A special syslog daemon on a send node, wherein the send node is connected to a receive node by a one-way data link, the special syslog daemon configured to receive a syslog message from a syslog sender, insert a portion of ip information of the syslog sender in the body of the received syslog message and route the resulting syslog message to the one-way data link so that the resulting syslog message can be sent through the one-way data link to a syslog receiver communicatively coupled to the receive node. The present invention resolves the potential conflict between syslog and one-way data transfer applications that are configured to remove ip information from data prior to its passage through a one-way data link, thereby leading to a further enhancement of network security through their combination.

Patent
   7941526
Priority
Apr 19 2007
Filed
Apr 19 2007
Issued
May 10 2011
Expiry
Apr 21 2028
Extension
368 days
Assg.orig
Entity
Large
15
73
all paid
7. A method of transmitting a syslog message from a syslog sender to a syslog receiver through a one-way data link, comprising the steps of:
receiving a first syslog message from the syslog sender, the first syslog message comprising a header portion including ip information for identifying the syslog sender and a data portion;
extracting the ip information of the syslog sender from the header portion of the received first syslog message;
inserting the extracted ip information of the syslog sender in the data portion of the received first syslog message, thereby generating a second syslog message;
removing the header portion from the second syslog message, thereby generating a third syslog message; and
sending the third syslog message to the syslog receiver through the one-way data link.
5. A machine readable medium having instructions stored on a send node for sending a syslog message to a receive node through a one-way data link, the instructions, when executed by the send node, causing the send node to:
receive a first syslog message from a syslog sender, the first syslog message comprising a header portion including ip information for identifying the syslog sender and a data portion;
extract the ip information of the syslog sender from the header portion of the received first syslog message;
insert the extracted ip information of the syslog sender in the data portion of the received first syslog message, thereby generating a second syslog message;
remove the header portion from the second syslog message, thereby generating a third syslog message; and
send the third syslog message to the receive node through the one-way data link.
1. A send node for sending a syslog message to a receive node through a one-way data link, comprising:
a udp socket for receiving a first syslog message from a syslog sender, the first syslog message comprising a header portion including ip information for identifying the syslog sender and a data portion;
a syslog daemon for extracting the ip information of the syslog sender from the header portion of the received first syslog message, and inserting the extracted ip information of the syslog sender in the data portion of the received first syslog message, thereby generating a second syslog message, wherein the udp socket is further configured to remove the header portion from the second syslog message generated by the syslog daemon, thereby generating a third syslog message; and
an interface to the one-way data link for sending the third syslog message to the receive node through the one-way data link.
3. A one-way data transfer system, comprising:
a syslog sender for generating a first syslog message, the first syslog message comprising a header portion including ip information for identifying the syslog sender and a data portion;
a send node comprising (1) a udp socket for receiving the first syslog message from the syslog sender, and (2) a syslog daemon for extracting the ip information of the syslog sender from the header portion of the first syslog message and inserting the extracted ip information of the syslog sender in the data portion of the first syslog message, thereby generating a second syslog message, wherein the udp socket is further configured to remove the header portion from the second syslog message generated by the syslog daemon, thereby generating a third syslog message; and
a one-way data link for unidirectional transfer of the third syslog message from the send node to a receive node.
2. The send node of claim 1, wherein the first syslog message from the syslog sender is a raw udp datagram and the ip information comprises an ip address or a host name of the syslog sender.
4. The one-way data transfer system of claim 3, wherein the first syslog message from the syslog sender is a raw udp datagram and the ip information comprises an ip address or a host name of the syslog sender.
6. The machine readable medium of claim 5, wherein the first syslog message from the syslog sender is a raw udp datagram and the ip information comprises an ip address or a host name of the syslog sender.
8. The method of claim 7, wherein the first syslog message from the syslog sender is a raw udp datagram and the ip information comprises an ip address or a host name of the syslog sender.
9. The one-way data transfer system of claim 3, further comprising a syslog receiver for receiving the third syslog message from the receive node.
10. The method of claim 7, further comprising the step of examining the ip information embedded in the third syslog message received by the syslog receiver to identify the syslog sender.

The present invention relates generally to unidirectional data transfer. More particularly, the present invention relates to transmission of syslog messages over a one-way data link.

Protection of a computer or data network from undesired and unauthorized data disclosure, interception or alteration has been a perennial concern in the field of computer and network security. For example, firewall and anti-spyware software have been developed to address security concerns for computers and networks connected to the Internet and to protect them from possible cyberattacks such as Trojan horse-type viruses or worms that may trigger undesired and unauthorized data disclosure by these computers and networks. However, for high security computer networks such as those used by government agencies and intelligence communities and certain commercial applications, conventional network security devices such as firewalls may not provide sufficiently reliable protection from undesired data disclosure.

Alternative network security methods and devices based on unidirectional data transfer have been devised to address the network security concern. For example, U.S. Pat. No. 5,703,562 to Nilsen (“the '562 Patent”), the contents of which are hereby incorporated by reference in its entirety, provides an alternative way to address the network security concern. The '562 Patent discloses a method of transferring data from an unsecured computer to a secured computer over a one-way optical data link comprising an optical transmitter on the sending side and an optical receiver on the receiving side. By providing such an inherently unidirectional data link to a computer/data network to be protected, one can eliminate any possibility of unintended data leakage out of the computer/data network over the same link.

One-way data transfer systems based on such one-way data links provide network security to data networks by isolating the networks from potential security breaches (i.e., undesired and unauthorized data flow out of the secure network) while still allowing them to import data from the external source in a controlled fashion. FIG. 1 schematically illustrates an example of one such one-way data transfer system 100. In the one-way data transfer system shown in FIG. 1, two computing platforms (or nodes) 101 and 102 (respectively, “the Send Node” and “the Receive Node”) are connected to the unsecured external network 104 (“the source network”) and the secure network 105 (“the destination network”), respectively. The Send Node 101 is connected to the Receive Node 102 by a one-way data link 103, which may be an optical link comprising, for example, a high-bandwidth optical fiber. This one-way optical data link 103 may be configured to operate as a unidirectional data gateway from the source network 104 to the secure destination network 105 by having its ends connected to an optical transmitter on the Send Node and to an optical receiver on the Receive Node.

This configuration physically enforces one-way data transfer at both ends of the optical fiber connecting the Send Node 101 to the Receive Node 102, thereby creating a truly unidirectional one-way data link between the source network 104 and the destination network 105 shown in FIG. 1. Unlike the conventional firewalls, one-way data transfer systems based on a one-way data link are designed to transfer data or information only in one direction and it is physically impossible to transfer data or information of any kind in the reverse direction. No information or data of any kind, including handshaking protocols such as those used in data transport protocols such as TCP/IP, SCSI, USB, Serial/Parallel Ports, etc., can travel in the reverse direction from the Receive Node back to the Send Node across the one-way data link. Such physically imposed unidirectionality in data flow cannot be hacked by a programmer, as is often done with firewalls. Accordingly, the one-way data transfer system based on a one-way data link ensures that data residing on the isolated secure computer or network is maximally protected from any undesired and unauthorized disclosure.

The modern network communications involve various data types, such as files, e-mails, Web contents, real-time audio/video data streams, etc., and also various data transport protocols, such as the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP has been known for its reliability and therefore considered suitable for transporting files and e-mails. UDP, on the other hand, has typically been used for transporting time-sensitive data streams, such as real-time audio/video data streams and also for transporting syslog messages.

Syslog is a standard for sending system log messages (“syslog messages”) via UDP in an IP network. Syslog messages comprise small textual messages from a syslog sender to a syslog receiver (also called syslog daemon, or syslog server), typically in cleartext, and may be configured to report activities at specific addresses in a network. A syslog receiver (syslog daemon) on the hosting platform is responsible for adding to the syslog message received from a syslog sender the IP address or hostname of the syslog sender and writing the result to a local syslog message file. The IP address or hostname of the originating syslog sender is a portion of IP information and may be found in the IP information area of the received syslog message. Syslog messages can be of particular importance in ensuring network security, as the activities of network intruders can be traced by syslog records and irregularities they generate in syslog files. Accordingly, syslog is frequently used as a tool for computer system management, network security auditing, and diagnostic functions. Syslog is supported by a wide array of platforms based on Unix-based operating systems, such as Solaris, Ultrix, AIX, HP-UX and Linux.

Because of many advantages syslog provides for network security and management, it is often desirable and necessary to implement syslog in a one-way data transfer system based on a one-way data link. Thus, it is an object of the present invention to handle transmission of syslog messages across a one-way data link.

Other objects and advantages of the present invention will become apparent from the following description.

The above and related objects, features and advantages of the present invention will be more fully understood by reference to the following, detailed description of the preferred, albeit illustrative, embodiment of the present invention when taken in conjunction with the accompanying figures, wherein:

FIG. 1 schematically illustrates an example of a secure one-way data transfer system based on a one-way data link.

FIG. 2 is a functional block diagram that schematically illustrates one possible embodiment of the present invention for handling transmission of syslog messages through a one-way data link.

It has now been found that the above and related objects of the present invention are obtained in the form of several related aspects.

More particularly, the present invention relates to a special syslog daemon on a send node, wherein the send node is connected to a receive node by a one-way data link, the special syslog daemon comprising a port for receiving a syslog message from a syslog sender, and a processor for inserting a portion of IP information of the syslog sender in the body of the received syslog message and routing the resulting syslog message to the one-way data link so that the resulting syslog message can be sent through the one-way data link to a syslog receiver communicatively coupled to the receive node.

The present invention is also directed to a one-way data transfer system, comprising a send node communicatively coupled to one or more source platforms, a receive node communicatively coupled to one or more destination platforms, a one-way data link interconnecting the send node and the receive node for unidirectional transfer from the send node to the receive node, and a special syslog daemon on the send node for receiving a syslog message from a syslog sender on one of the source platforms, inserting a portion of IP information of the syslog sender in the body of the received syslog message, and routing the resulting syslog message to the one-way data link so that the resulting syslog message can be transferred to a syslog receiver on one of the destination platforms.

Furthermore, the present invention also relates to a machine readable medium having instructions stored on a send node, the instructions, when executed by the send node, causing the send node to receive a syslog message from a syslog sender, insert a portion of IP information of the syslog sender in the body of the received syslog message, and send the resulting syslog message to the receive node through a one-way data link to be transmitted to a syslog receiver, wherein the send node is connected to the receive node by the one-way data link, the syslog sender is communicatively coupled to the send node, and the syslog receiver is communicatively coupled to the receive node.

In addition, the present invention is also directed to a method of transmitting a syslog message from a syslog sender to a syslog receiver through a one-way data link, comprising the steps of receiving the syslog message from the syslog sender, inserting a portion of IP information of the syslog sender in the body of the received syslog message, and sending the resulting syslog message to the syslog receiver through the one-way data link.

FIG. 2 is a functional block diagram that schematically illustrates one exemplary embodiment of the present invention for handling transmission of syslog messages across a one-way data link. The system 200 illustrated in FIG. 2 implements a UDP-based data transfer between a source network 207 and a destination network 215 across a single one-way link 211. One of UDP sources 204-206 in source platforms 201-203 may send a UDP datagram stream across the source network 207 to a UDP socket 209 on or coupled to a send node 208 in the system 200. The UDP datagram stream may then be transferred by the send node 208 to the one-way data link 211 via a send node interface 210 and then received by a receive node 212 through a receive node interface 213. A UDP socket or proxy application 214 on or coupled to the receive node 212 then makes a fully implemented UDP connection with one of UDP destinations 216-218 in destination platforms 219-221 through the destination network 215 and forwards the received UDP datagram stream to the intended destination.

UDP-based one-way transfer systems based on a one-way data link such as the one illustrated in FIG. 2 may be configured to prohibit passage of a raw UDP datagram including IP information or header (including IP address or hostname of the source) across the one-way data link. Instead of allowing passage of IP information, the UDP socket or proxy application 209 on the send node 208 may be configured to issue a token identifier, such as a channel number, to each datagram to be transferred across the one-way data link 211 to route it to the proper destination without revealing the IP address of its source to the destination. In this configuration, IP information may be removed from the raw UDP datagram and only the data portion (or message payload) of the UDP datagram is extracted by the send node 208 (the UDP socket 209 or some other suitable application on the send node) to be transferred across the one-way data link 211. Once the UDP datagram is received by the receive node 212, the UDP socket 214 on the receive node 212 may formulate a new datagram based on the received extracted data portion and route it to the UDP destination 216-218 based on the identifier associated with the received datagram. Accordingly, no information about the originator of the UDP datagram is passed to the receive side.

Such prohibition on transmission of a raw UDP datagram across a one-way data link may conflict with implementation of syslog message transmission in a one-way data transfer system, as the raw UDP datagram contains the necessary information (an IP address or a hostname included in IP information) for a syslog receiver to process. Since, as noted above, the purpose of syslog's diagnostic function is to track the activities occurring at a specific address in a network, syslog messages may need to indicate the necessary portion of the IP information, such as IP address or hostname, relating to the originating machines on the send side to do its proper function. The present invention resolves this potential conflict and allows a syslog receiver on the receive side of a one-way data link to properly process the syslog messages transmitted from the send side through the one-way data link, even when the UDP-based one-way data transfer system is configured to prohibit transfer of a raw UDP datagram or IP information across the one-way data link.

One exemplary embodiment of the present invention may be implemented in the UDP-based data transfer system 200 illustrated in FIG. 2 as follows. On the send side, a sender of a syslog message (syslog sender) may be any one of the UDP sources 204-206 residing in the source platforms 201-203, which are interconnected to the UDP socket or proxy application 209 on the send node 208 via the source network 207. On the receive side, the corresponding receiver of the syslog message (syslog receiver) may be any one of the UDP destinations 216-218 residing in the destination platforms 219-221, which are interconnected to the UDP socket or proxy application 214 on the receive node 212 via the destination network 215. A special syslog daemon is introduced to replace the standard syslog daemon on the send node 208 and implemented in, for example, the UDP socket 209 on the send node 208. The function of the special syslog daemon on the UDP socket is to insert or embed a desired or necessary portion of the IP information (e.g., IP address or hostname) of the syslog sender 204-206 in the body of the received syslog message (e.g., data portion) prior to passing it over to the one-way data link 211. For example, the special syslog daemon on the UDP port 209 may insert an IP address or hostname of the syslog sender 204-206, which is taken from the corresponding IP information, in the beginning of the data field of the received syslog message.

The send node 208 may be configured to further remove the IP information or header from the resulting syslog message. Despite the removal of the IP information from the message, the corresponding IP address or hostname of the syslog sender has now been embedded in the body of the syslog message. The send node 208 then transfers the resulting syslog message to the one-way data link 211 via the send node interface 210. The receive node 212 receives the syslog message from the one-way data link 211 via the receive node interface 213 and the UDP port or proxy application 214 associated with the receive node 212 then routes it to the intended syslog receiver 216-218 residing in one of the destination platforms 219-221 via the destination network 215.

When the syslog receiver 216-218 on the destination platform 219-221 finally receives the syslog message, it would only know that the syslog message came through the receive node 212 by detecting its IP information. As the IP information of the original syslog sender 204-206 on the source platform 201-203 had been removed from the syslog message prior to its passage through the one-way data link 211, the syslog receiver 216-218 on the destination platform 219-221 may not be aware of the originator of the syslog message on the send side. However, since the special syslog daemon in the UDP port 209 on the send node 208 inserted the portion of the IP information, such as IP address or hostname which identifies the original syslog sender 204-206, in the body of the syslog message before the IP information was removed from the message, a network monitoring system or administrator for the destination platforms 219-221 may be able to trace the originator of the syslog message, the syslog sender 204-206, by examining the this portion of the IP information embedded in the syslog message body.

As illustrated in the above example, the present invention allows syslog messages which are transferred across a one-way data link to include the portion of the IP information necessary to identify the syslog senders even when the IP information is removed from the syslog messages prior to crossing the one-way data link. In addition to the examples illustrated above, the present invention is applicable to other possible UDP-based one-way transfer systems based on the use of a one-way link. For example, in a UDP multicast configuration involving a multiplexer and a demultiplexer with a plurality of UDP sources and destinations, a special syslog daemon described above may be implemented in one or more of the ports associated with the multiplexer. Under the present invention, the combination of syslog and one-way data transfer applications based on the use of a one-way data link may further enhance the network security.

While this invention has been described in conjunction with exemplary embodiments outlined above and illustrated in the drawings, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the exemplary embodiments of the invention, as set forth above, are intended to be illustrative, not limiting, and the spirit and scope of the present invention is to be construed broadly and limited only by the appended claims, and not by the foregoing specification.

Holmes, Andrew, Mraz, Ronald, Hope, James

Patent Priority Assignee Title
10142289, Mar 27 2018 OWL Cyber Defense Solutions, LLC Secure interface for a mobile communications device
10171422, Apr 14 2016 OWL Cyber Defense Solutions, LLC Dynamically configurable packet filter
10355960, Sep 08 2017 Raytheon Applied Signal Technology, Inc. Data transfer system including one-way datalink and continuous data synchronization
10462103, Mar 07 2014 Airbus Operations SAS; Airbus Defence and Space GmbH High assurance security gateway interconnecting different domains
10673928, Feb 29 2016 Red Hat, Inc. Syslog advertisements
10990737, Apr 23 2019 OWL Cyber Defense Solutions, LLC Secure one-way network gateway
10999259, Oct 05 2016 ShortSave, Inc. Single point of custody secure data exchange
11368437, Jul 05 2017 SIEMENS MOBILITY GMBH Method and apparatus for repercussion-free unidirectional transfer of data to a remote application server
9130906, May 23 2014 United States of America as represented by the Secretary of the Navy Method and apparatus for automated secure one-way data transmission
9380064, Jul 12 2013 OWL Cyber Defense Solutions, LLC System and method for improving the resiliency of websites and web services
9436825, Mar 25 2014 OWL Cyber Defense Solutions, LLC System and method for integrity assurance of partial data
9749011, Sep 11 2014 Electronics and Telecommunications Research Institute Physical unidirectional communication apparatus and method
9787531, Oct 11 2013 KYNDRYL, INC Automatic notification of isolation
9853918, Mar 24 2015 OWL Cyber Defense Solutions, LLC One-way network interface
9880869, Jan 13 2015 OWL Cyber Defense Solutions, LLC Single computer-based virtual cross-domain solutions
Patent Priority Assignee Title
4672601, Dec 06 1984 Motorola, Inc. Duplex interconnect/dispatch trunked radio system
5282200, Dec 07 1992 Alcatel Network Systems, Inc. Ring network overhead handling method
5703562, Nov 20 1996 Sandia National Laboratories Method for transferring data from an unsecured computer to a secured computer
5769527, Jul 17 1986 VARI-LITE, INC Computer controlled lighting system with distributed control resources
5983332, Jul 01 1996 Oracle America, Inc Asynchronous transfer mode (ATM) segmentation and reassembly unit virtual address translation unit architecture
6108787, Mar 31 1995 The Commonwealth of Australia Method and means for interconnecting different security level networks
6262993, Nov 03 1997 AMADATA, INC Computer and peripheral networking device permitting the practical use of buffer insertion-based networks while communicating over unshielded twisted pair conductive media
6269398, Aug 20 1993 AVAYA Inc Method and system for monitoring remote routers in networks for available protocols and providing a graphical representation of information received from the routers
6415329, Mar 06 1998 Massachusetts Institute of Technology Method and apparatus for improving efficiency of TCP/IP protocol over high delay-bandwidth network
6546422, Jul 02 1998 NEC Corporation Caching of network contents by packet relays that determine cache priority utilizing contents access frequency and metrics in their routing tables representing relaying path lengths
6665268, Aug 31 1999 Fujitsu Limited Load testing apparatus, computer readable recording medium for recording load test program, fault diagnosis apparatus, and computer readable recording medium for recording fault diagnosis program
6728213, Mar 23 2001 GLOBALFOUNDRIES U S INC Selective admission control in a network device
6731625, Feb 10 1997 Verizon Patent and Licensing Inc System, method and article of manufacture for a call back architecture in a hybrid network with support for internet telephony
6792432, Mar 31 1998 SYBASE, Inc. Database system with methods providing high-concurrency access in B-Tree structures
6807166, Aug 05 1998 GOOGLE LLC Gateway for internet telephone
6954790, Dec 05 2000 LONGHORN HD LLC Network-based mobile workgroup system
6988148, Jan 19 2001 Cisco Technology, Inc IP pool management utilizing an IP pool MIB
7007301, Jun 12 2000 Hewlett Packard Enterprise Development LP Computer architecture for an intrusion detection system
7016085, Aug 31 2001 HEWLETT-PACKARD DEVELOPMENT COMPANY L P Remote proofing service adaptively isolated from the internet
7020697, Oct 01 1999 Accenture Global Services Limited Architectures for netcentric computing systems
7095739, Nov 25 2003 Cisco Technology, Inc. Reliable multicast communication
7134141, Jun 12 2000 HEWLETT-PACKARD DEVELOPMENT COMPANY L P System and method for host and network based intrusion detection and response
7167915, Oct 18 2002 International Business Machines Corporation Monitoring storage resources used by computer applications distributed across a network
7246156, Jun 09 2003 IDEFENDER, LLC Method and computer program product for monitoring an industrial network
7260833, Jul 18 2003 The United States of America as represented by the Secretary of the Navy One-way network transmission interface unit
7339929, Aug 23 2002 CORRIGENT CORPORATION Virtual private LAN service using a multicast protocol
7356581, Apr 18 2001 Hitachi, Ltd. Storage network switch
7370025, Dec 17 2002 Veritas Technologies LLC System and method for providing access to replicated data
7389323, Jan 23 2002 Murata Kikai Kabushiki Kaisha Communication device and program
7440424, Jun 19 2003 Samsung Electronics Co., Ltd. Apparatus and method for detecting duplicate IP addresses in mobile ad hoc network environment
7454366, Nov 19 2001 Sony Corporation Product management system and method
7512116, Aug 05 1998 GOOGLE LLC Gateway for internet telephone
7529943, Apr 16 2003 Juniper Networks, Inc.; Juniper Networks, Inc Systems and methods for end-to-end resource reservation authentication
20020003640,
20020118671,
20020120578,
20020129106,
20020133586,
20030028650,
20030051026,
20030058810,
20030103089,
20030119568,
20030172145,
20030195932,
20030200321,
20040073658,
20040103199,
20040236547,
20040236874,
20040260733,
20050005154,
20050033990,
20050037787,
20050091396,
20050201373,
20050216421,
20050259587,
20060018466,
20060031481,
20060059253,
20060080441,
20060114566,
20060153092,
20060153110,
20060161395,
20060173850,
20060190592,
20060209719,
20060288286,
20070223158,
20090024612,
WO2004105297,
//////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 19 2007Owl Computing Technologies, Inc.(assignment on the face of the patent)
Jun 26 2007HOLMES, ANDREWOWL COMPUTING TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0195370424 pdf
Jun 27 2007HOPE, JAMESOWL COMPUTING TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0195370424 pdf
Jun 29 2007MRAZ, RONALDOWL COMPUTING TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0195370424 pdf
Jan 31 2017OWL COMPUTING TECHNOLOGIES, INC BANK OF AMERICA, N A SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0411360223 pdf
Feb 03 2017OWL COMPUTING TECHNOLOGIES, INC Owl Computing Technologies, LLCCORRECTIVE ASSIGNMENT TO CORRECT TO REMOVE THIS DOCUMENT SERVES AS AN OATH DECLARATION 37 CFR 1 63 FROM THE COVER SHEET PREVIOUSLY RECORDED AT REEL: 041765 FRAME: 0034 ASSIGNOR S HEREBY CONFIRMS THE MERGER EFFECTIVE DATE 02 03 2017 0423440033 pdf
Feb 03 2017OWL COMPUTING TECHNOLOGIES, INC Owl Computing Technologies, LLCMERGER SEE DOCUMENT FOR DETAILS 0417650034 pdf
Jun 02 2017Owl Computing Technologies, LLCOWL Cyber Defense Solutions, LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0429020582 pdf
Jul 23 2020OWL Cyber Defense Solutions, LLCOWL Cyber Defense Solutions, LLCMERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0609780964 pdf
Jul 23 2020Tresys Technology, LLCOWL Cyber Defense Solutions, LLCMERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0609780964 pdf
Date Maintenance Fee Events
Oct 08 2014M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jun 05 2018M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Dec 26 2022REM: Maintenance Fee Reminder Mailed.
May 03 2023BIG: Entity status set to Undiscounted (note the period is included in the code).
May 03 2023M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
May 03 2023M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.


Date Maintenance Schedule
May 10 20144 years fee payment window open
Nov 10 20146 months grace period start (w surcharge)
May 10 2015patent expiry (for year 4)
May 10 20172 years to revive unintentionally abandoned end. (for year 4)
May 10 20188 years fee payment window open
Nov 10 20186 months grace period start (w surcharge)
May 10 2019patent expiry (for year 8)
May 10 20212 years to revive unintentionally abandoned end. (for year 8)
May 10 202212 years fee payment window open
Nov 10 20226 months grace period start (w surcharge)
May 10 2023patent expiry (for year 12)
May 10 20252 years to revive unintentionally abandoned end. (for year 12)