 1999 | Board of Supervisors of Louisiana State University and Agricultural and; Centenary College of Louisiana | Apparatus and method for high-bandwidth optical tomography |
6312914, | Sep 14 1992 | Orasure Technologies, Inc. | Up-converting reporters for biological and other assays |
6365367, | Dec 06 1999 | CELLOMICS, INC | Environmental chamber for the analysis of live cells |
6388809, | Oct 29 1997 | MOTIC CHINA GROUP CO , LTD | Methods and apparatus for improved depth resolution use of out-of-focus information in microscopy |
6421164, | Apr 29 1991 | Massachusetts Institute of Technology | Interferometeric imaging with a grating based phase control optical delay line |
6452179, | Aug 14 1998 | SPECTRO SCIENTIFIC, INC | On-site analyzer |
6473176, | Jan 25 1999 | CYTEK BIOSCIENCES, INC | Imaging and analyzing parameters of small moving objects such as cells |
6485413, | Apr 29 1991 | General Hospital Corporation, The | Methods and apparatus for forward-directed optical scanning instruments |
6501551, | Apr 29 1991 | Massachusetts Institute of Technology | Fiber optic imaging endoscope interferometer with at least one faraday rotator |
6519355, | Mar 28 2001 | Visiongate, Inc | Optical projection imaging system and method for automatically detecting cells having nuclear and cytoplasmic densitometric features associated with disease |
6522775, | Mar 28 2001 | Visiongate, Inc | Apparatus and method for imaging small objects in a flow stream using optical tomography |
6529614, | Aug 05 1998 | CALIFORNIA INSTITUTE OF TECHNOLOGY, A CORP OF CALIFORNIA | Advanced miniature processing handware for ATR applications |
6540895, | Sep 23 1997 | California Institute of Technology | Microfabricated cell sorter for chemical and biological materials |
6564087, | Apr 29 1991 | Massachusetts Institute of Technology | Fiber optic needle probes for optical coherence tomography imaging |
6591003, | Mar 28 2001 | VISIONGATE, INC. | Optical tomography of small moving objects using time delay and integration imaging |
6608682, | Jan 25 1999 | CYTEK BIOSCIENCES, INC | Imaging and analyzing parameters of small moving objects such as cells |
6624930, | Oct 07 1999 | Leica Microsystems CMS GmbH | Illumination device for a DUV microscope and DUV microscope |
6636623, | Aug 10 2001 | Visiongate, Inc | Optical projection imaging system and method for automatically detecting cells with molecular marker compartmentalization associated with malignancy and disease |
6640014, | Jan 22 1999 | Regents of the University of California, The | Automatic on-the-fly focusing for continuous image acquisition in high-resolution microscopy |
6697508, | May 10 2002 | Visiongate, Inc | Tomographic reconstruction of small objects using a priori knowledge |
6725073, | Aug 17 1999 | Board of Regents, The University of Texas System | Methods for noninvasive analyte sensing |
6741730, | Aug 10 2001 | Visiongate, Inc | Method and apparatus for three-dimensional imaging in the fourier domain |
6770893, | May 13 2002 | Visiongate, Inc | Method and apparatus for emission computed tomography using temporal signatures |
6775399, | Nov 17 1999 | Analogic Corporation | ROI segmentation image processing system |
6842297, | Aug 31 2001 | Regents of the University of Colorado, The; The Regents of the University of Colorado | Wavefront coding optics |
6850587, | Oct 24 2001 | Analogic Corporation | Reprojection-based three-dimensional image reconstruction |
6868177, | Jan 11 2000 | 3D PATENTS, LLC | Efficient block transform including pre-processing and post processing for autostereoscopic displays |
6944322, | Mar 28 2001 | VISIONGATE, INC. | Optical tomography of small objects using parallel ray illumination and post-specimen optical magnification |
6975400, | Jan 25 1999 | CYTEK BIOSCIENCES, INC | Imaging and analyzing parameters of small moving objects such as cells |
6991738, | Oct 13 2004 | University of Washington | Flow-through drum centrifuge |
7003143, | Nov 02 1999 | Tomographic microscope for high resolution imaging and method of analyzing specimens | |
7197355, | Apr 19 2002 | Visiongate, Inc | Variable-motion optical tomography of small objects |
7218393, | May 22 2001 | Medical Research Council | Rotary stage for imaging a specimen |
7224540, | Jan 31 2005 | PSC SCANNING, INC | Extended depth of field imaging system using chromatic aberration |
7260253, | Apr 19 2002 | Visiongate, Inc | Method for correction of relative object-detector motion between successive views |
7274809, | Aug 29 2002 | PERCEPTRONIX MEDICAL, INC ; British Columbia Cancer Agency | Computerized methods and systems related to the detection of malignancy-associated changes (MAC) to detect cancer |
20010012069, | |||
20020122167, | |||
20020161534, | |||
20030063384, | |||
20030199758, | |||
20030222197, | |||
20040001618, | |||
20040008515, | |||
20040076319, | |||
20040197839, | |||
20050006595, | |||
20050010108, | |||
20050085708, | |||
20050085721, | |||
20060023219, | |||
20060066837, | |||
20060068371, | |||
20060093200, | |||
20060096358, | |||
20060099707, | |||
20060171041, | |||
20060183220, | |||
20060188869, | |||
20060204071, | |||
20070071357, | |||
20070146873, | |||
20070215528, | |||
20070258122, | |||
JP10260131, | |||
JP2000121550, | |||
JP2085747, | |||
WO111341, | |||
WO2095476, | |||
WO218537, | |||
WO235474, | |||
WO3003057, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 20 2007 | HAYENGA, JON W | Visiongate, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026281 | /0742 | |
Oct 22 2007 | RAHN, J RICHARD | Visiongate, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026281 | /0742 |
Date | Maintenance Fee Events |
Dec 05 2014 | REM: Maintenance Fee Reminder Mailed. |
Apr 14 2015 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 14 2015 | M2554: Surcharge for late Payment, Small Entity. |
Dec 17 2018 | REM: Maintenance Fee Reminder Mailed. |
Apr 08 2019 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Apr 08 2019 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Oct 26 2022 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Apr 26 2014 | 4 years fee payment window open |
Oct 26 2014 | 6 months grace period start (w surcharge) |
Apr 26 2015 | patent expiry (for year 4) |
Apr 26 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 26 2018 | 8 years fee payment window open |
Oct 26 2018 | 6 months grace period start (w surcharge) |
Apr 26 2019 | patent expiry (for year 8) |
Apr 26 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 26 2022 | 12 years fee payment window open |
Oct 26 2022 | 6 months grace period start (w surcharge) |
Apr 26 2023 | patent expiry (for year 12) |
Apr 26 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |