A distribution center according to the present invention is capable of handling requests from a plurality of subscribers for accessing programs in a central audiovisual library. The subscriber requests may specify a variable time allowance interval within which a requested program may be delivered.

Patent
   7937734
Priority
Aug 02 1994
Filed
Sep 01 2004
Issued
May 03 2011
Expiry
Apr 26 2017
Extension
998 days
Assg.orig
Entity
Large
3
54
EXPIRED
4. A non-transitory program storage device having computer-executable instructions stored thereon that, if executed by a computer, cause the computer to perform a method comprising:
providing a library comprising a selection of visual data segments;
providing to customers visual data segments and a plurality of associated time allowance intervals for delivery of each of the provided visual data segments;
receiving requests from subscriber stations for selected visual data segments from the provided visual data segments, each request associated with a selected time allowance interval indicating a minimum wait time specified by a customer associated with a subscriber station, wherein the minimum wait time is specified by the customer from a plurality of menu options for delivery of each of the provided visual data segments, displayed on a menu on a subscriber station monitor, and wherein the selected time allowance interval is defined by the minimum wait time and a maximum wait time, the maximum wait time being greater than the minimum wait time;
processing the requests;
accessing the selected visual data segments from the library; and
delivering the selected visual data segments to respective subscriber stations making the requests after the minimum wait time has elapsed.
12. A method of interactive distribution of visual data segments from a distribution center computer system to a plurality of subscriber stations, the method being executed by one or more computing devices of the distribution center computer system, the method comprising:
accessing a library comprised of a selection of visual data segments;
providing to subscriber stations visual data segments and a plurality of associated time allowance intervals for delivery of each of the provided visual data segments;
receiving requests from the subscriber stations for selected visual data segments, wherein each request is associated with a minimum wait time that a subscriber has entered using a displayed menu of a plurality of time allowance interval options for delivery of each of the provided visual data segments on a subscriber station, wherein the minimum wait time is an amount of time the subscriber will wait for the delivery of a requested selected visual data segment, and wherein the time allowance interval is defined by the minimum wait time and a maximum wait time, the maximum wait time being greater than the minimum wait time;
processing the requests;
accessing the selected visual data segments from the library; and
delivering, via the distribution center computer system, the selected visual data segments to respective subscriber stations making the requests for viewing after the minimum wait time has elapsed.
15. A program storage device having commands executable by a computer, which if executed by the computer, cause the computer to perform a method of interactive distribution of visual data segments from a distribution center to a plurality of subscriber stations, the method comprising:
accessing a library comprised of a selection of visual data segments;
providing to subscriber stations visual data segments and a plurality of associated time allowance intervals for delivery of each of the provided visual data segments;
receiving requests from the subscriber stations for selected visual data segments from the selection of visual data segments, wherein each request includes a specified minimum wait time that a subscriber has entered using a plurality of time allowance interval options for delivery of each of the provided visual data segments displayed on a menu on the subscriber station, wherein the minimum wait time is an amount of time the subscriber will wait for the delivery of a requested selected visual data segment, and wherein the time allowance interval is defined by the minimum wait time and a maximum wait time, the maximum wait time being greater than the minimum wait time;
processing the requests;
accessing the selected visual data segments from the library; and
delivering the selected visual data segments to respective subscriber stations making the requests for viewing after the specified minimum wait time has elapsed.
20. A method of interactive distribution of visual data segments from a distribution center computer system to a plurality of subscriber stations, the method being executed by one or more computing devices of the distribution center computer system, the method comprising:
accessing a library comprised of a selection of visual data segments;
providing to the subscriber stations visual data segments and a plurality of associated time allowance intervals for delivery of each of the provided visual data segments;
receiving requests from the subscriber stations for selected visual data segments from the selection of visual data segments, each of the requests associated with a maximum wait time that a subscriber has entered using a displayed menu of a plurality of time allowance interval options for delivery of each of the provided visual data segments on a subscriber station, wherein the maximum wait time is an amount of time the subscriber will wait for the delivery of a requested selected visual data segment, and wherein the time allowance interval is defined by a minimum wait time and the maximum wait time, the maximum wait time being greater than the minimum wait time;
processing the requests;
accessing the selected visual data segments from the library; and
delivering, via the distribution center computer system, the selected visual data segments to the respective subscriber stations making the requests for viewing before the maximum wait time has elapsed.
18. A system for interactive distribution of visual data segments from a distribution center to subscriber stations, each subscriber station associated with a respective customer, the system comprising:
a distribution center comprising:
a library comprising a selection of visual data segments;
an order processing computer configured to provide to customers visual data segments and a plurality of associated time allowance intervals for delivery of each of the provided visual data segments, and receive, from one or more customers, one or more requests for a selected visual data segment from the selection of visual data segments, each request associated with a selected time allowance interval specified by the customer, from a menu displayed on a customer subscriber station for delivery of each of the provided visual data segments, the selected time allowance interval indicating a minimum amount of time the customer will wait for delivery of the selected visual data segments to begin, the order processing computer further configured to provide commands to allocate services for the one or more requests, and wherein the selected time allowance interval is defined by the minimum amount of time and a maximum amount of time, the maximum amount of time being greater than the minimum amount of time; and
a transmission control processor configured to receive the commands, retrieve the selected visual data segments from the library and transmit the selected visual data segments to each subscriber station associated with a customer requesting the selected visual data segment within the minimum amount of time.
1. A method of interactive distribution of visual data segments from a distribution center computer system to a plurality of customers, each customer associated with a respective subscriber station, the method being executed by one or more computing devices of the distribution center computer system, the method comprising:
providing a library comprising a selection of visual data segments;
providing to customers visual data segments and a plurality of associated time allowance intervals for delivery of each of the provided visual data segments;
receiving requests from customers for selected visual data segments, each request associated with a selected time allowance interval for delivery of the selected visual data segments, the selected time allowance interval selected by the customer making the request from a menu displaying the provided visual data segments and the plurality of associated time allowance intervals for delivery of each of the provided visual data segments, each associated time allowance interval specifying minimum and maximum amounts of time the customer will wait for delivery of the provided visual data segments to begin, wherein for an associated time allowance interval the maximum amount of time is greater than the minimum amount of time;
processing the requests;
accessing the selected visual data segments from the library; and
delivering, via the distribution center computer system, the selected visual data segments to respective subscriber stations, associated with the customers making the requests, within the selected time allowance interval associated with each of the selected visual data segments.
2. The method of claim 1, further comprising providing customers with a plurality of pre-defined time allowance intervals, each predefined time allowance interval associated with a respective maximum wait time.
3. The method of claim 1, further comprising accessing multiple libraries, each library comprising one or more visual data segments.
5. The program storage device of claim 4, wherein the method further comprises:
associating with each of the requests a maximum wait time, specified by the customer associated with the request, before which a respective selected visual data segment is to be delivered,
wherein said delivering comprises delivering the selected visual data segments to the respective subscriber stations making the requests prior to the maximum wait time.
6. The program storage device of claim 4, wherein the method further comprises accessing multiple libraries, each library comprising one or more visual data segments.
7. The program storage device of claim 4, wherein the method further comprises:
receiving a customer request to modify the selected time allowance interval previously specified by the customer; and
delivering the selected visual data segments to the respective subscriber stations associated with the customers making the requests within the modified time allowance interval.
8. The program storage device of claim 7, wherein receiving a customer request to modify the time allowance interval comprises waiving the minimum wait time whereby delivery of the selected visual data segments could begin immediately.
9. The program storage device of claim 4, wherein the method further comprises:
receiving on the computer a customer request to modify the selected time allowance interval previously specified by the customer; and
delivering the selected visual data segments to the respective subscriber stations making the requests within the modified time allowance interval.
10. The program storage device of claim 9, wherein receiving a customer request to modify the time allowance interval further comprises waiving the minimum wait time whereby delivery of the selected visual data segments could begin immediately.
11. The program storage device of claim 4, wherein the method further comprises providing, from the computer, customers with a plurality of pre-defined minimum wait intervals to choose from when making a request for a visual data segment.
13. The method according to claim 12, further comprising:
associating with each of the requests a maximum wait time, specified by the respective subscriber stations, before which a respective selected visual data segment is to be delivered,
wherein delivering comprises delivering the selected visual data segments to the respective subscriber stations making the requests prior to the associated maximum wait times.
14. The method according to claim 12, further comprising accessing multiple libraries, each of which is comprised of one or more visual data segments.
16. The program storage device of claim 15, wherein the method of interactive distribution of visual data segments further comprises:
associating with each of the requests a maximum wait time, specified by the respective subscriber stations, before which a respective selected visual data segment is to be delivered,
wherein delivering comprises delivering the selected visual data segments to the respective subscriber stations making the requests prior to the associated maximum wait times.
17. The program storage device of claim 15, wherein the method of interactive distribution of visual data segments further comprises accessing multiple libraries, each of which is comprised of one or more visual data segments.
19. The system of claim 18, wherein the selected time allowance interval further indicates a maximum amount of time, specified by the customer, prior to which the respective selected visual data segment is to be delivered.

This is a continuation of U.S. application Ser. No. 09/501,553 filed on Feb. 9, 2000, now abandoned which is a continuation of U.S. application Ser. No. 09/054,020 filed Apr. 2, 1998, now issued as U.S. Pat. No. 6,072,982, which is a continuation of U.S. application Ser. No. 08/711,583, filed Sep. 10, 1996, now issued as U.S. Pat. No. 5,835,843 which is a continuation of U.S. application Ser. No. 08/284,846 filed Aug. 2, 1994, now issued as U.S. Pat. No. 5,555,441, the disclosure of which in its entirety is incorporated-by-reference herein.

1. Technical Field

The present invention relates to an interactive communication system that allows a plurality of subscribers to access a central audiovisual library, more specifically, a system capable of handling each subscriber's tailored requests for program segments.

2. Background of Related Art

Systems which provide subscriber access to prerecorded program segments from a distributor center have been described. For example, in a system described in U.S. Pat. No. 4,521,806 to Abraham, a plurality of subscribers are able independently to access segments of a central program library. The requested broadcast segments are digitized and time compressed at the central station. They are then delivered to the requesting subscriber only. The time-compressed segments are recorded at the subscriber station by a two-speed recorder. When the transmission of the requested segment is complete, a broadcast signal attached to the end of the broadcast segment causes the two-speed recorder at the subscriber station to playback immediately the transmitted segment. In this system subscriber-viewing time is a function of the program delivery time.

In a system described in U.S. Pat. No. 4,751,684 to Clark et al., each system subscriber is able to request program segments from a distribution center. These segments are then delivered to all subscribers indiscriminately. Subscriber requests to the center are placed in line in the chronological order in which they are received, and are broadcast in turn on one common channel.

U.S. Pat. No. 4,963,995 to Lang discloses a video recorder/transmitter apparatus that enables a user to receive, compress, edit, and retransmit video program information in either compressed or decompressed format. The apparatus includes memory for mass data storage. The patent proposes the linkage of a plurality of the apparatus to a network transfer system, with one apparatus acting as a distribution center. The above-mentioned U.S. Pat. Nos. 4,521,806; 4,751,684; and 4,963,995 are incorporated herein by reference.

Other recent audiovisual delivery systems include pay-per-view (PPV) and video-on-demand. Both systems offer real time or near instantaneous delivery of subscriber requested video programs in exchange for fees. Both systems emulate an on premise or home video store. But different from a video program rented from a video store, a drawback of these systems is the inability of the subscriber to manipulate the video program, such as rewind, pause, fast-forward, etc., while it is being played or delivered. Further, the fees charged to the subscriber requesting the video program are based on the amount of time the subscriber accesses or is on the system. In contrast, a user who rents video programs from a video store may choose to access the program as many times and whenever he chooses without incurring further charges.

Therefore, there exists a need for an audiovisual delivery system that is efficient for the program distributor while accommodating the individual needs of each subscriber. More particularly, a system capable of handling subscriber requests of several time allowance intervals within which program segments will be delivered. The program distributor accumulates like orders and has the option and capability to fill each of these like orders simultaneously. The subscriber is subsequently able to manipulate and View segments or an entire delivered program.

To achieve these goals the system according to the present invention provides for subscribers not only to have unlimited access to a program library, but also to select variable time allowance intervals for each program requested. The subscriber is not choosing “yes” or “no” to predetermined times of the day for delivery, as in PPV systems. Instead, by choosing a variable time allowance interval, (s)he is indicating the minimum and maximum amount of time (s)he will wait for the deliver of a request, with those minimums and maximums dependent upon, and beginning with, the time that a request is placed.

The system according to the present invention allows a plurality of subscribers to select any recorded program of a central audiovisual library, without the constraints of a central broadcast menu preselected by the distributor. The system further allows a subscriber to receive and store his selection(s), and to view them subsequently at any time he chooses. Independent viewing by each subscriber is made possible by linking a temporary storage unit with a microprocessor and keypad at each subscriber location. With microprocessor control of the temporary storage unit, the system further allows for a predetermined amount of time that a program request can be viewed by a subscriber, that amount to be determined by the subscriber or the system distributor.

An object of the system according to the present invention is to allow for off-peak delivery of requested programs. The present invention addresses the issues of affordability, efficiency, and subscriber appeal. In most audio-visual distribution systems the greatest consumer demand occurs in the early evening hours. This peak demand taxes the distribution network and may cause distributors to limit consumer choices. The present invention allows the distributor to shift much of the demand away from the peak hours without limiting the consumer to a pre-set or limited menu of programs.

In the present invention the distributor provides the subscriber with several variable time allowance intervals for delivery of requested programs. For example, the distributor can offer “express delivery”, that is, within one hour; “one day delivery”, that is within a twenty-four hour period; or “long term delivery”, within seven (7) days. Each time allowance interval is defined by the maximum amount of time it will take for the order to be filled. Longer-term time frames can allow a minimum of time to elapse before delivery. For example, the seven (7) day time frame can be structured so that the program segments will be delivered before the end of seven days, but not before a specified time, for example, twenty-five (25) hours In this way, the subscriber can anticipate his or her future program selections and place them at a much earlier date without prematurely burdening his own storage capabilities. The system of the invention also allows the subscriber to waive the minimum time before delivery in those instances where his own storage capacity would not be overburdened. If the subscriber, for example, chooses a seven (7) day delivery service, he can waive the twenty-five (25) hours delivery minimum and receive delivery anytime within seven (7) days. The subscriber will choose which of these time frames meets his needs on any given occasion. Product prices will vary accordingly. Pricing strategies will encourage distribution during off-peak hours and thereby utilize the system hardware more fully. Not all program segments need to be available for each interval.

Another object of the present invention is to allow identical orders to accumulate within a given time period. The distributor has the option and the capability of delivering simultaneously all or several requests for the same program segment as long as there is some overlapping time period for the associated time allowance-intervals as defined by the various requests. The feature of allowing order accumulation provides maximum efficiency and flexibility for the distributor. The distributor is able to use the variability of the time intervals as a basis to employ an optimization strategy. The advantages derived from the optimization include a lower overall cost.

Still another object of the present invention is to provide viewing time independent of transmission (delivery) time. The system described herein enables the subscriber to order and store one or more program segments. At any time after transmission, the subscriber can view the program segment entirely or in part. The number of viewing times may be limited to a predetermined number, except in those cases where the subscriber has purchased the program segment through the system.

Other objects, features and advantages of the present invention will become more readily apparent from the following detailed description of the preferred embodiments, and the accompanying drawings:

FIG. 1 illustrates the audiovisual distribution system according to the present invention;

FIG. 2 shows the major component of the distribution center;

FIG. 3 shows the major components of a subscriber terminal;

FIGS. 4 and 5 are a flow diagram of an order, processing module;

FIGS. 6 and 7 are a flow diagram of a feasibility scheduling module;

FIG. 8 is a flow diagram of a delete order module;

FIG. 9 is a flow diagram of an optimal scheduling module;

FIG. 10 is a flow diagram of a transmit module;

FIG. 11 shows flow diagrams for a start-up module and receive module;

FIG. 12 shows a flow diagram of a request module;

FIGS. 13 and 14 show a flow diagram of a process order module;

FIG. 15 is a flow diagram of a select view module; and

FIG. 16 is a flow diagram of a view module.

Briefly, the system according to the present invention preferably utilizes a compressed digital video technology to provide for transmission of full motion video programs from a central distribution center to individual subscribers, which are connected over a communication network.

The system provides high-speed communications, preferably 1.544 Mbits/sec or higher, to carry video program segments from a distribution center 100 to a plurality of subscribers 110. The system also provides a low speed bi-directional communication link, which can be used for controlling the video transmission. The system can further use high-speed dial-up transmission with calls to subscribers originating from the telephone switching center. Permanently connected links are also contemplated.

The high-speed link 120 is preferably an optical fiber link for transmission of program data from the distribution center 100. The high-speed link 120 may broadcast the same data to all subscribers, much the same as existing CATV systems. The high-speed link may also use switching capabilities to facilitate services such as conferencing. It is apparent to one skilled in the art that other known communication techniques including wireless communication can be implemented to accomplish the features of the delivery system according to the present invention. The low speed link 130 is preferably a communication link, via modems and dial-up telephone lines. It provides a duplex (two-way) channel for order requests and confirmation. A subscriber terminal 140 at each subscriber location is configured to receive those programs that have been confirmed through the order entry subsystem at the distribution center. The transmission could be encoded to prevent unauthorized reception. Unlike typical computer communication protocols, there is no need for the subscriber terminal to acknowledge whether a data packet has been received correctly. Occasional transmission errors are not critical in full motion video and would not be objectionable. The high speed and the low speed links described above can be combined into one link, such as the Bell System ADSL, for communicating the aforementioned information via a single bi-directional link.

For order entry processing on the other hand, the integrity of the transmitted data is extremely important, and full two-way handshaking is preferred. The amount of data in this case is moderate and relatively low speed. A modem speed of 2400 baud is usually sufficient.

Distribution Center

The distribution center 100 performs the following major functions:

The video programs are preferably available in compressed form and stored on an optical disk. Write Once-Read Many (WORM) or CD-Recordable technology can be used, with the disks stored in a jukebox arrangement. Manual intervention may be necessary to assure that the required program disks are loaded in the jukebox as needed.

Video compression techniques are known. Applicable compression techniques for the present invention include DVI (Digital Video Interactive from Intel Corp.) and the Compressed Digital Video (CDV) technology from Compression Labs, Inc. For an average compression ratio of about 160:1 for VCR quality moving images, a frame of video 512.times.480 pixels.times.3 colors (720 KBytes) can be reduced tp 5 KBytes/frame. With a 30 frames/sec rate, the compressed video requires 150 KB/sec. For a 90-minute (5400 sec) video, total storage required is about 810 MB. The CDV technology has a somewhat better image quality but requires 1.5 Mbits/sec (188 KBytes/sec) resulting in a little over 1 BGyte for a 90-minute video. It is anticipated that with MPEG2, high quality video could be provided at 3 to 5 Mbits/sec or studio quality video at 7 to 10 Mbits/sec.

The system of the invention handles incoming orders without interrupting the transmission of the video programs. The distribution center includes, multiple processors for video transmission control. Preferably, each processor transmits a separate video program. The transmission scheme can be by ADSL, with a conference call transmitting to multiple subscribers simultaneously. Alternatively, the several programs can be time-division multiplexed onto the optical fiber, providing better utilization of the fiber capacity. In either case each communication line may be serving subscribers in a particular geographic area.

Order Processing

The Distribution Center includes an order processing computer 200 which handles the communication with the subscriber terminals over the low speed modem links 130, processes incoming orders, and maintains the customer information/billing data. Authorization to receive a particular program or to make a permanent copy of a program would be sent back to the subscriber terminals, along with any encryption keys, if necessary, to decode the transmitted program. The order processing computer 200 also determines a schedule for transmitting the video programs and notifies the transmission control processors 205 what programs to transmit and when to transmit them. A display associated with the order-processing computer alerts an operator to load program disks into the video library of the appropriate transmission control processor.

The order-processing computer 200 includes a standard hard disk (not shown) for storage of customer information and billing data as well as a catalog of video programs. Depending on the number of subscribers and the number of incoming orders anticipated, one or more additional processors may be dedicated to handling telephone communications and some of the order processing functions to off-load the main order-processing computer.

An interface bus, preferably IEEE-488 interface bus 215, links the transmission control processors to the order processing computer for initiation of a video program transmission and passing encryption keys. Several transmission control processors can be connected on a single IEEE-488, and more buses could be added as needed.

Video Transmission Control

The primary function of the transmission control processors 205 is to retrieve video program data from, the video library 210, provide encryption or other receiver authorization control, and transmit the data over the high speed fiber link 120. The process of transmitting a program is initiated on command from the scheduling function in the order-processing computer 200. Several transmission control processors may be transmitting different video programs at the same time using a time-division multiplexing scheme.

The video library 210 includes a set of WORM optical disks or CD-Recordable disks that can be loaded into a jukebox type disk reader. The memory 215, which may also be a jukebox, can hold a number of disks and select the appropriate one for access. The memory 215 holds over 1300 gigabytes of data and can be further expanded if necessary. Other contemplated storage mediums include magnetic tape systems that can automatically select and mount tape reels from an extremely large archive library. A digital I/O board 220 is used to output the video data to the fiber optic transmitter 230. This board provides for a transfer rate of 400 KBytes/sec with Direct Memory Access (DMA). At this data rate, a 90-minute program can be transmitted in a little over, a half hour using DVI compression technology. The digital, I/O board may be a PDMA-32, which is commercially available from Keithly-Metrabyte, or any substantially equivalent I/O board having similar performance characteristics.

The capacity of the fiber optical link is in the range of 270 Mbits/sec (33 MBytes/sec) to 1 Gbit/sec (125 MBytes/sec). At the lower rate the link is capable of handling about 80 different programs simultaneously. Using a time division multiplexing scheme, packets from different video programs would be intermixed on the fiber link under control of multiplexing logic circuitry 225 interfacing the several transmission control channels to fiber optic transmitter 230. At the subscriber terminals, similar demultiplexing logic circuitry would identify those packets that a particular terminal was authorized to receive and store them in a buffer memory, to be read in via the digital I/O board.

The fiber optic transmitter 230 includes an optical fiber transmitter/receiver module available from Force, Inc., model #2666T-SCXX with data bandwidth of 50 Mb/s to greater than 1 Gb/s at operating range 10 km to 20 km (typical). The module connects to an Advanced Micro Devices. TAXI chip set (AM7968/AM7969) which in turn interfaces to the multiplexor 225 described above. The multiplexor 225 can be custom designed using the same technology as the TAXI chip, sets.

Subscriber Terminal

The major components of a subscriber terminal 110 are shown in FIG. 3. A receiver 310 is connected to the fiber optic link 120 for receiving the high-speed optical transmissions from the Distribution Center 100. The receiver 310 includes a photodiode for detecting the transmitted optical data and converting the optical data to electrical signals. A detector such as a Model #2666R—SCXX, available from Force, Inc., is preferably used. The receiver 310 also includes signal conditioning circuitry for reshaping the detected signals. An AM 7969 TAXI chip, available from Advanced Micro Devices, is preferably used.

A demultiplexer/decoder 320 demultiplexes the received signals previously multiplexed by multiplexor 225 of the Distribution Center 100 and digital I/O board 330 interfaces the demultiplexed data to the video and data distribution circuitry, which includes a terminal processor 340, a video processor module 350 and memory 360. The terminal processor 340 is preferably a personal computer (PC), which includes associated display, modified keyboard (keypad), hard disk memory, and/or WORM or CD-recordable memory. The terminal processor 340 is also connected to telephone link 130 through modem 370 for communicating with the Distribution Center 100 including requesting and receiving authorization for selected program, segment orders.

Video processor 3510 decompresses the video data received from the digital I/O 330 and provides Red-Green-Blue (RGB) video outputs and Hifi/stereo audio outputs. The video processor 350 may be an Action Media 750 available from Intel. The compressed video program data may be stored on one or more magnetic hard disk, for temporary storage and, a WORM or CD-Recordable disk for a permanent copy. If more than one hard disk is used, a previously received program could be viewed at the same time that a second program is being received. To store three 90-minute video programs in temporary storage, approximately 2.2 GBytes of memory are required.

As an alternative to temporary storage of video programs at the subscriber terminal, a pool of hard disks located at the Distribution Center could provide real time transmission. These disks would receive program segments from the transmission control processors as requested by subscribers.

Order entry may be selected through a menu driven process using the PC keyboard and monitor. With this approach the keypad would only need a set of number keys plus an ENTER key. The subscriber terminal 110 dials up the distribution center 100 to process orders and to receive the authorization codes and/or encryption keys to receive the program. The program would be stored on the magnetic disk, and if authorization for permanent copy is received, it would be copied to the WORM optical disk as convenient. Programs could be copied from temporary to permanent storage only when authorization is received from thee order processing system.

Distribution Center Software

The software architecture for the Distribution Center includes five primary processing modules and preferably five databases. The processing modules are loosely coupled and operate on an event-driven basis. They perform the following general functions of: (1) Order processing—processes the incoming request from a customer; (2) Scheduling—schedules the video program segments for transmission; (3) Transmit—controls the transmission of the video program segments; (4) Customer maintenance/billing—maintains customer information and billing records; and (5) Library maintenance—maintain the library and catalog of video program segments.

The databases are organized as follows:

Each entry includes receiver authorization codes and keys into the Orders and Catalog databases. A description of each module follows.

Order Processing

The Order Processing module provides the interface by which the customer enters a request for a video program segment. A representative flowchart of the order processing module is shown in FIGS. 4 and 5 as follows:

On receiving an incoming phone call over a modem (405), the call is answered and a NewOrder data object is created (405) for processing this call. Note that several instances of these data objects may exist at the same time as simultaneous incoming requests arc processed. The following functions are performed for each NewOrder data object.

The Scheduling module has two primary functions: (1) Feasibility—to quickly determine whether it is possible to satisfy a customer's request for a particular video segment at a certain variable time allowance interval so that a pending order can be accepted or rejected. This function is invoked from the Order Processing module whenever a new order or a change to an order is received; and (2) Optimization—uses a rule-based approach to select the next program segment to transmit over a channel when the channel becomes free. The technique optimizes the delivery of video segments that have been ordered to efficiently, utilize the available hardware channels while meeting variable time allowance interval requirements. This function is invoked just before a hardware channel is to finish transmission of a video segment so that the selection can be made from the current list of orders. For example, orders for the same program segment having overlapping time allowance intervals can be accumulated and accessed at the appropriate delivery time so that the delivery to the requested subscribers can be substantially simultaneous or broadcasted.

For continually processing new orders without interrupting the optimal schedule, each function maintains a separate schedule for its own use as described under Schedule, Database section.

The variable time allowance interval may include a minimum delivery time, which determines the earliest time that the program segment is to be available for viewing. This is accomplished through the authorization codes, which tell the subscriber terminal when viewing is permitted. The actual transmission may occur early; however, such early transmission should only be allowed when a subscriber indicates that he has sufficient memory to receive the program. If desired, the customer could be made aware that the program segment is available before the minimum waiting period and that an order could be processed to authorize immediate viewing.

When the Feasibility function is invoked, it receives the following information from the Order Processing module:

If the system is split geographically with a separate link(s) for each area, the link that serves each customer must be identified in the Customer database, and the schedule must contain two parts: the schedules for the communication lines and the schedules for the transmission control channels. If the fiber optic link is not geographically split, all subscriber terminals may receive the same transmissions, and the number of control channels should equal the number of program segments that can be multiplexed on the fiber link at any one time. Alternatively, with high-speed dial-up transmission capability, each transmission control unit can be connected directly to any number of subscriber terminals, and any number of control units may be used (limited only by the number of different program segments in the library). In either of these cases only the control channels need to be scheduled.

FIGS. 6 and 7 are program flow diagrams of the Feasibility Scheduling process, generally as follows:

Determine the latest time that delivery can be completed for the requested variable time allowance interval;

Search existing Feasible Schedule for the requested video segment (605);

If the video segment is found (610) and if the scheduled time satisfies the requested variable time allowance interval (645) (assuming proper link schedule on a geographically split system), then return a code to Order Processing that the order can be accepted (675). Otherwise copy the current Feasible Schedule into a tentative working schedule (615);

If the video segment is found (610) but the scheduling time does not satisfy the requested variable time allowance interval (645), remove the program segment from the schedule (650, 655). For a geographically split system, remove the program segment from the tentative schedule for the appropriate geographic link;

Insert the program segment into the schedule at the latest possible time. Maintain the latest time order by inserting at the proper location and shifting other segments forward if necessary and if possible. When trying to insert the program segment into the schedule, check for conflict with other program segments for the same customer at the same time, and, if there is a conflict, insert at the latest possible time when there is no conflict (620);

If the insertion was successful (625), save the tentative schedule as the new Feasible Schedule (660) and return a code that the order can be accepted (680);

Otherwise if there is no lower variable time allowance interval (630), delete the tentative schedule (665) and return a code that the offer must be rejected (685);

If a lower variable time allowance interval exists, lower the variable time allowance interval, and try to insert the segment into the schedule (635);

If successful, save the tentative schedule as the new Feasible Schedule (640, 670) and return (690), indicating the highest variable time allowance interval than can be scheduled. Otherwise, go back to step 630.

For a geographically split fiber link system, the insert program segment routine (steps 620, 635) is expanded as shown in FIG. 7, to first schedule (705, 710) the link and then the channel (715 to 730) so that coordination between different links can be effected.

FIG. 8 is the flow process when the Feasibility function is invoked by the Order Processing module to delete an order from the Feasible Schedule. The process includes:

Search the Orders database for other orders of this same video segment (805).

If no other order exists (810), then remove the video segment from the Feasible Schedule (815, 820).

If the order exists, get the latest delivery time for the new segment and move segment later in the schedule if possible (825, 830).

Return to the calling program (835).

The Optimization function is invoked (via a timer scheduled by the Transmit module) just before a hardware channel completes delivery of its video segment. Sufficient time is allowed so that the optimization can be completed. The function may also be invoked if the Transmit module finds that the schedule needs to be reoptimized before initiating the transmission of a video segment. This function selects only the next video segment to be transmitted for each hardware channel. It is not practical to try to optimize the complete schedule since new orders would require it to be continually reoptimized.

Referring to FIG. 9, the first step in the processing is to calculate the slack time for each program segment in the Feasible Schedule (905). The slack time is the time remaining before a program segment must be started to just meet its required delivery. It can be obtained directly from the Feasible Schedule; however, if there were a conflict in scheduling two or more program segments at the same time for any customer, then the minimum slack time over all of the conflicting programs is used as the slack time for each of those programs. Next retrieve estimates of the rates at which orders are expected to be placed for each program segment at this day and time, including estimates for express deliveries. These rate estimates can be computed off-line, based on recent statistics. The selection of the segment to schedule for next transmission is based on the following factors: (1) Slack time for each program segment to be scheduled; (2) Estimated rate of arrival of orders for each program segment to be scheduled; (3) Estimated rate of arrival of orders for new program segments; (4) Estimated rate of arrival of express orders for new program segments: (5) How much free time is there in the Feasible Schedule; (6) Current channel status, including when each will become free; and (7) If any of the customers receiving a transmission have other program segments on order and, if so, when their current transmission is scheduled to be complete. The selection of which segment is to be transmitted next on a particular open channel is made by applying a set of rules to compute a weight for each segment. This weight ranges from 0 to 1, and the segment with the highest weight is selected for transmission (930). A weight is also computed for the channel to remain idle for a specified time period. The rules for computing the weights are listed below. Weights from the different rules are combined in the manner used to combine certainty factors as described in Rule Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project, B. G. Buchanan and E. H. Shortliffe, Eds. Addison-wesley, Reading, Mass., 1984, pp. 272-280. The descriptions in these pages are incorporated by reference herein.

If a channel is to remain idle by the application of these rules (945), a tiler is set to poll that channel again in about 10 or 15 minutes (945, 950). The amount of weight to be added in applying these rules (small, moderate, etc.) is for a small weight to be preferably around 0.1 and a moderate weight to be around 0.3. The weights could be updated as operating experience has gained. For example, if the rate of arrival of express orders is less than what has been experienced, the idle channel weight would be reduced.

For the geographically split system, the rules should be applied to the Feasible Schedules for both the channels and the links. An additional rule for coordinating more than one link with a channel would be that once a segment is selected for transmission on a particular link, see if it is also needed on other links. If so, then wait for those links to become available if the wait is not too long and if it doesn't violate the slack time for other segments on the new link.

Transmit

The Transmit module controls the actual transmission of the video program segment. It uses the Optimal Schedule to determine which segment to transmit over a particular hardware channel (steps 1000 to 1045). Keys obtained from the Optimal Schedule (1015) point into the Orders and Catalogue databases, which in turn contain keys into Customer and Library. When transmission of the program segment is complete, the corresponding entries in the Optimal and Feasible Schedules (1050) are deleted and all appropriate Customer records are updated to indicate that delivery has been made (1020, 1035). When transmission of a new video segment is initiated, a timer is set to start up the Optimization Scheduling function (LOGO) just before delivery is scheduled to complete.

Library Maintenance

This module (not shown) is used to add or remove available program segments to or from the Library and update the corresponding entry in the Catalog. It is initiated by operator selection from the main system menu.

Customer Maintenance/Billing

This module (not shown) is initiated by operator selection from the main system menu. There are two main functional areas that are involved:

Update of all user information including that need to authenticate customer identity.

Generate customer bills from the record of program segment deliveries in the Customer database. Implementation of this module is readily apparent to an ordinarily skilled programmer.

Subscriber Terminal Software

Through the PC keyboard and monitor at the subscriber terminal, order entry and program viewing are controlled using a menu selection approach in which a set of options are displayed on the monitor and the customer enters his choice via the keypad. This technique is similar to that currently used for programming a VCR. The keypad need only have a set of numeric keys (0-9) and an ENTER key. If desired a BACKSPACE key could be added to allow for correction of a miskey before ENTERing the selection.

When the customer wishes to make a request, for example to place or modify an order or to view a program segment which he has already received, he presses the ENTER key. The system responds by displaying a menu on the video screen and waits for the customer to enter a response through the keypad by pressing the numeric keys that correspond to the desired menu selection and then pressing ENTER. If a program segment was being viewed on the monitor when the ENTER key was pressed, that program pauses until the customer is finished with the menu selections. On return from the menus, the customer has the option to resume viewing the program, to stop viewing, or to select a different program.

The Subscriber Terminal subsystem is driven by two types of events which generate hardware interrupts: 1) a key being pressed on the keypad and 2) the communications hardware recognizing the start of a video program segment being transmitted over the communication line. Keypad events are handled by the Request module, or by a standard keyboard processing routine, depending on the state of the system. The communications event invokes the Receive module, which is responsible for getting the incoming program segment off the communication line and storing it to disk. The Receive module can run in the background in a multi-tasking mode while other processes such as order entry, program viewing, or making a permanent copy are in progress.

The Subscriber Terminal software system consists of seven modules, some of which are subroutines called from the other modules.

Referring to FIG. 11, the Start up-module, which is run when the system is first powered up (1100), retrieves receive authorization codes (1105) and initializes the communications hardware (1110) and then sets up the interrupt processors for the keypad and the communications hardware (steps 1115, 1120).

The receive module is invoked by an interrupt from the communications hardware on the start of transmission of a new program segment (1130). The module first checks whether this Subscriber Terminal has been authorized (11.35, 1140) (through the Process Order module) to receive the program segment. If so, the module grabs the incoming blocks of program data from the communication line and stores them to disk (steps 1145, 1155 and 1160). The module continues to run in the background (at high priority) in a multi-tasking mode until all blocks of the program segment have been received. Alternatively, the authorization code may be transmitted to the subscriber terminal as described in the Distribution Center Order Processing module. In that case, the Receive module examines the list of customers in the first block of a program segment to see if it is authorized to receive that program. If so, the authorization code that is sent with that block is extracted to identify which of the subsequent blocks belong to that program segment.

Referring to FIG. 12, the request module, which handles all customer requests which are entered through the key pad (steps 1205, 1210, 1215). First, if a program segment is being viewed, it notifies the View module to pause (1220, 1225). It then displays some basic menus to ask the customer whether he wants to process tin order or to view or stop viewing a program segment (steps 1230, 1235, 1240, 1245). Depending on the response, it calls the Process Orders (1295) or the Select View subroutines (1265), each of which presents more menu selections. A more complete description of this module is given below.

The Process Orders routine is shown in FIGS. 13 and 14. This subroutine is called by the Request module or by the Select View subroutine to interactively communicate with the distribution center. Subscriber orders or requests for extension of viewing time or number can be made through this routine. The subscriber dials up the Distribution Center and interfaces with the Order Processing module (1305). The menus that are displayed by this module are preferably at the Distribution Center and passed as messages over the low speed communication link 130. Upon receipt and verification of the subscriber or customer ID information (1325, 1335), the distribution center sends a menu packet to the subscriber (1340). These menus include lists of available programs, programs currently ordered but not yet delivered, pricing information, etc. The customer enters his response from the keypad and transmits that response back to the Distribution Center (1355). If an order is placed or an existing order is changed, the authorization codes are sent to the Subscriber Terminal. A more complete description of the module is given below.

The Select View module is shown in FIG. 15. This subroutine is called by the Request module to allow the customer to select for viewing any one of the programs segments that are available on the hard drive or the WORM drive at the subscriber terminal. If the selected program segment has expired (either date/time or number of plays), it asks the customer whether the order should be extended. If so, it calls the Process Orders subroutine so that authorization can be obtained from the Distribution Center. Otherwise, it asks if the program segment is to be deleted to free up disk space. Note that an expired program is not immediately deleted even though it cannot be viewed. This allows the customer to extend his authorization without the necessity of retransmitting the program segment. As an alternative implementation, the list of available programs could include those that have been received but not yet authorized for viewing because of the minimum wait time for the selected variable time allowance interval. The customer could be prompted to process an order to receive authorization for immediate viewing.

The View module is shown in FIG. 16. This module controls the actual viewing of a program segment. It is initiated by the Request module after a selection has been made using the Select View subroutine. It may run at the same time as the Receive module in a multi-tasking mode. A flag or semaphore set by the Request module is used to tell the View module when to pause in viewing a program. When a pause flag is detected, the current program state is saved so that viewing may be resumed later if desired. A parameter passed to the view module identifies whether to resume a program, to terminate a program, or to start a program from the beginning.

The Copy module copies a program segment from the hard disk to a removable storage medium Such as a WORM disk. It executes in the background in multi-tasking mode at a very low priority.

Request Module

This module is one of two modules that process hardware interrupts from the keypad. When the system is powered up, the start up module directs that any keypad interrupts be processed by the Request module. All keys but the ENTER key are ignored at this point, causing the module returns immediately. When the ENTER key is pressed, however, the module becomes ready to handle a customer request. It first directs that keypad interrupts be processed by a standard keyboard interrupt processor, which places key presses in a queue where they may be accessed by standard input functions. Next, it checks whether a program segment is currently being viewed, and, if so, it sets the flag in the View module to tell that module to pause. It then displays a menu on the monitor and waits for a response to be entered via the keypad (using standard input routines). The menu options and subsequent actions are as follows:

Notice that before returning from this module, the keypad interrupt processor is set for this Request module.

Process Orders Subroutine

This subroutine may be called from the Request module or the Select View subroutine. A parameter is passed to indicate where it is called from. The first step is to dial up the Distribution Center (1305) and establish communication with the Order Processing module there. It sends the customer identification information (1325), including any passwords if desired, and tells whether to process a new order (where this subroutine was called by the Request module) or an extension to an existing order (where this subroutine was called by Select View). After receiving a validation of the customer identification from the Distribution Center, it waits for a message packet (1335, 1340). The message options are shown below with the corresponding actions taken. All keypad entries are followed by ENTER.

The system according to the invention is not limited to any specific means or methods of data communication between subscriber and distributor. For example, it is readily apparent to one ordinarily skilled in the art that the distribution of programs can take place over CATV lines, fiber optic lines, or any other adaptable data link. Also without substantive changes, the system can be employed whether the method of distribution is a continuous loop, as in conventional CATV systems, or whether the method uses dedicated or private lines, as in conventional telephone system. Regardless of the type of distribution link, the system provides interactive communication between subscriber, and distributor, expanded memory for the subscriber, and an archive of time allowance intervals that provides maximum flexibility for the subscriber and maximum efficiency for the distributor.

Haddad, Joseph C.

Patent Priority Assignee Title
11361515, Oct 18 2020 International Business Machines Corporation Automated generation of self-guided augmented reality session plans from remotely-guided augmented reality sessions
8665311, Feb 17 2011 VBRICK SYSTEMS, INC Methods and apparatus for collaboration
9197916, Oct 11 2000 Rovi Guides, Inc; TV GUIDE, INC ; UV CORP Systems and methods for communicating and enforcing viewing and recording limits for media-on-demand
Patent Priority Assignee Title
3696297,
3757225,
4008369, Feb 28 1975 Magnavox Electronic Systems Company Telephone interfaced subscription cable television system especially useful in hotels and motels
4264924, Mar 03 1978 CALOF, LAWRENCE, AGENT FOR NOLAN K BUSHNELL Dedicated channel interactive cable television system
4290524, Dec 19 1979 Video magazine and package therefor
4291801, Oct 03 1980 Plastic Reel Corporation of America Video cassette storage container
4395780, Jun 18 1980 Licentia Patent-Verwaltungs-GmbH Service-integrated communication transmission and exchange system
4450477, Mar 31 1982 Television information system
4518989, Nov 24 1978 Nippon Telegraph & Telephone Corporation Buffer memory dispersion type video/audio transmission system with spatially and timewise divided inter-office junction lines
4520404, Aug 23 1982 RESPONSE REWARD SYSTEMS, L C System, apparatus and method for recording and editing broadcast transmissions
4521806, Aug 19 1982 World Video Library, Inc. Recorded program communication system
4536791, Mar 31 1980 General Instrument Corporation Addressable cable television control system with video format data transmission
4567512, Jun 01 1982 World Video Library, Inc. Recorded program communication system
4590516, Jun 01 1982 WORLD VIDEO LIBRARY, INC , A CORP OF TX Recorded program communication system
4677467, Apr 16 1985 TELEVISION ANALOG COMPRESSION CORPORATION CATV addressable converter with multi-purpose, bi-directional serial digital data port
4740834, Dec 14 1981 Video program distribution
4755872, Jul 29 1985 Zenith Electronics Corporation Impulse pay per view system and method
4761684, Nov 14 1986 BOX WORLDWIDE, L L C , THE Telephone access display system
4763191, Mar 17 1986 Bell Telephone Laboratories, Incorporated Dial-up telephone network equipment for requesting an identified selection
4789863, Oct 02 1985 Pay per view entertainment system
4885775, Sep 21 1984 SCIENTIFIC-ATLANTA, INC , ONE TECHNOLOGY PARKWAY ATLANTA, GA 30348 A CORP OF GA Information display scheme for subscribers of a subscription television system
4890320, Jun 09 1988 VTRAN MEDIA TECHNOLOGIES, LLC Television broadcast system for selective transmission of viewer-chosen programs at viewer-requested times
4963995, Dec 27 1988 BURST COM, INC Audio/video transceiver apparatus including compression means
5001554, Dec 23 1988 TECH 5 SAS Terminal authorization method
5003384, Apr 01 1988 Cisco Technology, Inc Set-top interface transactions in an impulse pay per view television system
5132992, Jan 07 1991 Greenwich Information Technologies, LLC Audio and video transmission and receiving system
5291554, May 28 1992 TV Answer, Inc. Shared-price custom video rentals via interactive TV
5311423, Jan 07 1991 CILSTAR RESEARCH LLC Schedule management method
5323448, Jan 11 1991 SVI SYSTEMS, INC System for accessing amenities through a public telephone network
5357276, Dec 01 1992 TECH 5 SAS Method of providing video on demand with VCR like functions
5371532, May 15 1992 TTI Inventions A LLC Communications architecture and method for distributing information services
5382983, Jul 29 1993 Rovi Guides, Inc Apparatus and method for total parental control of television use
5421031, Aug 23 1989 DETA TECHNOLOGY DEVELOPMENT LLC Program transmission optimisation
5442389, Dec 28 1992 AT&T IPM Corp Program server for interactive television system
5442390, Jul 07 1993 TIVO INC Video on demand with memory accessing and or like functions
5448641, Oct 08 1993 Pitney Bowes Inc. Postal rating system with verifiable integrity
5473362, Nov 30 1993 Microsoft Technology Licensing, LLC Video on demand system comprising stripped data across plural storable devices with time multiplex scheduling
5475615, Dec 23 1993 COMCAST MO GROUP, INC Method and system for sizing interactive video delivery systems
5477262, Nov 29 1991 Cisco Technology, Inc Method and apparatus for providing an on-screen user interface for a subscription television terminal
5532735, Apr 29 1994 AT&T IPM Corp Method of advertisement selection for interactive service
5561457, Aug 06 1993 MEDIATEK INC Apparatus and method for selectively viewing video information
5583937, Dec 21 1990 CILSTAR RESEARCH LLC Method for providing video programming nearly on demand
5592551, Dec 01 1992 Cisco Technology, Inc Method and apparatus for providing interactive electronic programming guide
5835843, Aug 02 1994 ANOSOLE PASS HOLDINGS, L L C Interactive audiovisual distribution system
5859662, Aug 06 1993 MEDIATEK INC Apparatus and method for selectively viewing video information
5949471, Jul 29 1993 Rovi Guides, Inc Apparatus and method for improved parental control of television use
5990927, Dec 09 1992 COX COMMUNICATIONS, INC Advanced set top terminal for cable television delivery systems
6003071, Jan 21 1994 Sony Corporation Image data transmission apparatus using time slots
6072982, Aug 02 1994 ANOSOLE PASS HOLDINGS, L L C Interactive audiovisual distribution system
6418556, Sep 09 1993 UV CORP ; TV GUIDE, INC ; Rovi Guides, Inc Electronic television program guide schedule system and method
20030115593,
EP605115,
WO9212599,
WO9604753,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 01 2004Anosole Pass Holdings, L.L.C.(assignment on the face of the patent)
May 29 2008HADDAD, JOSEPH C INTERIM DESIGN, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0210500757 pdf
Oct 09 2008INTERIM DESIGN, INC ANOSOLE PASS HOLDINGS, L L C ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0217740156 pdf
Date Maintenance Fee Events
Dec 12 2014REM: Maintenance Fee Reminder Mailed.
May 03 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 03 20144 years fee payment window open
Nov 03 20146 months grace period start (w surcharge)
May 03 2015patent expiry (for year 4)
May 03 20172 years to revive unintentionally abandoned end. (for year 4)
May 03 20188 years fee payment window open
Nov 03 20186 months grace period start (w surcharge)
May 03 2019patent expiry (for year 8)
May 03 20212 years to revive unintentionally abandoned end. (for year 8)
May 03 202212 years fee payment window open
Nov 03 20226 months grace period start (w surcharge)
May 03 2023patent expiry (for year 12)
May 03 20252 years to revive unintentionally abandoned end. (for year 12)