An intelligent light source for use with the test of a digital camera module provides a plurality of shapes of light. A fast light pulse is created with turn-on and turn-off transitions less than or equal to one microsecond. Other waveform shapes comprise a ramp and a sinusoid, and all shapes can be made to occur once or repetitively. The magnitude of the light has a range from 0.01 LUX to 1000 LUX, and the ramp has a ramp time that has a range from microseconds to 100 ms. The light comprises of a plurality of colors created by serial connected strings of LED devices, where the LED devices in a string emit the same color. The light emanating from the light source is calibrated using a photo diode and the control of a tester by adjusting offset voltages of a DAC controlling a current through the LED strings.
|
1. A method for applying a defined light to a light sensitive device, comprising:
a) selecting a single occurrence or repetitive occurrence of a light emanating from a light source to illuminate a digital camera module under test (mut);
b) selecting a time varying shape of said light, wherein selecting said time varying shape of said light selects a sequence of data stored in a data memory that controls a digital to analog converter (DAC) to produce a current to control said light source;
c) selecting an intensity of said light;
d) selecting a color of said light;
e) synchronizing said light with a clock of said mut;
f) capturing a digital image of said light with said mut and coupling said digital image to a tester;
g) changing said color if required and repeating steps (d) through (g), else step (h);
h) changing said intensity of the light if required and repeating steps (c) through (h), else step (i);
i) changing said shape of the light pulse if required and repeating steps (b) through (i), else step (j);
j) changing said repetition if required and repeating steps (a) through (g), else step (k);
k) ending illumination of said mut.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
11. The method of
13. The method of
|
This is a divisional application of U.S. patent application Ser. No. 10/930,353; filed on Aug. 31, 2004, now U.S. Pat. No. 7,697,031, which is herein incorporated by reference in its entirety and assigned to the same assignee.
This application is related to U.S. patent application Ser. No. 10/930,351; filed on Aug. 31, 2004; issued Feb. 3, 2009 as U.S. Pat. No. 7,486,309; and assigned to the same assignee as the present invention.
This application is related to U.S. patent application Ser. No. 10/929,651; filed on Aug. 30, 2004; issued Mar. 17, 2009 as U.S. Pat. No. 7,505,064; and assigned to the same assignee as the present invention.
This application is related to U.S. patent application Ser. No. 10/929,652; filed on Aug. 30, 2004; issued Dec. 26, 2009 as U.S. Pat. No. 7,155,119; and assigned to the same assignee as the present invention.
This application is related to U.S. patent application Ser. No. 10/929,300; filed on Aug. 30, 2004; issued Jul. 24, 2007 as U.S. Pat. No. 7,248,347; and assigned to the same assignee as the present invention.
This application is related to U.S. patent application Ser. No. 10/929,653; filed on Aug. 30, 2004; issued Jul. 22, 2008 as U.S. Pat. No. 7,403,229; and assigned to the same assignee as the present invention.
1. Field of Invention
The present invention is related to a light source, and in particular to an intelligent light source used to test a digital camera module that is synchronized with the digital camera module.
2. Description of Related Art
The digital camera is becoming a ubiquitous device. Not only are digital cameras replacing the traditional film camera, digital camera devices are being used in many other applications, such as small electronic devices, such as PDA (personal data assistant) and cellular phones. With the explosion of cellular phones, the ability to take a picture and then send that picture to another individual using a second cellular phone comes the need to produce inexpensive digital camera modules and efficiently test these modules in large quantities. This is further complicated by the many different module configurations that are emerging as a result of the many different application requirements, including fixed focus, manual focus and automatic focus as well as physical size. Some of these modules are very small and others have signal leads in the form of a flex filmstrip. The testing time for digital camera module, which can have mega-pixel capability, has traditionally been a relatively long process (approximately sixty seconds for a module with 0.3 megapixels) to insure the integrity and picture quality of the camera. Quality testing at a low cost has become the utmost of importance. This necessitates a testing capability that is fast and insures the integrity and specification of the digital camera module while testing a large quantity of modules.
A patent application Ser. No. 10/417,317 dated Apr. 16, 2003, is related to miniature cameras and their manufacturing methods that are used as built-in modules in hand held consumer electronics devices such as mobile phones and PDA's. In a second patent application Ser. No. 10/434,743 dated May 8, 2003, a test system is described for digital camera modules used as built-in modules for consumer electronics, which performs electrical tests, adjustment of focus and sealing of the lens barrel with glue.
In addition there are a number of other prior art patents that are directed to testing of digital cameras: US 20040032496A1 (Eberstein et al.) is directed to a method of camera calibration and quality testing; EP 1389878A1 (Bednarz et al.) is directed to a method of camera calibration and testing camera quality; US 20040027456A1 (Pierce) directed to the use of calibration targets; EP 1382194A1 (Baer) is directed to dark current subtraction; JP 2003259126 (Keisuke) is directed to removing noise of an image; US 20030146976A1 (Liu) is directed to a digital camera system enabling remote monitoring; JP 2003219436 (Fuminori) is directed to adjustment of a pixel shift camera; US 2003142374 (Silverstein) is directed to calibrating output of an image output device; JP 2003179949 (Hidetoshi) is directed to a luminance level inspection apparatus; JP 2003157425 (Vehvilainen) is directed to improving image quality produced in a mobile imaging phone; JP 2003101823 (Kenichi) is directed to specifying a picture data area; EP 1286553 A2 (Baer) is directed to a method and apparatus for improving image quality; US 20030030648 (Baer) is directed to a method and apparatus for improving image quality in digital cameras; U.S. Pat. No. 6,512,587 (Marcus et al.) is directed to measurement method and apparatus of an imager assembly; US 20030002749 (Vehvilainen) is directed to a method and apparatus for improving image quality; US 20020191973 A1 (Hofer et al.) is directed to a method and apparatus for focus error reduction; WO 2002102060 A1 (Baer) is directed to a method and apparatus for smear in digital images using a frame transfer sensor; JP 2002290994 (Hidetoshi) is directed to a method and apparatus to detect foreign matter on the surface of a lens; JP 200223918 (Yanshinao) is directed to an image inspection device and method for a camera module; JP 2002077955 (Keisuke) is directed to a method and apparatus for evaluating camera characteristics; JP 2001292461 (Keisuke) is directed to a system and method for evaluating a camera; U.S. Pat. No. 6,219,443 B1 (Lawrence) is directed to a method and apparatus for inspecting a display using a low resolution camera; U.S. Pat. No. 6,201,600B1 (Sites et al.) is directed to a method and apparatus for inspection of optically transmissive objects having a lens; U.S. Pat. No. 5,649,258 (Bergstresser et al.) is directed to an apparatus and testing of a camera; EP 0679932 B1 (Kobayashi et al.) is directed to testing an electronically controlled camera; U.S. Pat. No. 5,179,437 (Kawada et al.) is directed to an apparatus for color correction of image signals of a color television camera; JP 03099376 (Hiroshi) is directed to the quality of a display screen; U.S. Pat. No. 4,612,666 (King) is directed to a pattern recognition apparatus; and U.S. Pat. No. 4,298,944 Stoub et al.) is directed to a method and apparatus for distortion correction for scintillation cameras.
It is an objective of the present invention to produce a light source in which a pulse of light has a controlled intensity and rise and fall times that are less than a microsecond.
It is also an objective of the present invention to produce a magnitude of the light source ranging from 0.01 LUX to 1000 LUX.
It is also an objective of the present invention to synchronize a light pulse with a digital camera module under test.
It is still an objective of the present invention to control the light pulse as a single pulse or a repetitive pulse.
It is further an objective of the present invention to vary the shape and intensity of the light source comprising a ramp of light and a sinusoidal shaped light.
It is further an objective of the present invention to produce a ramp with a ramp time ranging from microseconds to 100 ms.
It is still further an objective of the present invention to produce a light source with a plurality of colors each being controlled for intensity, light shape and repetition.
It is also still further an objective of the present invention to provide calibration for each color in the light source.
In the present invention a light source is controlled by a tester for the purpose of testing a digital camera module. The light source is configured from a plurality of serially connected strings of LED (light emitting diodes) devices, each of which produces a light color. There is a plurality of LED strings producing a plurality of colors comprising red, blue, green and infrared. Each LED string produces a different color, and each of the LED strings is powered separately by a current source driven by a DAC (digital to analog converter). The light emanating from the LED strings can be turned on and turned off rapidly with a turn on transition and a turn off transition of 1 us or faster. Different pulse shapes are produced comprising a sinusoidal varying light and a light in which the turn-on transition is a ramp of variable length of time. The ramp time is controlled in a plurality of time range than have a maximum ramp time of 100 us, 1 ms, 10 ms and 100 ms. The amplitude of the light source is controlled in a plurality of ranges where, for example, the maximum comprise 10 LUX, 100 LUX and 1000 LUX, and the light from the light source can be made to be repetitive or only one pulse.
A tester provides controls for selecting color, intensity, shape and repetitiveness of the light pulse. Within the tester is a frame grabber function, which synchronizes the light source with a clock of a digital camera under test (MUT). When the light source is turned on, the MUT captures a digital image of the light, and the frame grabber couples the image into a memory of a computational unit within the tester for analysis.
Data for controlling the DAC is loaded into a data memory (1K×16 bits) and is coupled to a 12-bit DAC under the control of a controller. The controller comprises a FPGA (field programmable gate array), which allows for easy upgrading of the controller operation. The data in the data memory is used to control the light source and is coupled to the DAC, which feeds a V/I converter (voltage to current converter). The V/I converter pulls a current through a selected string of LED devices that turns the resulting light on. The current is controlled such as to produce a fast on-off light pulse or a light having a defined shape, e.g. sinusoidal, ramp or stair step. A particular light shape or pulse can be set to be repetitive.
A photo diode is used to calibrate the light source and maintain a consistency between the strings of LCD devices that produce the different colors of light. The photo diode signal is coupled to an ADC (analog to digital converter), which couples a digital value of the photo diode signal to the tester. The DAC that controls the current source (V/I converter) for a particular LED string is then adjusted to maintain a similar light intensity between the LED strings that produce the different colors of light. This calibration capability also allows for adjustments resulting from aging of the LED diodes and maintains consistency between the different colors of light produced by the LED strings.
This invention will be described with reference to the accompanying drawings, wherein:
In
The DAC is a 12-bit digital to analog converter that controls the V/I converter and range switch 25 to provide a current to turn-on the light source 26. The V/I converter 25 has a current capacity that allows a full-scale light output of the light source for a plurality of light intensity ranges comprising 1000 LUX, 100 LUX and 10 LUX. Each range of light is driven with a 12-bit resolution of the DAC 24. The 12-bit resolution of the DAC allows the creation of a light intensity of 0.01 LUX in the 10 LUX range. The range switch in the V/I converter 25 allows a plurality of maximum range of currents to be produced by the V/I converter 25, comprising currents of approximately 50 ma, 20 ma, 2 ma and 200 ua. The maximum current of 50 ma is dependent only upon the LED devices, which make up the light source; therefore the maximum current is established by the LED device used. The light source is switched on and off by the V/I converter with a rise and the fall time of the light emanating from the light source of approximately 1 us or faster.
Continuing to refer to
Continuing to refer to
In
In
In
Continuing to refer to
In
In
In
In
In
In
Continuing to refer to
In
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Knoedgen, Horst, Huettmann, Dirk
Patent | Priority | Assignee | Title |
8068182, | Oct 12 2004 | Gula Consulting Limited Liability Company | Multiple frame grabber |
8334908, | Nov 12 2009 | Industrial Technology Research Institute | Method and apparatus for high dynamic range image measurement |
8681274, | Oct 12 2004 | Gula Consulting Limited Liability Company | Multiple frame grabber |
9451247, | Nov 25 2013 | UL LLC | Camera test apparatus |
Patent | Priority | Assignee | Title |
3255304, | |||
3858063, | |||
4298944, | Jun 22 1979 | Siemens Medical Systems, Inc | Distortion correction method and apparatus for scintillation cameras |
4384769, | May 08 1981 | Jos. Schneider Optische Werke Aktiengesellschaft | Illuminating system for test projector |
4612666, | Jul 05 1984 | The United States of America as represented by the Secretary of the Navy | Automatic pattern recognition apparatus |
5179437, | Apr 28 1989 | Ikegani Tsushinki Co., Ltd. | Apparatus for color correction of image signals of a color television camera |
5467128, | Jan 19 1994 | Los Alamos National Security, LLC | High speed imager test station |
5649258, | Dec 08 1995 | Eastman Kodak Company | Apparatus for actuating and testing a camera |
6153985, | Jul 09 1999 | Dialight Corporation | LED driving circuitry with light intensity feedback to control output light intensity of an LED |
6201600, | Dec 19 1997 | PERCEPTICS, LLC | Method and apparatus for the automatic inspection of optically transmissive objects having a lens portion |
6219443, | Aug 11 1998 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Method and apparatus for inspecting a display using a relatively low-resolution camera |
6473062, | Mar 22 2000 | Oracle America, Inc | Intelligent light source |
6512587, | Oct 27 2000 | Intellectual Ventures Fund 83 LLC | Measurement method and apparatus of an external digital camera imager assembly |
6714241, | Apr 25 2001 | Carl Zeiss AG | Efficient dark current subtraction in an image sensor |
6798450, | Jun 08 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY L P | Apparatus and method for reducing smear in digital images captured using frame-transfer CCD sensor |
6809330, | Dec 18 2002 | Lockheed Martin Corporation | Automatic calibration and built-in diagnostic procedures for line scan cameras |
6822657, | Aug 10 2001 | Aptina Imaging Corporation | Method and apparatus for improving image quality in digital cameras |
7068302, | Aug 15 2002 | Ford Global Technologies, LLC | Method for camera calibration and quality testing |
7155119, | Aug 17 2004 | Gula Consulting Limited Liability Company | Multi-processing of a picture to speed up mathematics and calculation for one picture |
7158170, | Mar 27 2003 | RPX Corporation | Test system for camera modules |
7248284, | Aug 12 2002 | Calibration targets for digital cameras and methods of using same | |
7248347, | Aug 17 2004 | RPX Corporation | Focus processing with the distance of different target wheels |
7265781, | Aug 22 2001 | FUJIFILM Corporation | Method and apparatus for determining a color correction matrix by minimizing a color difference maximum or average value |
7403229, | Aug 17 2004 | RPX Corporation | Testing of miniaturized digital camera modules with electrical and/or optical zoom functions |
7405764, | Mar 31 2003 | RPX Corporation | Miniature camera module |
7426316, | Jun 28 2001 | WSOU Investments, LLC | Method and apparatus for image improvement |
7486309, | Aug 17 2004 | RPX Corporation | Digital camera module test system |
7505064, | Aug 17 2004 | RPX Corporation | Camera handling system |
20020191973, | |||
20030048375, | |||
20030142374, | |||
20030146976, | |||
20040032496, | |||
20050219365, | |||
EP393848, | |||
EP679932, | |||
EP1348996, | |||
JP2001292461, | |||
JP2002077955, | |||
JP2002232918, | |||
JP2002290994, | |||
JP2003101823, | |||
JP2003179949, | |||
JP2003219436, | |||
JP2003259126, | |||
JP2197870, | |||
JP3099376, | |||
WO3096761, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 03 2004 | KNOEDGEN, HORST | Dialog Semiconductor GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031163 | /0149 | |
Aug 03 2004 | HUETTMANN, DIRK | Dialog Semiconductor GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031163 | /0149 | |
Mar 26 2010 | Digital Imaging Systems GmbH | (assignment on the face of the patent) | / | |||
Jul 01 2013 | Digital Imaging Systems GmbH | RPX Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030871 | /0360 | |
Jun 19 2018 | RPX Corporation | JEFFERIES FINANCE LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 046486 | /0433 | |
Oct 23 2020 | JEFFERIES FINANCE LLC | RPX Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054486 | /0422 |
Date | Maintenance Fee Events |
Aug 01 2013 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Nov 24 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 14 2019 | REM: Maintenance Fee Reminder Mailed. |
Jul 01 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 24 2014 | 4 years fee payment window open |
Nov 24 2014 | 6 months grace period start (w surcharge) |
May 24 2015 | patent expiry (for year 4) |
May 24 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 24 2018 | 8 years fee payment window open |
Nov 24 2018 | 6 months grace period start (w surcharge) |
May 24 2019 | patent expiry (for year 8) |
May 24 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 24 2022 | 12 years fee payment window open |
Nov 24 2022 | 6 months grace period start (w surcharge) |
May 24 2023 | patent expiry (for year 12) |
May 24 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |