An active matrix device has an array (54) of device elements, each of which comprises at least one thin film transistor (34). A thin film conductive heater element arrangement (10) is provided over a substrate of the device, and the semiconductor islands of the thin film transistors are provided over the heater element arrangement (10). The heating arrangement can remain in place in the device, thereby avoiding the need to remove the layers of the heater element arrangement during processing.
|
1. An active matrix electronic array device comprising an array of device elements, wherein each of the device elements comprises at least one thin film transistor, the device comprising:
a substrate;
a thin film conductive heater element arrangement provided over the substrate;
an electrically insulating layer provided over the heater element arrangement; and
a plurality of thin film layers defining the thin film transistors and provided over the electrically insulating layer, wherein the thin film layers comprises a semiconductor layer, and at least portions of the semiconductor layer defining the thin film transistors are provided over the heater element arrangement,
wherein the heater element arrangement has a first patterned metal layer patterned into regions for providing local heating and a electrically conductive and substantially transparent layer, for providing electrical connection to the regions of the first patterned metal layer.
4. The device as claimed in
5. The device as claimed in
8. The device as claimed in
|
This application is a National Phase Application under 35 U.S.C. §371 of PCT/IB05/51870 filed Jun. 8, 2005.
1. Field of Invention
This invention relates to methods and apparatus for heat treatment of semiconductor films provided over thermally sensitive substrates. In particular, the invention relates to the formation of polycrystalline silicon thin-film transistors on glass substrates for use in liquid crystal displays (LCDs) or organic light emitting diode displays (OLEDs).
2. Related Art
Active matrix liquid crystal displays (LCDs) and organic light emitting diode displays (OLEDS) use active matrix circuits having thin film transistors (TFTs) provided on a glass substrate. There are also proposals to form the active plate of such devices on plastic substrates.
Active matrix LCDs typically use amorphous silicon (a-Si) TFTs, although there has been much recent interest and development of TFTs using polycrystalline silicon (poly-Si). This technology can give superior image resolution, and can also permit integration of peripheral drive circuits onto the substrate of the pixel array. For current-addressed displays, such as OLEDs, poly-Si TFTs provide better current driving capabilities.
The main difficulty in the fabrication of poly-Si devices on current glass substrates is the heat treatment method for forming the crystallized semiconductor layer from a deposited amorphous silicon layer, and the activation of implanted dopants. Glass is easily deformed when exposed to temperatures above 500 degrees Celsius for substantial lengths of time.
Various heat treatment methods have been developed for the crystallization of a deposited amorphous silicon layer.
Solid phase crystallization (SPC) is one common method for crystallizing amorphous silicon. In this process, the amorphous silicon is subject to heat treatments at temperatures approaching 600 degrees Celsius for a period of several hours. This method can lead to damage of the glass substrate. In particular, if low cost glass substrates are to be used, the temperature is too high to be used or else, if the annealing is done at relatively low temperatures, the anneal time is too long.
Laser treatment methods can operate at lower temperatures, for example excimer laser crystallization and metal-induced crystallization. Excimer laser crystallization uses nano-second laser pulses to melt and solidify the amorphous silicon into a crystalline form. Theoretically, this offers the possibility of annealing the amorphous silicon at its optimum temperature without degrading the glass substrate upon which it is mounted. However, this method has critical drawbacks for its use in mass production. The grain structure of poly-Si film through this process is extremely sensitive to the laser beam energy, so that a uniformity in grain structure and hence the device characteristics can not be achieved. Also, the beam size of the laser is relatively small. The small beam size requires multiple laser passes, or shots, to complete the crystallization processes for large size glass. Since it is difficult to control precisely the laser, the multiple shots introduce non-uniformities into the crystallization process.
The metal induced crystallization process involves addition of various metal elements such as Ni, Pd, Au, Ag, and Cu onto amorphous silicon films in order to enhance the crystallization kinetics. Use of this method enables crystallization at low temperatures below 600 degrees Celsius. This method, however, is limited by poor crystalline quality of poly-Si and metal contamination. The metal contamination causes a detrimental leakage current in the operation of poly-Si TFTs. Another problem of this method is the formation of metal silicides during the process.
Heat treatment is also used for activation of dopants during an annealing stage after dopant deposition. Again excimer laser annealing can be used for this purpose, or a so-called rapid thermal anneal process has been proposed. This process uses higher temperatures but for short durations of time. An optical heating source such as tungsten-halogen or Xe Arc lamp is often used as the heat source. This can however result in unwanted excessive heating of the glass substrate.
More recent publications have shown that polysilicon can be formed from amorphous silicon using an integrated metal heater element fabricated above the transistor structure. For example, reference is made to the paper “Polycrystalline Silicon Thin-Film Transistors Fabricated by Rapid Joule Heating Method” of Y. Kaneko et al, IEEE EDL, Vol 24, No. 9, p 586 (2003). Reference is also made to the paper “Rapid crystallization of silicon films using Joule heating of metal films” of T. Sameshima et al, App. Phys. A, A 73, p. 419-423 (2001).
In these proposals, a dielectric layer separates a thin film heater from the amorphous silicon. Current is passed through the heater element in pulses, for example 10 to 100 microseconds, which is sufficient to melt the underlying a-Si. However, the substrate remains cool, so that the process is effectively a low temperature process. The heaters are also used to activate implanted source and drain dopants.
These processes involve the treatment of the amorphous silicon layer by a thin film heating arrangement deposited over the amorphous silicon layer. After the heating process is completed, the layers defining the heating arrangement are removed, and the device is completed in conventional manner.
According to the invention, there is provided an active matrix electronic array device comprising an array of device elements each comprising at least one thin film transistor. The device comprises a substrate, a thin film conductive heater element arrangement provided over the substrate, an electrically insulating layer provided over the heater element arrangement, and a plurality of thin film layers defining the thin film transistors and provided over the electrically insulating layer. The thin film layers comprises a semiconductor layer, and at least portions of the semiconductor layer defining the thin film transistors are provided over the heater element arrangement.
The device of the invention has a heating arrangement integrated into the structure of the device. As the heating arrangement is provided beneath the device elements, it can remain in place, thereby avoiding the need to remove the layers of the heater element arrangement during processing. This simplifies the manufacturing process. The use of localized heating avoids the need for expensive laser processing techniques.
Retention of the heaters in the completed device can also be used during the lifetime of the device. For example, it has been shown that TFT degradation by hot carrier injection can be reversed (at least partially) by annealing. By heating the TFTs, it may be possible to extend their lifetime and hence that of the array device.
In addition, when making self-aligned low temperature polycrystalline silicon (LTPS) TFTs, the source/drain dopant to channel junction is very abrupt. This abrupt step in doping levels cannot be broadened to any great extent by laser activation of the dopants, as the gate conductor acts as a shield during the laser process. This abrupt change in doping levels leads to high fields at the drain of the TFTs, leading to reduced operating voltages which can be used over the lifetime of the device.
Junction broadening can be achieved by the use of the heater elements of the invention in order to help to reduce the high drain fields and hence, extend upwards the range of operating voltages at which the TFT can be used.
The substrate may comprise a glass or plastics substrate.
Typically, the electrically insulating layer comprises an oxide or nitride layer.
The heater element arrangement may comprise a patterned metal layer, for example a copper or platinum layer. It may comprise a first patterned metal layer patterned into regions for providing local heating and a second patterned electrically conductive and substantially transparent layer for providing electrical connection to the regions of the first patterned metal layer. This enables good electrical connection to be made to the heater element portions while maintaining a transparent substrate (other than at the location of the TFTs). This is appropriate for a transmissive display device.
The semiconductor layer may comprise amorphous silicon. In this case, the heating can be used to improve the lifetime or uniformity of the transistors. The semiconductor layer may preferably comprise polycrystalline silicon, wherein the crystallization has been effected by the heater element arrangement.
The invention can be used in many types of device, including active matrix display devices such as liquid crystal display devices.
The invention also provides a method of fabricating an active matrix electronic array device comprising an array of device elements, each of which comprises at least one thin film transistor. The method comprises the following steps of: forming a thin film conductive heater element arrangement over a substrate, forming an electrically insulating layer over the heater element arrangement, forming one or more layers over the electrically insulating layer, which comprises at least an amorphous silicon semiconductor layer, heating the semiconductor layer to crystallize at least portions of the layer to form polycrystalline silicon, and forming further layers thereby defining the device elements.
The invention also provides a method of operating an active matrix electronic array device comprising an array of device elements, each of which comprises at least one thin film transistor. The method comprises the steps of: during the lifetime of the device after fabrication, performing heating of the thin film transistors using a thin film conductive heater element provided beneath the thin film transistors and integrated into the thin film structure of the device.
In this case, the heating can be performed for reducing voltage threshold drift of amorphous silicon transistors or for trimming thin film transistor characteristics.
The invention will become more fully understood from the detailed description given herein below illustration only, and thus is not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
The invention provides an active matrix electronic array device in which a thin film conductive heater element arrangement is provided over the substrate and beneath device elements. This can be used during manufacture for crystallization and/or during use of the device to alter device element characteristics.
The heater elements 10 are fabricated from metals such as platinum (Pt) or chromium (Cr). As shown in
As shown in
The amorphous silicon can be patterned to leave islands above the heater elements 10 as shown in
As shown in
The sample is then placed into an inert atmosphere and current is passed through the heater elements 10 to form polysilicon. TFT fabrication can then continue with deposition and patterning of the remaining layers i.e. gate oxide, gate metal, ion implantation, in conventional manner.
The heater elements are thus integrated into the structure of the device and they are not removed by subsequent processing, which simplifies the manufacturing process.
Determining the required operation of the heater elements to provide the desired heat transfer to the amorphous silicon layer will be routine to those skilled in the art. A pulsed voltage operation will typically be used. Furthermore, the dimensions (area and thickness) and materials for the heater elements will also be selected using standard considerations.
As mentioned above, an array of heater elements 10 will be provided, and
The example of
The use of the heater elements during the manufacturing process has been described above. However, retention of the heaters in the completed device can also be used during the lifetime of the device. For example, it has been shown that TFT degradation by hot carrier injection can be reversed (at least partially) by annealing. By heating the TFTs, it may be possible to extend their lifetime and hence that of the array device.
In addition, when making self-aligned low temperature polycrystalline silicon (LTPS) TFTs, the source/drain dopant to channel junction is very abrupt This abrupt step in doping levels cannot be broadened to any great extent by laser activation of the dopants, as the gate conductor acts as a shield during the laser process. This abrupt change in doping levels leads to high fields at the drain of the TFTs, leading to reduced operating voltages which can be used over the lifetime of the device.
Junction broadening can be achieved by the use of the heater elements of the invention in order to help to reduce the high drain fields and hence, extend upwards the range of operating voltages at which the TFT can be used.
The invention is applicable to the fabrication of LTPS on glass and plastics, for applications such as active matrix display devices but also other array devices, such as image sensors.
The use of the integrated heaters during the lifetime of the device can extend the applicability of the invention to uses where the heater elements are not required for crystallization. For example, the heating of amorphous silicon TFTs can be used to reduce threshold voltage drift.
The localized heating can also be used to trim TFT characteristics, to improve uniformity of device characteristics. For example for mobile displays, the trimming of a-Si or poly-Si TFT characteristics can be performed during battery recharging. This prevents the heater elements using battery power during normal operation.
The dielectric layer 16 will need to withstand the high localized temperatures required for melting the amorphous silicon.
As mentioned above, the invention can be applied to many different array devices, and active matrix liquid crystal displays are one example. By way of example therefore,
As shown in
The use of polycrystalline silicon TFTs can enable the integration of the row and/or column driver circuitry onto the same substrate and in the same technology as the pixel array, and this invention provides a low cost process for forming the polycrystalline silicon. Alternatively, the use of amorphous silicon provides a lower cost fabrication process for the pixel array, and the invention can enable the useful lifetime of an amorphous silicon pixel array to be prolonged.
Numerous variations will be apparent to those skilled in the art.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6232142, | Dec 09 1997 | Seiko Epson Corporation | Semiconductor device and method for making the same, electro-optical device using the same and method for making the electro-optical device, and electronic apparatus using the electro-optical device |
6297080, | Nov 09 1998 | LG DISPLAY CO , LTD | Method of crystallizing a silicon film and a method of manufacturing a liquid crystal display apparatus |
20030085439, | |||
20060154456, | |||
20070217289, | |||
CN1460885, | |||
EP1017100, | |||
EP1365277, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 08 2005 | TPO Hong Kong Holding Limited | (assignment on the face of the patent) | / | |||
Jun 09 2009 | GREEN, PETER W | Koninklijke Philips Electronics NV | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022814 | /0215 | |
Jan 20 2010 | Koninklijke Philips Electronics N V | TPO Hong Kong Holding Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023891 | /0985 | |
Dec 12 2014 | TPO Hong Kong Holding Limited | INNOLUX HONG KONG HOLDING LIMITED | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 050662 | /0619 | |
Jul 14 2019 | Innolux Corporation | INNOLUX HONG KONG HOLDING LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050704 | /0082 | |
Jul 14 2019 | INNOLUX HONG KONG HOLDING LIMITED | Innolux Corporation | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR ASSIGNEE PREVIOUSLY RECORDED AT REEL: 050704 FRAME: 0082 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 050991 | /0313 | |
Jul 14 2019 | INNOLUX HONG KONG HOLDING LIMITED | Innolux Corporation | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE ASSIGNOR PREVIOUSLY RECORDED AT REEL: 050704 FRAME: 0082 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 050991 | /0872 |
Date | Maintenance Fee Events |
Dec 01 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 30 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 30 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 31 2014 | 4 years fee payment window open |
Dec 01 2014 | 6 months grace period start (w surcharge) |
May 31 2015 | patent expiry (for year 4) |
May 31 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 31 2018 | 8 years fee payment window open |
Dec 01 2018 | 6 months grace period start (w surcharge) |
May 31 2019 | patent expiry (for year 8) |
May 31 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 31 2022 | 12 years fee payment window open |
Dec 01 2022 | 6 months grace period start (w surcharge) |
May 31 2023 | patent expiry (for year 12) |
May 31 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |