A power supply adapter is provided. The power supply adapter includes a power converter circuit configured to generate a regulated voltage signal. The power converter circuit includes a rectifier coupled with ac power blades. A regulator circuit is coupled with the rectifier. A transformer is coupled with the regulator circuit. The transformer includes a primary and a secondary. The transformer is coupled with the regulator circuit via the primary. An output circuit is coupled with the secondary of the transformer. The output circuit includes an output capacitor. A flexible contact is coupled with each of a first and a second printed circuit board and flexibly biased to couple with a proximate end of the ac power blades. The adapter includes an EMI shield substantially surrounding a connector receptacle. The power converter circuit can include a forward or a flyback power converter. The transformer can include a planar format transformer coupled with the first or the second PCB. The transformer can include a metallic core of a ferrite material. The transformer core can be coupled with the EMI shield to provide thermal spreading. The adapter can include an enclosure for housing the power converter circuit. The enclosure includes a thermally conductive potting material substantially filling an empty space of an interior of the enclosure.

Patent
   7978489
Priority
Aug 03 2007
Filed
Aug 04 2008
Issued
Jul 12 2011
Expiry
Nov 10 2029
Extension
463 days
Assg.orig
Entity
Large
36
84
all paid
43. A power supply adapter comprising:
a power converter circuit configured to generate a regulated voltage signal, the power converter circuit including,
a rectifier coupled with ac power blades;
a regulator circuit coupled with the rectifier;
a transformer coupled with the regulator circuit, the transformer including a primary and a secondary, the transformer being coupled with the regulator circuit via the primary; and
a flexible contact coupled with each of a first and a second printed circuit board and flexibly biased to couple with a proximate end of the ac power blades.
22. A power supply adapter comprising:
a power converter circuit configured to generate a regulated voltage signal, the power converter circuit including,
a rectifier coupled with ac power blades;
a regulator circuit coupled with the rectifier;
a transformer coupled with the regulator circuit, the transformer including a primary and a secondary, the transformer being coupled with the regulator circuit via the primary;
an output circuit coupled with the secondary of the transformer; and
a flexible contact coupled with each of a first and a second printed circuit board and flexibly biased to couple with a proximate end of the ac power blades.
1. A power supply adapter comprising:
a power converter circuit configured to generate a regulated voltage signal, the power converter circuit including,
a rectifier coupled with ac power blades;
a regulator circuit coupled with the rectifier;
a transformer coupled with the regulator circuit, the transformer including a primary and a secondary, the transformer being coupled with the regulator circuit via the primary;
an output circuit coupled with the secondary of the transformer, the output circuit including an output capacitor; and
a flexible contact coupled with each of a first and a second printed circuit board and flexibly biased to couple with a proximate end of the ac power blades.
2. The adapter of claim 1, further comprising an EMI shield comprising a sheet of conductive material substantially surrounding a connector receptacle, the EMI shield being coupled between the first and the second PCB.
3. The adapter of claim 2, wherein the EMI shield comprises one of a metallic sheet or a metallic sheet mesh.
4. The adapter of claim 1, wherein the power converter circuit comprises one of a forward or a flyback power converter.
5. The adapter of claim 1, wherein the regulator circuit includes an inductor for coupling a rectified voltage signal from the rectifier to a regulator switch.
6. The adapter of claim 5, wherein the regulator switch comprises a semiconductor switch.
7. The adapter of claim 1, wherein the transformer comprises a planar format transformer coupled with one of the first or the second PCB.
8. The adapter of claim 7, wherein the transformer includes a metallic core.
9. The adapter of claim 8, wherein the metallic core comprises a ferrite material.
10. The adapter of claim 9, wherein the transformer core is coupled with an EMI shield comprising one of a metallic sheet or a metallic sheet mesh to provide thermal spreading.
11. The adapter of claim 1, wherein the flexible contact comprises a metallic conductor.
12. The adapter of claim 1, wherein the flexible contact is configured to electrically couple an ac power source from the ac power blades to the power converter circuit.
13. The adapter of claim 1, further comprising an enclosure comprising a first section including a predominately planar structure, the ac power blades, the first and the second printed circuit board (PCB) and a second section of the enclosure coupled with the first section, the first and the second PCB including a connector receptacle coupled there between, the second section comprising a predominately cubical structure for enclosing the power converter circuit.
14. The adapter of claim 13, wherein the first section of enclosure includes openings for receiving the ac power blades and a first and a second slot for receiving the first and the second PCB.
15. The adapter of claim 13, wherein the second section of the enclosure is configured for enclosing the first and the second PCB, an EMI shield and the connector receptacle.
16. The adapter of claim 13, wherein the second section of the enclosure includes an aperture aligned with the connector receptacle, the aperture being configured for receiving a power connector.
17. The adapter of claim 16, wherein the connector receptacle includes conductive leads for providing the regulated voltage signal to the power connector.
18. The adapter of claim 13, wherein the connector receptacle comprises a universal serial bus (USB) connector receptacle.
19. The adapter of claim 13, wherein the first and the second section comprise a non-metallic material.
20. The adapter of claim 19, wherein the non-metallic material comprises a plastic material.
21. The adapter of claim 13, wherein the enclosure includes a thermally conductive potting material substantially filling an empty space of an interior of the enclosure.
23. The adapter of claim 22, further comprising an EMI shield comprising a sheet of conductive material substantially surrounding a connector receptacle, the EMI shield being coupled between the first and the second PCB.
24. The adapter of claim 23, wherein the EMI shield comprises one of a metallic sheet or a metallic sheet mesh.
25. The adapter of claim 22, wherein the power converter circuit comprises one of a forward or a flyback power converter.
26. The adapter of claim 22, wherein the regulator circuit includes an inductor for coupling a rectified voltage signal from the rectifier to a regulator switch.
27. The adapter of claim 26, wherein the regulator switch comprises a semiconductor switch.
28. The adapter of claim 22, wherein the transformer comprises a planar format transformer coupled with one of the first or the second PCB.
29. The adapter of claim 28, wherein the transformer includes a metallic core.
30. The adapter of claim 29, wherein the metallic core comprises a ferrite material.
31. The adapter of claim 30, wherein the transformer core is coupled with an EMI shield comprising one of a metallic sheet or a metallic sheet mesh to provide thermal spreading.
32. The adapter of claim 22, wherein the flexible contact comprises a metallic conductor.
33. The adapter of claim 22, wherein the flexible contact is configured to electrically couple an ac power source from the ac power blades to the power converter circuit.
34. The adapter of claim 22, further comprising an enclosure comprising a first section including a predominately planar structure, the ac power blades, the first and the second printed circuit board (PCB) and a second section of the enclosure coupled with the first section, the first and the second PCB including a power cable coupled there between, the second section comprising a predominately cubical structure for enclosing the power converter circuit.
35. The adapter of claim 34, wherein the first section of enclosure includes openings for receiving the ac power blades and a first and a second slot for receiving the first and the second PCB.
36. The adapter of claim 34, wherein the second section of the enclosure is configured for enclosing the first and the second PCB, an EMI shield and the power cable.
37. The adapter of claim 34, wherein the second section of the enclosure includes an aperture aligned with the power cable, the aperture being configured for receiving a mounting screw and a mounting nut of the power cable.
38. The adapter of claim 37, wherein the power cable includes conductive leads for providing the regulated voltage signal to an attached electronic device.
39. The adapter of claim 22, wherein the power cable comprises a universal serial bus (USB) power cable.
40. The adapter of claim 22, wherein the first and the second section comprise a non-metallic material.
41. The adapter of claim 40, wherein the first and the second section comprise a plastic material.
42. The adapter of claim 22, wherein the enclosure includes a thermally conductive potting material substantially filling an empty space of an interior of the enclosure.
44. The adapter of claim 43, further comprising an EMI shield comprising a sheet of conductive material substantially surrounding a connector receptacle, the EMI shield being coupled between the first and the second PCB.
45. The adapter of claim 44, wherein the EMI shield comprises one of a metallic sheet or a metallic sheet mesh.
46. The adapter of claim 43, wherein the power converter circuit comprises one of a forward or a flyback power converter.
47. The adapter of claim 43, wherein the regulator circuit includes an inductor for coupling a rectified voltage signal from the rectifier to a regulator switch.
48. The adapter of claim 47, wherein the regulator switch comprises a semiconductor switch.
49. The adapter of claim 43, wherein the transformer comprises a planar format transformer coupled with one of the first or the second PCB.
50. The adapter of claim 49, wherein the transformer includes a metallic core.
51. The adapter of claim 50, wherein the metallic core comprises a ferrite material.
52. The adapter of claim 51, wherein the transformer core is coupled with an EMI shield comprising one of a metallic sheet or a metallic sheet mesh to provide thermal spreading.
53. The adapter of claim 43, wherein the flexible contact comprises a metallic conductor.
54. The adapter of claim 43, wherein the flexible contact is configured to electrically couple an ac power source from the ac power blades to the power converter circuit.
55. The adapter of claim 43, further comprising an enclosure comprising a first section including a planar structure having a flat outer periphery, the ac power blades and a second section of the enclosure coupled with the first section, the second section comprising a predominately cubical structure for enclosing the power converter circuit and the first and the second printed circuit board (PCB), the first and the second PCB including a connector receptacle coupled there between.
56. The adapter of claim 43, wherein the first section of enclosure includes openings for receiving the ac power blades and the second section includes a first and a second set of slots for receiving the first and the second PCB.
57. The adapter of claim 43, wherein the second section of the enclosure is configured for enclosing the first and the second PCB, an EMI shield, and the connector receptacle.
58. The adapter of claim 43, wherein the second section of the enclosure includes an aperture aligned with the connector receptacle, the aperture being configured for receiving a power connector.
59. The adapter of claim 58, wherein the connector receptacle includes conductive leads for providing the regulated voltage signal to the power connector.
60. The adapter of claim 43, wherein the connector receptacle comprises a universal serial bus (USB) connector receptacle.
61. The adapter of claim 43, wherein the first and the second section comprise a non-metallic material.
62. The adapter of claim 61, wherein the first and the second section comprise a plastic material.
63. The adapter of claim 43, wherein the enclosure includes a thermally conductive potting material substantially filling an empty space of an interior of the enclosure.

This patent application claims priority under 35 U.S.C. 119(e) of the co-pending U.S. Provisional Pat. App. No. 60/963,477, filed Aug. 3, 2007, entitled “INTEGRATED ENCLOSURE FOR POWER CONVERTERS”, which is hereby incorporated by reference.

The present invention relates to the field of power supplies. More particularly, the present invention relates to an integrated enclosure for a power supply adapter.

In many applications a power supply apparatus includes a separate enclosure for housing a pair of AC power blades and also includes another container for enclosing the electrical components of a power converter circuit. The current power converters poorly and inefficiently utilize the three-dimensional space of the enclosure for housing the power converter. This leads to a poor watt per cubic inch ratio for the power converter. Current power converters also make inefficient uses of the enclosure for EMI shielding and thermal dissipation.

Accordingly, it is desirable to create an integrated enclosure for a power converter circuit with a greatly increased efficiency and cost.

In accordance with a first aspect of the present invention, a power supply adapter is provided. The power supply adapter includes a power converter circuit configured to generate a regulated voltage signal. The power converter circuit includes a rectifier coupled with AC power blades. A regulator circuit is coupled with the rectifier. A transformer is coupled with the regulator circuit. The transformer includes a primary and a secondary. The transformer is coupled with the regulator circuit via the primary. An output circuit is coupled with the secondary of the transformer. The output circuit includes an output capacitor. A flexible contact is coupled with each of a first and a second printed circuit board and flexibly biased to couple with a proximate end of the AC power blades.

The adapter can include an EMI shield of a sheet of conductive material substantially surrounding a connector receptacle. The EMI shield is coupled between the first and the second PCB. The EMI shield can include a metallic sheet or a metallic sheet mesh. The power converter circuit can include a forward or a flyback power converter. The transformer can include a planar format transformer coupled with the first or the second PCB. The transformer can include a metallic core of a ferrite material. The transformer core can be coupled with the EMI shield to provide thermal spreading.

The adapter can include an enclosure of a first section including a predominately planar structure, the AC power blades, the first and the second printed circuit board (PCB) and a second section of the enclosure coupled with the first section. The first and the second PCB include a connector receptacle coupled in between. The second section includes a predominately cubical structure for enclosing the power converter circuit. The enclosure includes a thermally conductive potting material substantially filling an empty space of an interior of the enclosure.

In yet another embodiment of the invention, a captured power cable is substituted in place of the connector receptacle. In still another embodiment, the interface can comprise a flat outer periphery of the first section and a recessed edge of the second section for securely coupling the first section with the second section.

Other features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.

The novel features of the invention are set forth in the appended claims. However, for purposes of explanation, several embodiments of the invention are set forth in the following figures.

FIG. 1A illustrates a perspective view of a power supply adapter in accordance with an embodiment of the invention.

FIG. 1B illustrates another perspective view of a power supply adapter in accordance with an embodiment of the invention.

FIG. 2A illustrates a perspective view of a power supply adapter in accordance with an embodiment of the invention.

FIG. 2B illustrates a cross-sectional view of a power supply adapter, taken along the line 2B-2B of FIG. 2A, in accordance with an embodiment of the invention.

FIG. 2C illustrates a perspective view of a power supply adapter with a second section removed in accordance with an embodiment of the invention.

FIG. 2D illustrates a partial enlarged perspective view of a power supply adapter in accordance with an embodiment of the invention.

FIG. 2E illustrates a partial cross-sectional view of a power supply adapter, taken along the line 2E-2E of FIG. 2A, in accordance with an embodiment of the invention.

FIG. 3A illustrates a perspective view of a power supply adapter in accordance with an alternate embodiment of the invention.

FIG. 3B illustrates a cross-sectional view of a power supply adapter, taken along the line 3B-3B of FIG. 3A, in accordance with an alternate embodiment of the invention.

FIG. 3C illustrates a partial cross-sectional view of a power supply adapter, taken along the line 3C-3C of FIG. 3A, in accordance with an alternate embodiment of the invention.

FIG. 3D illustrates a partial cross-sectional view of a power supply adapter, taken along the line 3D-3D of FIG. 3A, in accordance with an alternate embodiment of the invention.

FIG. 3E illustrates a partial exploded view of a power supply adapter, taken along the line 3D-3D of FIG. 3A, in accordance with an alternate embodiment of the invention.

FIG. 3F illustrates a partial cross-sectional view of a power supply adapter, taken along the line 3F-3F of FIG. 3A, in accordance with an alternate embodiment of the invention.

FIG. 4A illustrates a perspective view of another alternate embodiment of the invention.

FIG. 4B illustrates a cross-sectional view of a power supply adapter, taken along the line 4B-4B of FIG. 4A, in accordance with another alternate embodiment of the invention.

FIG. 4C illustrates a perspective view of novel features of another alternate embodiment of the invention.

FIG. 4D illustrates a partial cross-sectional view of a power supply adapter, taken along the line 4D-4D of FIG. 4A, in accordance with another alternate embodiment of the invention.

FIG. 4E illustrates a partial cross-sectional view of a power supply adapter, taken along the line 4E-4E of FIG. 4A, in accordance with another alternate embodiment of the invention.

In the following description, numerous details and alternatives are set forth for the purpose of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.

FIGS. 1A and 1B show perspective views of a power supply adapter 100 in accordance with an embodiment of the invention. The adapter 100 provides maximum use of a three-dimension space occupied by the power supply adapter 100 and provides thermal dissipation and EMI shielding using novel features as described below. The adapter 100 generally includes a first section 102 of an enclosure 101 and a second section 104 of the enclosure 101 coupled with the first section 102. AC power blades 106 are coupled with the first section 102. The second section 104 includes an aperture 108 in alignment with a connector receptacle 110. The connector receptacle 110 is configured for receiving a power connector (not shown). The first section 102 and the second section 104 are coupled together at an interface 105, which strengthens the coupling of the first and the second section 102, 104. The adapter 100 provides the enclosure 101 for a power converter circuit (not shown) as well as functioning as the enclosure 101 for the AC power blades 106. The first and second sections 102, 104 together efficiently dissipate thermal energy of the power converter circuit. The adapter 100 is inserted into an AC power source via the AC power blades 106. The power connector (not shown) can be inserted within the connector receptacle 110. In an exemplary embodiment, the connector receptacle 110 comprises a universal serial bus (USB) connector receptacle. The power connector includes an attached power cable for powering a computer, a computer accessory, mp3 player, cell phone, or other electronic devices.

FIGS. 2A through 2E show an exemplary embodiment of a power supply adapter 200 in accordance with an embodiment of the invention. FIG. 2B shows a cross-sectional view of the power supply adapter 200, in accordance with an embodiment of the invention. The adapter 200 is configured as an integrated enclosure for a power converter circuit. The adapter 200 generally includes a first section of an enclosure 202 and a second section of an enclosure 204 coupled with the first section 202. AC power blades 206 are coupled with the first section 202. The second section 204 includes an aperture 208 in alignment with a connector receptacle 210. The connector receptacle 210 is configured for receiving a power connector (not shown). The first section 202 and the second section 204 are coupled together at an interface 205, which strengthens the coupling of the first section 202 to the second section 204.

FIGS. 2C and 2D show additional details of the power supply adapter 200 in accordance with an embodiment of the invention. FIG. 2C shows a perspective view of the power supply adapter 200 with the second section 204 removed to better show details of the first section 202. The first section 202 of the enclosure 201 generally comprises a predominately planar structure and includes the AC power blades 206, openings 207 for receiving the AC power blades 206, a first and a second printed circuit board (PCB) 230, 232, respectively, a first and a second PCB slot 238, 240, respectively, a power converter circuit 215 (FIG. 2B), a connector receptacle 210 and an electromagnetic interference (EMI) shield 224.

The first section 202 includes a raised periphery surrounding the predominately planar structure. The predominately planar structure provides a platform suitable for attaching the first and the second PCB 230, 232 and attaching elements of the power converter circuit 215 that will be described below. In an exemplary embodiment, the first section 202 comprises a generally rectangular shape, here shown with rounded corners. In an alternative embodiment, the first section 202 can comprise a generally circular shape. In still another embodiment, the first section 202 can comprise various other shapes that can couple with an appropriately shaped second section 204. The first section 202 preferably comprises a suitable durable non-metallic, electrically insulating material. In an exemplary embodiment, first section 202 comprises a plastic material. The plastic material can include a property that allows a high thermal dissipation through the wall of the first section 202. A thickness of the wall of the first section 202 can be chosen to suit a specific design requirement. In an exemplary embodiment, the thickness of the wall of the first section 202 comprises 1.8 mm.

The openings 207 for receiving the AC power blades 206 preferably comprise fitted holes. In this way, the openings 207 and the first section 202 provide support for attaching the AC power blades 206 to the first section 202. The AC power blades 206 comprise prongs or terminals made of a suitable durable conductor. In an exemplary embodiment, the AC power blades 206 comprise a metal. A person of skill in the art will appreciate the variety of possible metals suitable for the AC power blades 206. In an alternative embodiment, the first section 202 can include a ground prong or ground terminal (not shown) in addition to the AC power blades 206. The ground terminal can be supported by forming an additional opening in the first section 202. The first section 202 can be formed using methods known to a person of skill in the art such as by a molding or an extrusion process. Further, the first section 202 can include a layer of conductive material applied on an interior surface of the first section 202 to provide additional EMI shielding.

The first PCB slot 239 comprises a pair of raised edges 238 protruding from the first section 202. The second PCB slot 241 comprises a corresponding pair of raised edges 240 protruding from the first section 202. The pairs of raise edges 238 and 240 provide surfaces for receiving and supporting the first and the second printed circuit boards 230, 232. The first and the second PCB slots 239, 241 are formed on the interior surface of the predominately planar structure of the first section 202. The first and the second PCB slots 239, 241 are preferably configured on the first section 202 opposite and parallel to each other.

The first and the second printed circuit board 230, 232 preferably comprise planar, predominately rectangular structures of a size appropriate for fitting securely within the first and the second PCB slots 239, 241. The first and the second PCB 230, 232 include a first and a second spring contact 233, 234 respectively coupled therewith. Typically, the first and the second PCB 230, 232 comprise a non-conductive substrate patterned with conductive pathways or traces. The first and the second PCB 230, 232 provide a mechanical support and an electrical interconnection for electronic components of the power converter circuit 215 which are mounted thereon. The electrical interconnection of the electronic components of the power converter circuit 215 is provided by the conductive traces. The mechanical support is provided by holes or vias formed on the first and second PCBs 230, 232. The first and the second PCB 230, 232 are configured opposite and parallel to each other when the first and the second PCB 230, 232 are attached within the first and second PCB slots 239, 241.

The first and the second spring contacts 233, 234 comprise suitable conductors coupled on a periphery of the first and the second PCB 230, 232. The first and the second spring contacts 233, 234 are flexibly biased to securely couple with a proximate end 206A of the AC power blades 206. The first and the second spring contacts 233, 234 provide an electrical coupling of the AC power source through the AC power blades 206 to the power converter circuit 215. The first and the second spring contacts 233, 234 comprise a suitable flexible, durable and conductive material. In an exemplary embodiment, the spring contacts 233, 234 comprise a metallic material of appropriate thickness.

FIG. 2B shows certain elements of the power converter circuit 215. The power converter circuit 215 comprises an input rectifier 220, a regulator circuit 222, an output transformer 216 and an output capacitor 218. In an exemplary embodiment, the power converter circuit 215 is configured as a forward or a flyback power converter. A person of skill in the art will appreciate that several other power converter topologies exist, any of which that can be substituted for the topologies discussed. The input rectifier 220 converts an AC power source entering through the AC power blades 206 into a rectified voltage signal. The rectified voltage signal is coupled with the regulator circuit 222, which generates a regulated voltage signal. The regulated voltage signal is a constant voltage that is coupled to the output transformer 216. The regulator circuit 222 can include an inductor for coupling the rectified voltage signal from the input rectifier 220 to a regulator switch, such as a suitable transistor. In another embodiment, the regulator circuit 222 comprises a pulse width modulator circuit. The output transformer 216 receives the regulated voltage signal and provides electromagnetic coupling of the regulated voltage signal to the output capacitor 218, such that a regulated DC voltage is provided at the connector receptacle 210. The output transformer 216 comprises a suitable transformer which is easily integrated within the enclosure 201. The output transformer 216 includes a secondary and a primary. The primary can be coupled with the regulator circuit 222 and the secondary can be coupled with the output capacitor 218. In an exemplary embodiment, the output transformer 216 comprises a planar format transformer. The output transformer 216 can include a ferrite core. As a planar format transformer, the output transformer 216 includes electromagnetic properties that provide shielding of EMI signals which can be generated by the power converter circuit 215. A person of skill in the art will appreciate that the planar format transformer 216 allows a low-height profile and provides a high power density.

The connector receptacle 210 comprises an interface for receiving and attaching with a power connector (not shown). The connector receptacle 210 is coupled with the first and the second PCB 230, 232. The connector receptacle 210 includes conductive leads 212A-D for providing a regulated DC voltage signal to the attached power connector. In an exemplary embodiment, the connector receptacle comprises a universal serial bus (USB) receptacle. A person of skill in the art can appreciate that other types of connector receptacles for receiving other types of power connectors can be substituted for the USB connector receptacle 210.

The EMI shield 224 comprises a rigid or semi-rigid sheet of conductive material for providing a barrier for EMI generated by the power converter circuit 215. The EMI shield 224 can also provide structural support for the connector receptacle 210 and the electronic components of the power converter circuit 215. The EMI shield 224 is coupled with the first and the second PCB 230, 232. The EMI shield 224 substantially surrounds the connector receptacle 210 and prevents EMI transfer from the power converter circuit 215 ‘up-line’ through the attached power connector (not shown). Further, the EMI shield 224 inhibits EMI from radiating to a surrounding area beyond the adapter 200. The EMI shield 224 comprises any of a variety of conductive materials known to a person of skill in the art. In an exemplary embodiment, the EMI shied 224 comprises a metallic material. The metallic material can comprise a type of sheet metal, or alternatively a sheet mesh. Further, the EMI shield 224 provides a thermal shielding and thermal dissipation function by radiating thermal energy generated by the power converter circuit 215. In one embodiment, the EMI shield 224 can be coupled with the ferrite core of the output transformer 216 to provide a thermal spreading function.

The second section 204 of the enclosure 201 generally includes a predominately cubical structure 204 having a uniform interior surface. The second section 204 includes the aperture 208 in alignment with the connector receptacle 210. The aperture 208 allows access for the connector receptacle 210 to receive the power connector (not shown). The second section 204 provides a suitable structure for enclosing the first section 202 including the attached components described above. In one embodiment, the second section 204 can include a thermally conductive potting material that substantially fills an empty space of an interior of the second section 204 and the enclosure 201. The potting material can thermally couple heat from heat sources, such as the output transformer 216 to the EMI shield 224 from which it can radiate into an air channel of the connector receptacle 210. In an alternative embodiment, the second section 204 can comprise a generally cylindrical shape. In still another embodiment, the second section 204 can comprise various other shapes that can couple with an appropriately shaped first section 202. The second section 204 comprises a suitable durable non-metallic, electrically insulating material. In an exemplary embodiment, second section 204 comprises a plastic material. The plastic material can include a property that allows a high thermal dissipation through the wall of the second section 204. A thickness of the wall of the second section 204 can be chosen to suit a specific design requirement. In an exemplary embodiment, the thickness of the wall of the second section 204 comprises 1.8 mm.

In an alternative embodiment, the second section 204 can include a first and a second set of PCB slots (not shown) each comprising a first and a second pair of fitted slots each comprising a pair of raised edges protruding from the interior surface of the second section 204. The first and the second set of PCB slots (not shown) provide surfaces for receiving and supporting the first and the second PCB 230, 232. The first and the second set of PCB slots (not shown) can be configured on the interior surfaces of the second section 204 that are opposing each other so that the first pair of fitted slots are configured opposite and parallel to each other and the second pair of fitted slots are also configured opposite and parallel to each other.

The second section 204 can be formed using methods known to a person of skill in the art such as by a molding or an extrusion process. Further, the second section 204 can include a layer of conductive material applied on the interior surface to provide additional EMI shielding.

As shown in FIG. 2B, the interface 205 comprises a junction including a concave surface 202A and a convex surface 204A. The concave surface 202A and the convex surface 204A are configured to provide secure coupling of the first section 202 to the second section 204. The interface 205 can be further strengthened by applying a suitable adhesive between the concave and the convex surface 202A, 204A. In an alternative embodiment, the interface 205 can be configured such that the concave and the convex surface 202A, 204A are interlocking; secure coupling of the first and the second section 202, 204 are achieved by using a sufficient force to press the first and the second section 202, 204 together.

FIGS. 3A through 3F show an alternative embodiment of a power supply adapter 300 in accordance with an embodiment of the invention. FIG. 3B shows a cross-sectional view of the power supply adapter 300, in accordance with an embodiment of the invention. The adapter 300 is configured as an integrated enclosure for a power converter circuit. The adapter 300 generally includes a first section of an enclosure 302 and a second section of an enclosure 304 coupled with the first section 302. AC power blades 306 are coupled with the first section 302. The second section 304 includes an aperture 308 in alignment with a captured power cable 310. The first section 302 and the second section 304 are coupled together at an interface 305, which strengthens the coupling of the first section 302 to the second section 304.

The first section 302 of the enclosure 301 is similar to the previous embodiment and comprises a predominately planar structure. The first section 302 generally includes the AC power blades 306, openings 307 for receiving the AC power blades 306, a first and a second printed circuit board (PCB) 330, 332, respectively, a first and a second PCB slot 339, 341, respectively, a power converter circuit 315 (FIG. 3B), a captured power cable 310 and an electromagnetic interference (EMI) shield 324.

The first section 302 includes a raised periphery surrounding the predominately planar structure. The predominately planar structure provides a platform suitable for attaching the first and the second PCB 330, 332 and attaching elements of the power converter circuit 315 that will be described below. In an exemplary embodiment, the first section 302 comprises a generally rectangular shape, here shown with rounded corners. In an alternative embodiment, the first section 302 can comprise a generally circular shape. In still another embodiment, the first section 302 can comprise various other shapes that can couple with an appropriately shaped second section 304. The first section 302 comprises a suitable durable non-metallic, electrically insulating material. In an exemplary embodiment, first section 302 comprises a plastic material. The plastic material can include a property that allows a high thermal dissipation through the wall of the first section 302. A thickness of the wall of the first section 302 can be chosen to suit a specific design requirement. In an exemplary embodiment, the thickness of the wall of the first section 302 comprises 1.8 mm.

The openings 307 for receiving the AC power blades 306 preferably comprise fitted holes. In this way, the openings 307 and the first section 302 provide support for attaching the AC power blades 306 to the first section 302. The AC power blades 306 comprise prongs or terminals made of a suitable durable conductor. In an exemplary embodiment, the AC power blades 306 comprise a metal. A person of skill in the art will appreciate the variety of possible metals suitable for the AC power blades 306. In an alternative embodiment, the first section 302 can include a ground prong or ground terminal (not shown) in addition to the AC power blades 306. The ground terminal can be supported by forming an additional opening in the first section 302. The first section 302 can be formed using methods known to a person of skill in the art such as by a molding or an extrusion process. Further, the first section 302 can include a layer of conductive material applied on an interior surface of the first section 302 to provide additional EMI shielding.

The first and the second PCB slots 339, 341 are similar to the previous embodiment. The first PCB slot comprises a pair of raised edges 338 protruding from the first section 302. The second PCB slot 341 comprises a corresponding pair of raised edges 340 protruding from the first section 202. The pairs of raise edges 338 and 340 provide surfaces for receiving and supporting the first and the second printed circuit boards 330, 332. The first and the second PCB slots 339, 341 are formed on the interior surface of the predominately planar structure of the first section 302. The first and the second PCB slots 339, 341 are preferably configured on the first section 302 opposite and parallel to each other.

The first and the second printed circuit board 330, 332 preferably comprise planar, predominately rectangular structures of a size appropriate for fitting securely within the first and the second PCB slots 339, 341. The first and the second PCB 330, 332 include a first and a second spring contact (not shown) respectively coupled therewith similar to the previous embodiment. Typically, the first and the second PCB 330, 332 comprise a non-conductive substrate patterned with conductive pathways or traces. The first and the second PCB 330, 332 provide a mechanical support and an electrical interconnection for electronic components of the power converter circuit 315 which are mounted thereon. The electrical interconnection of the electronic components of the power converter circuit 315 is provided by the conductive traces. The mechanical support is provided by holes or vias formed on the first and second PCBs 330, 332. The first and the second PCB 330, 332 are configured opposite and parallel to each other when the first and the second PCB 330, 332 are attached within the first and second PCB slots 339, 341.

The first and the second spring contacts (not shown) comprise suitable conductors coupled on a periphery of the first and the second PCB 330, 332. The first and the second spring contacts are flexibly biased to securely couple with a proximate end of the AC power blades 306. The first and the second spring contacts provide an electrical coupling of the AC power source through the AC power blades 306 to the power converter circuit 315. The first and the second spring contacts comprise a suitable flexible, durable and conductive material. In an exemplary embodiment, the spring contacts comprise a metallic material of appropriate thickness.

FIG. 3B shows certain elements of the power converter circuit 315. The power converter circuit 315 comprises an input rectifier 320, a regulator circuit 322, an output transformer 316 and an output capacitor 318. In an exemplary embodiment, the power converter circuit 315 is configured as a forward or a flyback power converter. A person of skill in the art will appreciate that several other power converter topologies exist, any of which that can be substituted for the topologies discussed. The input rectifier 320 converts an AC power source entering through the AC power blades 306 into a rectified voltage signal. The rectified voltage signal is coupled with the regulator circuit 322, which generates a regulated voltage signal. The regulated voltage signal is a constant voltage that is coupled to the output transformer 316. The regulator circuit 322 can include an inductor for coupling the rectified voltage signal from the input rectifier 320 to a regulator switch, such as a suitable transistor. In another embodiment, the regulator circuit 322 comprises a pulse width modulator circuit. The output transformer 316 receives the regulated voltage signal and provides electromagnetic coupling of the regulated voltage signal to the output capacitor 318, such that a regulated DC voltage is provided at the captured power cable 310. The output transformer 316 comprises a suitable transformer which is easily integrated within the enclosure 301. The output transformer 316 includes a secondary and a primary. The primary can be coupled with the regulator circuit 322 and the secondary can be coupled with the output capacitor 318. In an exemplary embodiment, the output transformer 316 comprises a planar format transformer. The output transformer can include a ferrite core. As a planar format transformer, the output transformer 316 includes electromagnetic properties that provide shielding of EMI signals which can be generated by the power converter circuit 315. A person of skill in the art will appreciate that the planar format transformer 316 allows a low-height profile and provides a high power density.

The captured power cable 310 comprises an interface for coupling with an output node (not shown) of the power converter circuit 315. The captured power cable 310 generally includes a first and a second power conductor 315, 316, an outer sheath 312, an integrated mounting screw 311, and a mounting nut 314. A person of skill in the art will appreciate that the captured power cable 310 can further include other features which are not shown such as, a twisted pair data line, a drain wire, a conductive braid and a foil cover. The captured power cable 310 is coupled with the first and the second PCB 330, 332 via the power conductors 315, 316 for providing a regulated DC voltage signal to an electronic device attached with the captured power cable 310. In an exemplary embodiment, the captured power cable 310 comprises a universal serial bus (USB) capture power cable. A person of skill in the art can appreciate that other types of captured power cables can be substituted for the USB captured power cable 310.

The EMI shield 324 is similar to the previous embodiment and comprises a rigid or semi-rigid sheet of conductive material for providing a barrier for EMI generated by the power converter circuit 315. The EMI shield 324 can also provide structural support for the electronic components of the power converter circuit 315. The EMI shield 324 is coupled with the first and the second PCB 330, 332. The EMI shield 324 substantially surrounds the captured power cable 310 and prevents EMI transfer from the power converter circuit 315 ‘up-line’ through the captured power cable 310 to the attached electronic device. Further, the EMI shield 324 inhibits EMI from radiating to a surrounding area beyond the adapter 300. The EMI shield 324 comprises any of a variety of conductive materials known to a person of skill in the art. In an exemplary embodiment, the EMI shied 324 comprises a metallic material. The metallic material can comprise a type of sheet metal, or alternatively a sheet mesh. Further, the EMI shield 324 provides a thermal shielding and thermal dissipation function by radiating thermal energy generated by the power converter circuit 315. In one embodiment, the EMI shield 324 can be coupled with the ferrite core of the output transformer 316 to provide a thermal spreading function.

The second section 304 of the enclosure 301 generally includes a predominately cubical structure 304 having a uniform interior surface. The second section 304 includes the aperture 308 in alignment with the captured power cable 310. The aperture 308 allows access for the captured power cable 310 and provides an attachment structure for the integrated mounting screw 311, and the mounting nut 314. The second section 304 provides a suitable structure for enclosing the first section 302 including the attached components described above. In one embodiment, the second section 304 can include a thermally conductive potting material that substantially fills an empty space of an interior of the second section 304 and the enclosure 301. The potting material can thermally couple heat away from heat sources, such as the output transformer 316 to the EMI shield 324. In an alternative embodiment, the second section 304 can comprise a generally cylindrical shape. In still another embodiment, the second section 304 can comprise various other shapes that can couple with an appropriately shaped first section 302. The second section 304 comprises a suitable durable non-metallic, electrically insulating material. In an exemplary embodiment, second section 304 comprises a plastic material. The plastic material can include a property that allows a high thermal dissipation through the wall of the second section 304. A thickness of the wall of the second section 304 can be chosen to suit a specific design requirement. In an exemplary embodiment, the thickness of the wall of the second section 304 comprises 1.8 mm.

In an alternative embodiment, the second section 304 can include a first and a second set of PCB slots (not shown) each comprising a first and a second pair of fitted slots each comprising a pair of raised edges protruding from the interior surface of the second section 304. The first and the second set of PCB slots (not shown) provide surfaces for receiving and supporting the first and the second PCB 330, 332. The first and the second set of PCB slots (not shown) can be configured on the interior surfaces of the second section 304 that are opposing each other so that the first pair of fitted slots are configured opposite and parallel to each other and the second pair of fitted slots are also configured opposite and parallel to each other.

The second section 304 can be formed using methods known to a person of skill in the art such as by a molding or an extrusion process. Further, the second section 304 can include a layer of conductive material applied on the interior surface to provide additional EMI shielding.

As shown in FIG. 3B, the interface 305 comprises a junction including a concave surface 302A and a convex surface 304A. The concave surface 302A and the convex surface 304A are configured to provide secure coupling of the first section 302 to the second section 304. The interface 305 can be further strengthened by applying a suitable adhesive between the concave and the convex surface 302A, 304A. In an alternative embodiment, the interface 305 can be configured such that the concave and the convex surface 302A, 304A are interlocking; secure coupling of the first and the second section 302, 304 are achieved by using a sufficient force to press the first and the second section 302, 304 together.

FIGS. 4A through 4E show yet another exemplary embodiment of a power supply adapter 400 in accordance with an embodiment of the invention. FIG. 4B shows a cross-sectional view of the power supply adapter 400, in accordance with an embodiment of the invention. The adapter 400 is configured as an integrated enclosure for a power converter circuit. The adapter 400 generally includes a first section of an enclosure 402 and a second section of an enclosure 404 coupled with the first section 402. AC power blades 406 are coupled with the first section 402. The second section 404 includes an aperture 408 in alignment with a connector receptacle 410. The connector receptacle 410 is configured for receiving a power connector (not shown). The first section 402 and the second section 404 are coupled together at an interface 405, which strengthens the coupling of the first section 402 to the second section 404.

The first section 402 of the enclosure 401 generally comprises a predominately planar structure and includes the AC power blades 406, openings 407 for receiving the AC power blades 406, and spring contacts 433, 434.

The predominately planar structure of the first section 402 includes a flat outer periphery 402A. In an exemplary embodiment, the first section 402 includes a generally rectangular shaped outer periphery 402A, here shown with rounded corners. In an alternative embodiment, the first section 402 can include a generally circular shaped outer periphery. In still another embodiment, the first section 402 can comprise various other shapes that can couple with an appropriately shaped second section 404. The first section 402 comprises a suitable durable non-metallic, electrically insulating material. In an exemplary embodiment, first section 402 comprises a plastic material. The plastic material can include a property that allows a high thermal dissipation through the wall of the first section 402. A thickness of the wall of the first section 402 can be chosen to suit a specific design requirement. In an exemplary embodiment, the thickness of the wall of the first section 402 comprises 1.8 mm.

The openings 407 for receiving the AC power blades 406 preferably comprise fitted holes. In this way, the openings 407 and the first section 402 provide support for attaching the AC power blades 406 to the first section 402. The AC power blades 406 comprise prongs or terminals made of a suitable durable conductor. In an exemplary embodiment, the AC power blades 406 comprise a metal. A person of skill in the art will appreciate the variety of possible metals suitable for the AC power blades 406. In an alternative embodiment, the first section 402 can include a ground prong or ground terminal (not shown) in addition to the AC power blades 406. The ground terminal can be supported by forming an additional opening in the first section 402. The first section 402 can be formed using methods known to a person of skill in the art such as by a molding or an extrusion process. Further, the first section 402 can include a layer of conductive material applied on an interior surface of the first section 402 to provide additional EMI shielding.

The first and the second spring contacts 433, 434, respectively, comprise suitable conductors coupled to the interior surface of the first section 402. The first and the second spring contacts 433, 434 are coupled to the first section 402 to protrude outwardly from the interior surface. The first and the second spring contacts 433, 434 are flexibly biased to securely couple with contact pads 435, 436 that are described below. The first and the second spring contacts 433, 434 provide an electrical coupling of the AC power source through the AC power blades 406 to the contact pads 435, 436 on a first and a second PCB that are described below. The first and the second spring contacts 433, 434 comprise a suitable flexible, durable and conductive material. In an exemplary embodiment, the spring contacts 433, 434 comprise a metallic material of appropriate thickness.

The second section 404 of the enclosure 401 generally includes a predominately cubical structure 404, a first and a second printed circuit board (PCB) 430, 432, respectively, a first and a second set of PCB slots 439, 441, a power converter circuit 415 (FIG. 4B), a connector receptacle 410 and an electromagnetic interference (EMI) shield 424. The second section 404 includes the aperture 408 in alignment with the connector receptacle 410. The aperture 408 allows access for the connector receptacle 410 to receive the power connector (not shown). The second section 404 provides a suitable structure for enclosing the first and the second PCB 430, 432 and attached components that are described below. In one embodiment, the second section 404 can include a thermally conductive potting material that substantially fills an empty space of an interior of the second section 404 and the enclosure 401. The potting material can thermally couple heat from heat sources, such as the output transformer 416 to the EMI shield 424 from which it can radiate into an air channel of the connector receptacle 410. In an alternative embodiment, the second section 404 can comprise a generally cylindrical shape. In still another embodiment, the second section 404 can comprise various other shapes that can couple with an appropriately shaped first section 402. The second section 404 comprises a suitable durable non-metallic, electrically insulating material. In an exemplary embodiment, second section 404 comprises a plastic material. The plastic material can include a property that allows a high thermal dissipation through the wall of the second section 404. A thickness of the wall of the second section 404 can be chosen to suit a specific design requirement. In an exemplary embodiment, the thickness of the wall of the second section 404 comprises 1.8 mm.

The first set of PCB slots 439 comprises a first and a second pair of raised edges 438A and 438B protruding from an interior surface of the second section 404. The second set of PCB slots 441 comprises a corresponding first and a second pair of raised edges 440A and 440B protruding from the interior surface of the second section 404. The pair of raised edges 438A, 438B, 440A, 440B provide surfaces for receiving and supporting the first and the second PCB 430, 432. The first and the second set of PCB slots 439, 441 can be configured on the interior surfaces of the second section 404 that are opposing each other so that the first and second pair of raised edges 438A, 438B are configured opposite and parallel to each other. Likewise, the first and second pair of raised edges 440A, 440B can be configured opposite and parallel to each other.

The first and the second printed circuit board 430, 432 preferably comprise planar, predominately rectangular structures of a size appropriate for fitting securely within the first and the second set of PCB slots 439, 441. The first PCB 430 includes a first and a second contact pad 435, 436 coupled therewith. Typically, the first and the second PCB 430, 432 comprise a non-conductive substrate patterned with conductive pathways or traces. The first and the second PCB 430, 432 provide a mechanical support and an electrical interconnection for electronic components of the power converter circuit 415 which are mounted thereon. The electrical interconnection of the electronic components of the power converter circuit 415 is provided by the conductive traces. The mechanical support is provided by holes or vias formed on the first and second PCBs 430, 432. The first and the second PCB 430, 432 are configured opposite and parallel to each other when the first and the second PCB 430, 432 are attached within the first and second set of PCB slots 439, 441.

The first and the second contacts pads 433, 434 comprise suitable conductors coupled on a periphery of the first PCB 430 that is closest to the interface 405. The first and the second contact pads 435, 436 provide an electrical coupling of the AC power source through the AC power blades 406 and the spring contacts 433, 434 to the power converter circuit 415. The first and the second contact pads 435, 436 comprise a suitable durable and conductive material. In an exemplary embodiment, the contact pads 435, 436 comprise a metallic material of appropriate thickness.

FIG. 4B shows certain elements of the power converter circuit 415. The power converter circuit 415 comprises an input rectifier 420, a regulator circuit 422, an output transformer 416 and an output capacitor 418. In an exemplary embodiment, the power converter circuit 415 is configured as a forward or a flyback power converter. A person of skill in the art will appreciate that several other power converter topologies exist, any of which that can be substituted for the topologies discussed. The input rectifier 420 converts an AC power source entering through the AC power blades 406 into a rectified voltage signal. The rectified voltage signal is coupled with the regulator circuit 422, which generates a regulated voltage signal. The regulated voltage signal is a constant voltage that is coupled to the output transformer 416. The regulator circuit 422 can include an inductor for coupling the rectified voltage signal from the input rectifier 420 to a regulator switch, such as a suitable transistor. In another embodiment, the regulator circuit 422 comprises a pulse width modulator circuit. The output transformer 416 receives the regulated voltage signal and provides electromagnetic coupling of the regulated voltage signal to the output capacitor 418, such that a regulated DC voltage is provided at the connector receptacle 410. The output transformer 416 comprises a suitable transformer which is easily integrated within the enclosure 401. The output transformer 416 includes a secondary and a primary. The primary can be coupled with the regulator circuit 422 and the secondary can be coupled with the output capacitor 418. In an exemplary embodiment, the output transformer 416 comprises a planar format transformer. The output transformer 416 can include a ferrite core. As a planar format transformer, the output transformer 416 includes electromagnetic properties that provide shielding of EMI signals which can be generated by the power converter circuit 415. A person of skill in the art will appreciate that the planar format transformer 416 allows a low-height profile and provides a high power density.

The connector receptacle 410 comprises an interface for receiving and attaching with the power connector (not shown). The connector receptacle 410 is coupled with the first and the second PCB 430, 432. The connector receptacle 410 includes conductive leads (not shown) for providing a regulated DC voltage signal to the attached power connector. In an exemplary embodiment, the connector receptacle comprises a universal serial bus (USB) receptacle. A person of skill in the art can appreciate that other types of connector receptacles for receiving other types of power connectors can be substituted for the USB connector receptacle 410.

In an alternative embodiment, a captured power cable (not shown) can be configured with the adapter 400 similar to the captured power cable 310 described above (FIGS. 3A-3F). The captured power cable (not shown) can comprise an interface for coupling with an output node (not shown) of the power converter circuit 415. The captured power cable generally includes a first and a second power conductor (not shown) an outer sheath (not shown), an integrated mounting screw (not shown), and a mounting nut (not shown). A person of skill in the art will appreciate that the captured power cable can further include other features which are not shown such as, a twisted pair data line, a drain wire, a conductive braid and a foil cover. The captured power cable can be coupled with the first and the second PCB 430, 432 via the power conductors for providing a regulated DC voltage signal to an electronic device attached with the captured power cable. In an exemplary embodiment, the captured power cable comprises a universal serial bus (USB) captured power cable. A person of skill in the art can appreciate that other types of captured power cables can be substituted for the USB captured power cable.

The EMI shield 424 comprises a rigid or semi-rigid sheet of conductive material for providing a barrier for EMI generated by the power converter circuit 415. The EMI shield 424 can also provide structural support for the connector receptacle 410 and the electronic components of the power converter circuit 415. The EMI shield 424 is coupled with the first and the second PCB 430, 432. The EMI shield 424 substantially surrounds the connector receptacle 410 and prevents EMI transfer from the power converter circuit 415 ‘up-line’ through the attached power connector (not shown). Further, the EMI shield 424 inhibits EMI from radiating to a surrounding area beyond the adapter 400. The EMI shield 424 comprises any of a variety of conductive materials known to a person of skill in the art. In an exemplary embodiment, The EMI shied 424 comprises a metallic material. The metallic material can comprise a type of sheet metal, or alternatively a sheet mesh. Further, the EMI shield 424 provides a thermal shielding and thermal dissipation function by radiating thermal energy generated by the power converter circuit 415. In one embodiment, the EMI shield 424 can be coupled with the ferrite core of the output transformer 416 to provide a thermal spreading function.

The second section 404 can be formed using methods known to a person of skill in the art such as by a molding or an extrusion process. Further, the second section 404 can include a layer of conductive material applied on the interior surface to provide additional EMI shielding.

As shown in FIG. 4A, the interface 405 comprises a junction including the flat outer periphery 402A and a recessed surface 404A. The flat outer periphery 402A and the recessed surface 404A are configured to provide secure coupling of the first section 402 to the second section 404. The interface 405 can be further strengthened by applying a suitable adhesive between the flat outer periphery and the recessed surface 402A, 404A respectively. In an alternative embodiment, the interface 405 can be configured such that the flat outer periphery and the recessed surface 402A, 404A are interlocking; secure coupling of the first and the second section 402, 404 are achieved by using a sufficient force to press the first and the second section 402, 404 together.

While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art will understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Roohparvar, Bob, Sharifipour, Bahman, Telefus, Mark, Gapuz, Rowell, Du, Hongwei, Sy, Richard

Patent Priority Assignee Title
10033164, Jul 30 2008 PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. Power line communication apparatus
10051724, Jan 31 2014 Apple Inc Structural ground reference for an electronic component of a computing device
10886671, Jun 13 2017 Hubbell Incorporated Power connector with integrated status monitoring
10923941, Sep 18 2018 Leviton Manufacturing Company, Inc.; LEVITON MANUFACTURING COMPANY, INC Systems and methods for universal serial bus (USB) power delivery with multiple charging ports
10945664, Sep 30 2015 Apple, Inc.; Apple Inc Protective case with coupling gasket for a wearable electronic device
11515677, Jun 13 2017 Hubbell Incorporated Power connector with integrated status monitoring
11515679, Jun 24 2020 Apple Inc. Power adapter for electronic devices
11605925, Mar 18 2020 GUANGDONG GOPOD GROUP HOLDING CO , LTD Power adapter
11757241, Mar 18 2020 GUANGDONG GOPOD GROUP HOLDING CO , LTD Power adapter with protective shield
11800677, Feb 07 2021 HUAWEI DIGITAL POWER TECHNOLOGIES CO , LTD Power adapter
8295048, Sep 07 2004 Flextronics AP, LLC Apparatus for and method of cooling electronic circuits
8619413, Nov 26 2010 FRIWO Geratebau GmbH Partially compound-filled power supply unit and manufacturing method
8787037, Dec 24 2010 Kabushiki Kaisha Toyota Jidoshokki Electronic device
8897029, Sep 23 2011 Astec International Limited Compact isolated switching power converters
8922383, Jun 28 2010 Ricoh Company, Limited Electronic equipment and image forming apparatus
9019726, Jul 13 2012 MYPAQ HOLDINGS LTD Power converters with quasi-zero power consumption
9024581, May 21 2008 VOLSTAR TECHNOLOGIES, INC ; VOLTSTAR TECHNOLOGIES, INC Charger plug with improved package
9118253, Aug 15 2012 Flextronics AP, LLC Energy conversion architecture with secondary side control delivered across transformer element
9184668, Mar 15 2013 Flextronics AP, LLC Power management integrated circuit partitioning with dedicated primary side control winding
9312775, Aug 15 2012 Flextronics AP, LLC Reconstruction pulse shape integrity in feedback control environment
9323267, Mar 14 2013 Flextronics AP, LLC Method and implementation for eliminating random pulse during power up of digital signal controller
9343850, Oct 13 2011 Apple Inc Power adapter with a single-piece insulator assembly
9368982, Jul 31 2013 LEVITON MANUFACTURING COMPANY, INC Wiring device having a housing with multiple portions and low voltage ports
9494658, Mar 14 2013 Flextronics AP, LLC Approach for generation of power failure warning signal to maximize useable hold-up time with AC/DC rectifiers
9496726, Jul 31 2013 LEVITON MANUFACTURING COMPANY, INC Multiport USB charger
9525222, Apr 11 2014 Apple Inc Reducing or eliminating board-to-board connectors
9666967, Jul 28 2014 Apple Inc.; Apple Inc Printed circuit board connector for non-planar configurations
9728906, Oct 13 2011 Apple Inc. Power adapter with a single-piece insulator assembly
9806553, Mar 15 2013 Flextronics AP, LLC Depletion MOSFET driver
9923324, Jan 31 2015 Littelfuse, Inc AC line filter and AC-to-DC rectifier module
D808903, Mar 24 2015 AP Specialties Charging device
D808904, Mar 25 2015 AP Specialties Charging device
D841582, Oct 11 2017 SHENZHEN TXRICH TECHNOLOGY CO , LTD Charger
ER1775,
ER6470,
RE48794, May 21 2008 Volstar Technologies, Inc. Charger plug with improved package
Patent Priority Assignee Title
4051425, Feb 03 1975 Telephone Utilities and Communications Industries, Inc. AC to DC power supply circuit
4273406, Dec 28 1978 Mitsuoka Electric Mfg. Co., Ltd. Electrical cord adapter
4695933, Feb 11 1985 Sundstrand Corporation Multiphase DC-DC series-resonant converter
4712160, Jul 02 1985 Matsushita Electric Industrial Co., Ltd. Power supply module
4788626, Feb 15 1986 Brown, Boveri & Cie AG Power semiconductor module
4841220, Sep 23 1987 Center for Innovative Technology Dc-to-Dc converters using multi-resonant switches
4857822, Sep 23 1987 VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VA Zero-voltage-switched multi-resonant converters including the buck and forward type
4866367, Apr 11 1988 Virginia Polytechnic Institute and State University Multi-loop control for quasi-resonant converters
4890217, Jun 10 1987 Norand Corporation Universal power supply, independent converter stages for respective hardware components of a computerized system
4893227, Jul 08 1988 Eldec Corporation Push pull resonant flyback switchmode power supply converter
4899256, Jun 01 1988 Chrysler Motors Corporation Power module
4901069, Jul 16 1987 Schlumberger Technology Corporation Apparatus for electromagnetically coupling power and data signals between a first unit and a second unit and in particular between well bore apparatus and the surface
5101322, Mar 07 1990 TEMIC AUTOMOTIVE OF NORTH AMERICA, INC Arrangement for electronic circuit module
5164657, Aug 08 1988 Synchronous switching power supply comprising buck converter
5235491, May 10 1990 Vero Electronics GmbH Safety power supply
5262932, Mar 04 1991 COOPERHEAT INTERNATIONAL LIMITED Power converter
5295044, Sep 26 1991 Kabushiki Kaisah Toshiba Semiconductor device
5438294, Mar 19 1992 Astec International, Ltd. Gate drive circuit
5490052, Apr 24 1992 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Switching power supply
5565761, Sep 02 1994 Fairchild Semiconductor Corporation Synchronous switching cascade connected offline PFC-PWM combination power converter controller
5565781, Jul 09 1991 SEB S A Device for detecting the malfunctioning of a load such as a magnetron
5592128, Mar 30 1995 Fairchild Semiconductor Corporation Oscillator for generating a varying amplitude feed forward PFC modulation ramp
5673185, Apr 07 1995 U S PHILIPS CORPORATION Circuit arrangement for generating a DC-separated output voltage
5712772, Feb 03 1995 Ericsson Raynet Controller for high efficiency resonant switching converters
5742151, Jun 20 1996 Fairchild Semiconductor Corporation Input current shaping technique and low pin count for pfc-pwm boost converter
5747977, Mar 30 1995 Fairchild Semiconductor Corporation Switching regulator having low power mode responsive to load power consumption
5786687, Dec 03 1996 HTC Corporation Transformer-isolated pulse drive circuit
5798635, Jun 20 1996 Fairchild Semiconductor Corporation One pin error amplifier and switched soft-start for an eight pin PFC-PWM combination integrated circuit converter controller
5804950, Jun 20 1996 Fairchild Semiconductor Corporation Input current modulation for power factor correction
5811895, Aug 12 1994 LENOVO SINGAPORE PTE LTD Power supply circuit for use with a battery and an AC power adaptor
5818207, Dec 11 1996 Fairchild Semiconductor Corporation Three-pin buck converter and four-pin power amplifier having closed loop output voltage control
5870294, Sep 26 1997 Astec International Limited Soft switched PWM AC to DC converter with gate array logic control
5894243, Dec 11 1996 Fairchild Semiconductor Corporation Three-pin buck and four-pin boost converter having open loop output voltage control
5903138, Mar 30 1995 Fairchild Semiconductor Corporation Two-stage switching regulator having low power modes responsive to load power consumption
5905369, Oct 17 1996 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Variable frequency switching of synchronized interleaved switching converters
5923543, Dec 14 1996 Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD Resonance-type power switching device
6058026, Jul 26 1999 ABB POWER ELECTRONICS INC Multiple output converter having a single transformer winding and independent output regulation
6069803, Feb 12 1999 Astec International Limited Offset resonance zero volt switching flyback converter
6091233, Jan 14 1999 Fairchild Semiconductor Corporation Interleaved zero current switching in a power factor correction boost converter
6091611, Apr 26 1994 COMARCO WIRELESS SYSTEMS LLC Connectors adapted for controlling a small form factor power supply
6160725, Mar 12 1999 MINEBEA CO , LTD System and method using phase detection to equalize power from multiple power sources
6272015, Nov 24 1997 Infineon Technologies Americas Corp Power semiconductor module with insulation shell support for plural separate substrates
6282092, Jun 12 1998 Shindengen Electric Manufacturing Co., Ltd.; Honda Giken Kogyo Kabushiki Kaisha Electronic circuit device and method of fabricating the same
6323627, Feb 28 1998 Robert Bosch GmbH D.C.-d.c. converter with a transformer and a reactance coil
6326740, Dec 22 1998 Philips Electronics North America Corporation High frequency electronic ballast for multiple lamp independent operation
6344980, Jan 14 1999 Semiconductor Components Industries, LLC Universal pulse width modulating power converter
6396277, Oct 01 1999 SNAP-ON TECHNOLOGIES, INC Coil on plug signal detection
6407514, Mar 29 2001 General Electric Company Non-synchronous control of self-oscillating resonant converters
6469914, Jan 14 1999 Semiconductor Components Industries, LLC Universal pulse width modulating power converter
6469980, Apr 15 1996 Matsushita Electric Industrial Co., Ltd. Optical disk and a recording/reproduction apparatus using multiple address block groups shifted oppositely with multiple address blocks and non-pit data
6483281, Feb 11 2000 Champion Microelectronic Corporation Low power mode and feedback arrangement for a switching power converter
6487095, Oct 31 2001 International Business Machines Corporation Multiphase zero-volt-switching resonant DC-DC regulator
6531854, Mar 30 2001 Champion Microelectronic Corp. Power factor correction circuit arrangement
6541944, Feb 11 2000 Champion Microelectronic Corp. Low power mode and feedback arrangement for a switching power converter
6578253, Oct 04 1991 FMTT, INC Transformer and inductor modules having directly bonded terminals and heat-sink fins
6583999, Jan 25 2002 Appletec Ltd. Low output voltage, high current, half-bridge, series-resonant, multiphase, DC-DC power supply
6605930, Feb 11 2000 Champion Microelectronic Corp. Low power mode and feedback arrangement for a switching power converter
6657417, May 31 2002 CHAMPION MICROELECRONIC CORP ; CHAMPION MICROELECTRONIC CORP Power factor correction with carrier control and input voltage sensing
6671189, Nov 09 2001 MINEBEA ELECTRONICS CO , LTD Power converter having primary and secondary side switches
6674272, Jun 21 2001 CHAMPION MICROELECTRONIC CORP Current limiting technique for a switching power converter
6958920, Oct 02 2003 Microchip Technology Incorporated Switching power converter and method of controlling output voltage thereof using predictive sensing of magnetic flux
6970366, Apr 03 2003 BEL POWER SOLUTIONS INC Phase-shifted resonant converter having reduced output ripple
7035126, Jun 10 2002 Comarco Wireless Technologies, Inc. Programmable power supply capable of receiving AC and DC power input
7038406, Feb 07 2003 COMSTAR AUTOMOTIVE TECHNOLOGIES PRIVATE LIMITED Bi-directional field control for proportional control based generator/alternator voltage regulator
7047059, Aug 18 1998 Quantum Magnetics, Inc Simplified water-bag technique for magnetic susceptibility measurements on the human body and other specimens
7064497, Feb 09 2005 National Taiwan University of Science and Technology Dead-time-modulated synchronous PWM controller for dimmable CCFL royer inverter
7212420, Feb 12 2002 Universal serial bus voltage transformer
7286376, Nov 23 2005 Semiconductor Components Industries, LLC Soft-switching power converter having power saving circuit for light load operations
7324354, Jul 08 2005 BIO-RAD LABORATORIES, INC Power supply with a digital feedback loop
7450388, Jan 16 2002 Rockwell Automation Technologies, Inc. Power converter connection configuration
7499301, Jul 07 2006 TINYPLUG TECHNOLOGY SHENZHEN LIMITED Plugtype power supply unit
7570497, May 26 2006 POWER INTEGRATIONS, LIMITED Discontinuous quasi-resonant forward converter
7764515, Feb 14 2006 MYPAQ HOLDINGS LTD Two terminals quasi resonant tank circuit
20020011823,
20030035303,
20040228153,
20050105224,
20050281425,
JP10243640,
JP2000083374,
JP2000253648,
JP2004208357,
JP4217869,
WO2005122377,
/////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 04 2008Flextronics AP, LLC(assignment on the face of the patent)
Jan 24 2013TELEFUS, MARKFlextronics AP, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0401630019 pdf
Feb 20 2013GAPUZ, ROWELLFlextronics AP, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0401630019 pdf
Feb 20 2013DU, HONG WEIFlextronics AP, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0401630019 pdf
Aug 30 2013SHARIFIPOUR, BAHMANFlextronics AP, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0401630019 pdf
Jun 08 2020ROOHPARVAR, BOBFlextronics AP, LLCNUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS 0557220302 pdf
Jun 11 2020SY, RICHARDFlextronics AP, LLCNUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS 0557220302 pdf
Mar 19 2021Flextronics AP, LLCMYPAQ HOLDINGS LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0558710399 pdf
Apr 08 2021MYPAQ HOLDINGS LTD NSF I LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0559730892 pdf
Date Maintenance Fee Events
Dec 31 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 10 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 28 2022M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 12 20144 years fee payment window open
Jan 12 20156 months grace period start (w surcharge)
Jul 12 2015patent expiry (for year 4)
Jul 12 20172 years to revive unintentionally abandoned end. (for year 4)
Jul 12 20188 years fee payment window open
Jan 12 20196 months grace period start (w surcharge)
Jul 12 2019patent expiry (for year 8)
Jul 12 20212 years to revive unintentionally abandoned end. (for year 8)
Jul 12 202212 years fee payment window open
Jan 12 20236 months grace period start (w surcharge)
Jul 12 2023patent expiry (for year 12)
Jul 12 20252 years to revive unintentionally abandoned end. (for year 12)