Apparatus and methods determine the rotational position of a spinning object. A satellite positioning system can be used to determine the spatial position of an object, which in turn can be used to guide the object. However, when the object is spinning, such as an artillery shell, then the rotational orientation should be known in order to properly actuate the control surfaces, such as fins, which will also be spinning.
|
1. A method of estimating a rotational position of an object, the method comprising:
prior to flight of the object during which the object spins, preloading the object from external to the object with initialization data, wherein the initialization data comprises information associated with a preloaded intended trajectory for the object, a preloaded space vehicle ephemeris data, and a preloaded system time of a satellite positioning system;
initializing a timer based on the preloaded system time;
during flight, maintaining a timer-based time via the timer without input from satellite positioning system signals;
calculating line-of-sight (los) vectors based on the initialization data and the timer-based time;
acquiring satellite positioning signals from a plurality of space vehicles and generating at least one of a correlated in-phase measurement or a correlated quadrature-phase measurement from each of the acquired plurality of satellite positioning signals; and
determining a roll phase relative to each of the space vehicles corresponding to at least a selected group of the acquired plurality of satellite positioning signals by phase locking to an amplitude modulation of at least one of the correlated in-phase output signal or the correlated quadrature-phase output signal for each of the selected group of the acquired plurality of satellite positioning signals, wherein the amplitude modulation is caused by rolling of the object.
15. An apparatus for estimating a rotational position of an object, the apparatus comprising:
means for preloading the object from external to the object with initialization data, wherein the initialization data comprises information associated with a preloaded intended trajectory for the object, a preloaded space vehicle ephemeris data, and a preloaded system time of a satellite positioning system prior to flight of the object, wherein the object spins during flight;
means for initializing a timer based on the preloaded system time;
means for maintaining a timer-based time during flight via the timer without input from satellite positioning system signals;
means for calculating line-of-sight (los) vectors based on the initialization data and the timer-based time;
means for acquiring satellite positioning signals from a plurality of space vehicles and generating at least one of a correlated in-phase measurement or a correlated quadrature-phase measurement from each of the acquired plurality of satellite positioning signals; and
means for determining a roll phase relative to each of the space vehicles corresponding to at least a selected group of the acquired plurality of satellite positioning signals by phase locking to an amplitude modulation of at least one of the correlated in-phase output signal or the correlated quadrature-phase output signal for each of the selected group of the acquired plurality of satellite positioning signals, wherein the amplitude modulation is caused by rolling of the object.
8. An apparatus for estimating a rotational position of an object, the apparatus comprising:
an interface configured to retrieve data from external to the object to preload a memory with initialization data, wherein the initialization data comprises information associated with a preloaded intended trajectory for the object, a preloaded space vehicle ephemeris data, and a preloaded system time of a satellite positioning system prior to flight of the object, wherein the object spins during flight;
a timer configured to be initialized based on the preloaded system time, wherein the timer is configured to maintain time during flight without input from satellite positioning system signals;
an los estimator configured to calculate line-of-sight (los) vectors based on the initialization data and the timer-based time;
a positioning processor configured to acquire satellite positioning signals from a plurality of space vehicles and to generate at least one of a correlated in-phase measurement or a correlated quadrature-phase measurement from each of the acquired plurality of satellite positioning signals; and
a sv power modulation tracker configured to determine a roll phase relative to each of the space vehicles corresponding to at least a selected group of the acquired plurality of satellite positioning signals by phase locking to an amplitude modulation of at least one of the correlated in-phase output signal or the correlated quadrature-phase output signal for each of the selected group of the acquired plurality of satellite positioning signals, wherein the amplitude modulation is caused by rolling of the object.
2. The method of
extrapolating a plurality of next up times based at least partly on the determined roll phases for each of the space vehicles corresponding to the selected group, wherein the next up times each represent a future time in which the object is expected to spin about its longitudinal axis such that an antenna of the object is pointed to the corresponding space vehicle; and
averaging the plurality of next up times to generate an averaged up time for the object, wherein the averaged up time indicates an expected time for a rotational position pointing away from Earth.
3. The method of
determining aspect angles between the object and the selected group of space vehicles;
selecting a second group of space vehicles from the selected group of space vehicles, wherein the second group comprises a smaller subset of the selected group, wherein the second group is selected based at least partly on an aspect angle to the space vehicles;
extrapolating a plurality of next up times based at least partly on the determined roll phases for each of the space vehicles corresponding to the second group, wherein the next up times each represent a future time in which the object is expected to spin about its longitudinal axis such that an antenna of the object is pointed to the corresponding space vehicle; and
averaging the plurality of next up times to generate an averaged up time for the object, wherein the averaged up time indicates an expected time for a rotational position pointing away from Earth.
4. The method of
5. The method of
calculating first velocities for the object based on the preloaded intended trajectory and the timer-based time; and
calculating line-of-sight (los) vectors based on the preloaded intended trajectory, the preloaded space vehicle ephemeris data, and the timer-based time.
6. The method of
calculating second positions, second velocities, and second times based on received satellite positioning signals, wherein none of the second positions, second velocities, and second times is used for determining rotational position; and
providing the second positions, second velocities, and second times to a guidance computer.
7. The method of
9. The apparatus of
a current roll estimate generator configured to extrapolate a plurality of next up times based at least partly on the determined roll phases for each of the space vehicles corresponding to the selected group, wherein the next up times each represent a future time in which the object is expected to spin about its longitudinal axis such that an antenna of the object is pointed to the corresponding space vehicle; and
a next up time estimator configured to average the plurality of next up times to generate an averaged up time for the object, wherein the averaged up time indicates an expected time for a rotational position pointing away from Earth.
10. The apparatus of
a measurement enabler configured to select a second group of space vehicles from the selected group of space vehicles, wherein the second group comprises a smaller subset of the selected group, wherein the second group is selected based at least partly on an aspect angle to the space vehicles;
a current roll estimate generator configured to extrapolate a plurality of next up times based at least partly on the determined roll phases for each of the space vehicles corresponding to the second group, wherein the next up times each represent a future time in which the object is expected to spin about its longitudinal axis such that an antenna of the object is pointed to the corresponding space vehicle; and
a next up time estimator configured to average the plurality of next up times to generate an averaged up time for the object, wherein the averaged up time indicates an expected time for a rotational position pointing away from Earth.
11. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
16. The apparatus of
means for extrapolating a plurality of next up times based at least partly on the determined roll phases for each of the space vehicles corresponding to the selected group, wherein the next up times each represent a future time in which the object is expected to spin about its longitudinal axis such that an antenna of the object is pointed to the corresponding space vehicle; and
means for averaging the plurality of next up times to generate an averaged up time for the object, wherein the averaged up time indicates an expected time for a rotational position pointing away from Earth.
17. The apparatus of
means for determining aspect angles between the object and the selected group of space vehicles;
means for selecting a second group of space vehicles from the selected group of space vehicles, wherein the second group comprises a smaller subset of the selected group, wherein the second group is selected based at least partly on an aspect angle to the space vehicles;
means for extrapolating a plurality of next up times based at least partly on the determined roll phases for each of the space vehicles corresponding to the second group, wherein the next up times each represent a future time in which the object is expected to spin about its longitudinal axis such that an antenna of the object is pointed to the corresponding space vehicle; and
means for averaging the plurality of next up times to generate an averaged up time for the object, wherein the averaged up time indicates an expected time for a rotational position pointing away from Earth.
18. The apparatus of
19. The apparatus of
means for calculating first velocities for the object based on the preloaded intended trajectory and the timer-based time; and
means for calculating line-of-sight (los) vectors based on the preloaded intended trajectory, the preloaded space vehicle ephemeris data, and the timer-based time.
20. The apparatus of
means for calculating second positions, second velocities, and second times based on received satellite positioning signals, wherein none of the second positions, second velocities, and second times is used for determining rotational position; and
means for providing the second positions, second velocities, and second times to a guidance computer.
21. The apparatus of
|
1. Field of the Invention
The invention generally relates to electronics. In particular, the invention relates to a receiver for a satellite navigation system, such as the NAVSTAR Global Positioning System (GPS).
2. Description of the Related Art
A Global Positioning System (GPS) satellite radiates a spread spectrum, pseudorandom noise (PN) signal indicating the satellite's position and time. A GPS receiver that receives signals from a plurality of satellites can compute the distance to each satellite and then calculate the receiver's spatial position, spatial velocity, and time.
GPS receivers can be used in a broad variety of environments. One application is to provide spatial position and spatial velocity for a projectile, such as an artillery shell. This information can then be used by a guidance system of the projectile to guide the projectile to its intended destination.
Flight corrections can be made by manipulating fins on the projectile. However, the projectile can be configured to spin along an axis in its line of flight to stabilize flight. This spin affects the flight controls for guidance, as the fins will spin with the projectile. In order to make proper flight corrections, the rotational orientation of the projectile should be known.
Apparatus and methods determine the rotational position of an object. A satellite positioning system can be used to determine the spatial position of an object, which in turn can be used to guide the object. However, for guidance of an object that spins during flight, such as an artillery shell, then the rotational orientation should also be known in order to properly time the actuation of the control surfaces. Disclosed techniques ascertain the rotational position from the satellite positioning system signals. The disclosed techniques can be used with the coarse/acquisition C/A code, precise P(Y) code, or both the C/A code and the P(Y) code.
These drawings the associated description herein are provided to illustrate specific embodiments of the invention and are not intended to be limiting.
Although particular embodiments are described herein, other embodiments of the invention, including embodiments that do not provide all of the benefits and features set forth herein, will be apparent to those of ordinary skill in the art.
While illustrated in the context of the NAVSTAR Global Positioning System (GPS), the principles and advantages described herein are applicable to other positioning systems, such as, but not limited to, the Russian GLONASS system, the European Galileo system, the Chinese COMPASS system, the Indian IRNSS system, or the like.
In the diagram, the projectile 102 is shown rotating counter-clockwise; however, the techniques disclosed herein are applicable to rotation in either direction. The direction of the rotation will follow the rifling of a barrel of a cannon and is typically known before the projectile is launched from the cannon.
Typically, the space vehicles sv1, sv2, sv3, and sv4, are the sources for GPS signals. However, other sources, such as beacons, can be applicable. The number of space vehicles used by the projectile 102 can vary in a broad range, but typically reception to at least four space vehicles is needed to resolve spatial position.
The receiver for the projectile 102 has a plurality of phase-locked loops (PLLs) for determining the angular orientation of SVs based on signal power modulation. In the illustrated embodiment, for each SV, there is a corresponding PLL of the receiver for determining when the antenna pattern of the antenna 104 is generally pointing towards a particular SV, referred to as “up.” This “pointing towards” refers to the rotation and not to an aspect angle. In the illustrated embodiment, these PLLs along with line-of-sight (LOS) vector information are used to calculate the time (t_upi) when the pattern of the antenna 104 will be pointing “up” with respect to a particular i-th SV. In one embodiment, this “next up time” t_upi is independently calculated for each SV in view of the receiver, and then the independent calculations are averaged together, which averages out errors.
This averaged “next up time” is represented by variable t_up. At the averaged next up time t_up, the pattern of the antenna 104 of the projectile 102 is “pointing” at the average of the independent up times, so that the average is generally pointing away from the center of the earth. The averaged next up time t_up is provided as an index for flight control.
A next up time t_upi for a particular i-th space vehicle SVi represents a time estimate of the next time that the pattern of the antenna 104 faces towards the i-th space vehicle SVi. Every space vehicle in view can be used to estimate a particular next up time t_upi, but an individual estimate is relatively noisy due to the stochastic nature of a phase-locked loop. Averaging multiple up time estimates t_upi smoothes this noise and provides a more accurate estimate for a reference time t_up when the pattern of the antenna will be in a particular orientation, in this case, up with respect to an average. In the illustrated embodiment, equal weighting is used for the averaging; however, an unequally weighted average can also be used. For example, signals received from space vehicles with lower signal power can be weighted less heavily than signals received from space vehicles with higher signal power.
The base station GPS receiver 206 receives GPS signals and communicates information to the projectile system 204 such that the projectile system 204 can readily acquire the GPS signals after launch. In a GPS receiver, “acquiring” a satellite occurs when the GPS receiver acquires the signal of a satellite. The GPS receiver acquires the satellite by matching a code received by the GPS receiver to a code defined for the satellite. In an enhancement, the matching is performed to the carrier wave that is carrying the ranging code. This code and/or carrier phase matching is termed “correlation.” For example, when the projectile system 204 is loaded into a cannon for launch, it is typically not able to receive normal GPS signals. Accordingly, the base station GPS receiver 206 can preload a GPS receiver 210 with data indicating which satellites are in the area for reception, GPS system time, ephemeris data for the satellites, and the like. The destination/flight path selector 208 provides information such as a flight path to an intended destination for the projectile. In one embodiment, an interface such as an inductive coupler is used to preload the GPS data and the intended flight path data from the launch system 202 to the projectile system 204 before the projectile is launched. After the projectile is launched, the launch system 202 and the projectile system 204 are typically not in communication. The intended flight path data can also include expected velocity at various points along the intended flight path. Of course, other data can also be provided, and status communication can also be returned from the projectile system 204 to the launch system 202.
The projectile system 204 includes the GPS receiver 210, a guidance computer 212, and a flight control 214. For clarity, other components of the projectile system 204, such as the components of an artillery shell, are not shown. For example, the flight control 214 can correspond to actuators for moving or deforming fins, to brakes, or the like. These actuators can be electromechanical, piezoelectric, or the like. An input sgn(r′), which can be provided by the launch system 202, indicates rotational direction of the projectile during flight.
In the illustrated embodiment, the GPS receiver 210 and the guidance computer 212 both receive the intended flight path. In the illustrated embodiment, line-of-sight (LOS) vectors are calculated using the intended flight path and time. The LOS vectors will be described in greater detail later in connection with
The GPS receiver 210 provides the spatial position of the projectile to the guidance computer 212 so that the guidance computer 212 can make adjustments to the actual flight path. Such adjustments can be one-dimensional (range only) as encountered with brakes, or can be two-dimensional.
The GPS receiver 210 also provides the guidance computer 212 with a reference time to indicate rotation. In the illustrated embodiment, the reference time t_up is referenced to GPS system time, and indicates when the projectile is expected to be “up,” that is, would have a particular angular position. The particular angular position can be used as an index by the guidance computer 212. In the illustrated embodiment, the particular angular position is the average of “up” positions to the satellites in view. While this average can vary over time, it is fixed enough to be useful for guidance. In an alternate embodiment, the GPS receiver 210 can provide a different type of indicator, such as, for example, an edge on a clock signal, a data register indicating approximate angle, or the like. One embodiment of the GPS receiver 210 will be described in greater detail later in connection with
As described earlier, both the GPS receiver 210 and the guidance computer 212 receive the intended flight path. The guidance computer 212 also receives the spatial position from the GPS receiver 210 and determines whether or not to adjust the actual flight path. If the projectile is spinning and is guided by manipulating fins, then the fins will typically be spinning with the projectile. The guidance computer 212 uses the rotation indicator sgn(r′) to determine how to actuate the flight controls to adjust the actual flight path.
Various components can be implemented in hardware, in software/firmware, or in a combination of both hardware and software/firmware. In one embodiment, the hardware correlators 310 and the code/carrier numerically controlled oscillators 316 are implemented by hardware, and the other components of the GPS receiver 210 are implemented in software/firmware. For example, executable instructions can be stored in a computer-readable medium, such as RAM or ROM memory, and executed by a processor, such as a microprocessor. For example, the instructions can be embedded into flash ROM of the GPS receiver 210. In another example, the instructions can be loaded into RAM from the launch system 202.
In the illustrated embodiment, after initialization from the launch system 202, an independent timer 304 maintains a “current time,” which is denoted with variable tcurr. The current time tcurr is independent of GPS signals received by the GPS receiver 210 and independent of GPS system time after launch. In one embodiment, the timer 304 is maintained by software/firmware.
In the illustrated embodiment, the positioning processor 350 is conventional. For example, the illustrated positioning processor 350 includes hardware correlators 310, a deep integration filter 312, a navigation Kalman filter 314, and code/carrier numerically controlled oscillators 316 arranged in a tracking loop. Received GPS signals are provided as an input to the HW correlators 310. The HW correlators 310 correlate the received GPS signal with the receiver's best estimate of a replica signal to generate in-phase (I) and quadrature-phase data (Q) that contain projectile position error measurements and SV power measurements. In one embodiment, the navigation Kalman filter 314 has 12 states and computes position, velocity, acceleration, and time. For clarity, antennas and front-end components of the GPS receiver 210 are not shown in
In the illustrated embodiment, for calculating LOS vectors, an LOS estimator 306 estimates its location using the current time tcurr and the intended or nominal trajectory (preloaded), and estimates the location of a space vehicle using the current time tcurr and the SV ephemeris data (preloaded). The LOS estimator 306 can be implemented in hardware or in software/firmware. In the illustrated embodiment, the LOS estimator 306 is implemented in software/firmware. Advantageously, the LOS vectors can be computed even when the GPS receiver 210 encounters interference. This can improve tracking under certain circumstances and reduce computation time in flight.
In
The I and Q data for the positioning processor 350 (subscript n) or for the roll processor 360 (subscript u) corresponds to a correlated in-phase output and a quadrature-phase of the HW correlators 310. In one embodiment, the roll processor 360 is entirely implemented in software/firmware, but can also be implemented in hardware. In the illustrated embodiment, the roll processor 360 tracks each SV in view using a phase-locked loop for each SV, but typically uses less than all the trackable SVs to compute the aggregate up time t_up as will be discussed in greater detail in the following.
A SV power modulation tracking filter 320 incorporates both a frequency-locked loop (FLL) and a phase-locked loop (PLL). A mode/stateu status indicates whether the SV power modulation tracking filter 320 is operating in FLL mode or in PLL mode, and whether or not the loop is locked (for the u-th SV). The mode/stateu information is provided as an input to a measurement enabler 328. Further details of the SV power modulation tracking filter 320 will be described later in connection with
The SV power modulation tracking filter 320 isolates the power modulation on the I/Q data that is a result of the projectile's spin. The SV power modulation tracking filter 320 phase locks to the amplitude modulation of the GPS signal caused by the projectile's spin. This phase information (angle) is then combined with LOS information from the LOS estimator 306. In the illustrated embodiment, the combination of the phase information and the LOS information is performed in a projectile antenna up estimator 324. In the illustrated embodiment, the LOS information is derived from the position, velocity, and time (PVT) information based on preloaded information from the timer 304 and the initialization data 302, that is, information that is not obtained from GPS signals by the positioning processor 350 during the flight of the projectile 102.
The line-of-sight (LOS) vectors from the LOS estimator 306 are provided as an input to the navigation Kalman filter 314 and to the projectile antenna up estimator 324. In the illustrated embodiment, the LOS vectors used by the navigation Kalman filter 314 are based only on preloaded initialization data 302 (ephemeris and trajectory) and on the time maintained by the timer 304. However, in an alternative embodiment, the LOS vectors can also be computed in a conventional manner.
Aspect angles au are provided as an input to the roll compensator 322 and to the measurement enabler 328. The roll compensator 322 is optional. Azimuth angles azu are provided as an input to the projectile antenna up estimator 324. In an alternative embodiment, the LOS vectors are computed in another manner, such as the conventional practice of determining the position of the GPS receiver 210 via GPS signal tracking and determining the position of a space vehicle from received ephemeris data.
As the projectile 102 (
The roll compensator 322 receives the aspect angle au as an input, and generates phase compensation Δφu as an output. The phase compensation Δφu provides a correction factor used by the projectile antenna up estimator 324 to compensate for the antenna pattern. In one embodiment, the roll compensator 322 is implemented with a lookup table (LUT). In one embodiment, the roll compensator 322 is optional. For example, if the antenna pattern gain and phase is relatively symmetric over +/−180 degrees, then the roll compensator 322 can be omitted. In one embodiment, the roll compensator 302 further receives an estimate of the expected roll rate (not shown) from the initialization data 302 and the computed roll rate φ′u from the SV power modulation tracking filter 320 as a check of the computed roll rate φ′u. The expected roll rate typically varies over the intended trajectory. If the expected roll rate and the computed roll rate φ′u do not agree to within a threshold, then the computed roll rate φ′u can be determined to be untrustworthy, and the roll and roll rate estimate for the particular SV can be discarded as invalid. For example, the threshold can be predetermined, such as a threshold of +/−20 Hz.
In one embodiment, the projectile antenna up estimator 324 is a Kalman filter. The Kalman filter smoothes the up estimate for each SV tracked. The projectile antenna up estimator 324 uses the amplitude modulation information from the SV power modulation tracking filter 320, the direction of the spin sgn(r′) (either 1 or −1), and the phase compensation Δφu to generate an estimate of the u-th SV's angular position, angular velocity, and angular acceleration relative to the projectile 102. This information is summarized in vector x. In one embodiment, the projectile antenna up estimator 324 is implemented in software/firmware. In the illustrated embodiment, the projectile antenna up estimator 324 performs the computations expressed in Equations 1 and 2. Equation 1 describes a roll estimate vector x describing rotation with respect to a particular u-th SV. The components of the roll estimate vector x include phase or angle r, angular velocity r′, and angular acceleration r″. In the illustrated embodiment, the phase or angle r is referenced to the particular u-th SV, with 0 angle being with the antenna 104 (
Equation 2 illustrates a covariance matrix R for a Kalman filter for the noise estimated by the FLL/PLLs.
The measurement enabler 328 controls a measurement window 326 for monitoring the roll estimate vector x output of the projectile antenna up estimator 324. In the illustrated embodiment, the measurement window 326 is open for a measurement associated with a u-th SV when the following conditions are true: (a) the SV power modulation tracking filter 320 is in PLL mode; (b) the PLL is locked; and (c) aspect angle azu to the u-th SV is between 45 degrees and 135 degrees. Other applicable aspect angles will be readily determined by one of ordinary skill in the art and can depend on the antenna pattern. Beyond the selected range for the aspect angle azu, the amount of amplitude modulation caused by the spinning of the projectile 102 is deemed to be relatively small. Thus, while the SV power modulation tracking filter 320 preferably tracks all the SVs in view, the operation of the measurement window 326 limits the SVs used to generate the aggregate up time t_up to a smaller subset. The SVs in the smaller subset can change over time as the projectile 102 travels and its aspect angle changes. The measurement window 326 can be embodied in software/firmware by, for example, inspecting a limited range of data.
A current roll estimate generator 330 generates a current roll estimate vector xcurr based on the current time tcurr, the roll estimate vector x, and a previous up time tu, that is, when the antenna 104 was last pointing at the u-th SV. The foregoing data is combined with a transition matrix Φ (see Eq. 3). The current roll estimate vector xcurr has the same dimensions as the roll estimate vector x of Equation 1. The current roll estimate vector xcurr can include an estimate of the angle r, angular velocity r′, and optionally an angular acceleration r″ of the antenna 104 relative to the SV for the current time tcurr. In one embodiment, the current roll estimate generator 330 is embodied by software/firmware.
The next up time estimator 332 determines an estimate (in time) of the next time that the pattern of the antenna 104 will be pointing toward the u-th SV. The information can be computed as illustrated within next up time estimator 332 based on the current time tcurr and the angle (r) and the angular velocity (r′) of the current information vector xcurr. A particular up time output of next up time estimator 332 corresponds to the next up time t_upu for the u-th upfinder channel.
The various next up times t_upu are then aggregated to form the next up time t_up for the projectile 102 as a whole. For example, as discussed earlier in connection with
In the illustrated embodiment, outputs of the 4th-order PLL tracking loop 406 include roll phase φu, roll rate φ′u, roll acceleration φ″u, which are available from the loop filter 704 (
One embodiment of the phase rotator/mixer 402 will be described in greater detail later in connection with
The phase rotator/mixer 402 utilizes mixers to phase rotate the input ICORR and QCORR to generate IROT and QROT as outputs. The ICORR and the QCORR signals correspond to the particular IU and QU signals for the u-th SV. The phase rotation is controlled by the roll phase estimate. The FLL acquisition loop 404 determines the roll rate (frequency) to assist the PLL tracking loop 406 to pull in to achieve phase lock. After the PLL tracking loop 406 achieves phase lock, then the PLL tracking loop 406 is used to track the roll of the projectile 102. The FLL lock detector 408 is used for acquisition of the signal modulation and generates a roll rate error (frequency). Based on the roll rate error from the FLL lock detector 408 and the pull-in range of the PLL tracking loop 406, the mode selector 410 selects between the FLL acquisition loop 404 or the PLL tracking loop 406. The phase lock detector 412 determines whether or not PLL tracking loop 406 is phase locked.
The phase rotator/mixer 402 includes a magnituder 502, a magnitude lossy integrator 504, a summer 506, a sine function block 508, a cosine function block 510, an I-phase mixer 512, a Q-phase mixer 514, an I-phase lossy integrator 516, a Q-phase lossy integrator 518.
The magnituder 502 generates a raw magnitude signal that has the magnitude of the ICORR and QCORR signals. The magnitude lossy integrator 504 is a low-pass filter. In one embodiment, the time constant of the magnitude lossy integrator 504 is about 128 milliseconds. The time constant should be relatively long relative to the spin interval of the projectile 102, which is typically around 4 milliseconds, but varies within a wide range. The time constant can vary in a very broad range and other applicable time constants will be readily determined by one of ordinary skill in the art. The output of the magnitude lossy integrator 504 contains the DC component of the raw magnitude signal, and the DC component is subtracted from the raw magnitude signal by the summer 506 to generate a signal referred to as a real input signal.
A sine and cosine of a roll phase estimate are generated by the sine function block 508 and by the cosine function block 510, respectively. The sine function block 508 and the cosine function block 510 can be implemented by, for example, a lookup table or by a function call. When the SV power modulation tracking filter 320 is phase locked, the sine and cosine of the roll phase estimate are phase-locked to the reference inputs ICORR and QCORR. In one embodiment, the roll phase estimate is an output of the mode selector 410 (
The I-phase lossy integrator 516 and the Q-phase lossy integrator 518 are low-pass filters that remove sidebands from the outputs of the I-phase mixer 512 and the Q-phase mixer 514, respectively, to generate the outputs IROT and QROT of the phase rotator/mixer 402. The I-phase lossy integrator 516 and the Q-phase lossy integrator 518 form a complex low pass filter. In the illustrated embodiment, the 2-sided bandwidth (2BW) point is 100 Hertz (50 Hz each). Other applicable bandwidth specifications are applicable and will be readily determined by one of ordinary skill in the art. However, it should be noted that the 2-sided bandwidth for the complex low-pass filter formed by the I-phase lossy integrator 516 and the Q-phase lossy integrator 518 should be much wider than the 2-sided bandwidth for the loop.
The FLL lock detector 408 (
In one embodiment, the phase lock detector 412 is configured to low-pass filter the IROT and QROT outputs of the phase rotator/mixer 402 with lossy integrators. The bandwidth of these lossy integrators should be less than the bandwidth of the PLL tracking loop 406. While phase locked, most of the power should be in the filtered IROT signal and relatively little should be in the filtered QROT signal. This relationship can be used to determine whether the PLL tracking loop 406 is locked. In one embodiment, the phase lock detector 412 is configured to take the absolute value of the filtered QROT signal, and then multiply the filtered QROT signal by a lock threshold value. In one embodiment, the lock threshold value is around 1.5. However, the lock threshold value can vary in a relatively broad range and other applicable values will be readily determined by one of ordinary skill in the art. The multiplied and filtered QROT signal is then compared with the filtered IROT signal.
In one embodiment, if the multiplied and filtered QROT signal is less than the filtered IROT signal, then the phase lock detector 412 determines that the PLL tracking loop 406 is locked. Otherwise, the phase lock detector 412 determines that the PLL tracking loop 406 is unlocked. The status mode/stateu can be provided as an input to the measurement enabler 328.
The process begins in an idle state 802. When commanded to track the rotation relative to a previously untracked SV, the process proceeds to an acquisition state 804 to phase lock to the SV. The process begins by closing the feedback loop of the SV power modulation tracking filter 320 (
When the frequency error is within the pull-in range of the PLL tracking loop 406, the process advances to a phase state 806, in which the PLL tracking loop 406 phase locks to the spin modulation on the signal from the SV. The process stays in the phase state 806 unless a new SV is commanded to be tracked, in which case, the process returns from the phase state 806 to the idle state 802, or if a loss of phase lock is detected, in which case, the process returns from the phase state 806 to the acquisition state 804.
Various embodiments have been described above. Although described with reference to these specific embodiments, the descriptions are intended to be illustrative and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art.
Alexander, Steven B., Redhead, Richard
Patent | Priority | Assignee | Title |
10063367, | Apr 28 2017 | Ciena Corporation | Optical clock recovery using feedback phase rotator with non-linear compensation |
10638109, | Sep 15 2017 | Elphel, Inc. | Method for the FPGA-based long range multi-view stereo with differential image rectification |
10698119, | May 29 2015 | L3Harris Interstate Electronics Corporation | Satellite navigation receiver for a rapidly rotating object with improved resistance to jamming |
10921464, | May 29 2015 | L3Harris Interstate Electronics Corporation | Satellite navigation receiver for a rapidly rotating object with improved resistance to jamming |
8355635, | Sep 01 2009 | The Boeing Company | Gyro-aided pointing control for laser communications |
9983315, | May 29 2015 | L3Harris Interstate Electronics Corporation | Satellite navigation receiver for a rapidly rotating object with improved resistance to jamming |
Patent | Priority | Assignee | Title |
5507452, | Aug 24 1994 | Lockheed Martin Corporation | Precision guidance system for aircraft launched bombs |
5775636, | Sep 30 1996 | Seagate Technology, INC | Guided artillery projectile and method |
6259400, | Mar 15 2000 | Bae Systems Information and Electronic Systems Integration INC | Fast acquisition of GPS signal corrupted by doppler or time delay effects |
6502786, | Feb 01 2001 | UNITED DEFENSE, L P | 2-D projectile trajectory corrector |
6520448, | Jun 12 2001 | Bae Systems Information and Electronic Systems Integration INC | Spinning-vehicle navigation using apparent modulation of navigational signals |
6573486, | Feb 22 2002 | Northrop Grumman Systems Corporation | Projectile guidance with accelerometers and a GPS receiver |
6590528, | Dec 05 2001 | Rockwell Collins, Inc.; Rockwell Collins, Inc | Low cost interference reduction system for GPS receivers |
6615734, | Sep 14 2000 | Diehl Munitionssysteme GmbH & Co. KG | Munition article with antenna for satellite navigation |
6779752, | Mar 25 2003 | Northrop Grumman Systems Corporation | Projectile guidance with accelerometers and a GPS receiver |
7163176, | Jan 15 2004 | Raytheon Company | 2-D projectile trajectory correction system and method |
7698983, | Nov 04 2005 | The United States of America as represented by the Secretary of the Army; US Government as Represented by the Secretary of the Army | Reconfigurable fire control apparatus and method |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 29 2008 | Interstate Electronics Corporation | (assignment on the face of the patent) | / | |||
Nov 03 2008 | ALEXANDER, STEVEN B | Interstate Electronics Corporation, A Subsidiary of L-3 Communications Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021896 | /0762 | |
Nov 03 2008 | REDHEAD, RICHARD | Interstate Electronics Corporation, A Subsidiary of L-3 Communications Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021896 | /0762 | |
Oct 15 2021 | Interstate Electronics Corporation | L3Harris Interstate Electronics Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 058029 | /0275 |
Date | Maintenance Fee Events |
Jan 23 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 26 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 26 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 26 2014 | 4 years fee payment window open |
Jan 26 2015 | 6 months grace period start (w surcharge) |
Jul 26 2015 | patent expiry (for year 4) |
Jul 26 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 26 2018 | 8 years fee payment window open |
Jan 26 2019 | 6 months grace period start (w surcharge) |
Jul 26 2019 | patent expiry (for year 8) |
Jul 26 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 26 2022 | 12 years fee payment window open |
Jan 26 2023 | 6 months grace period start (w surcharge) |
Jul 26 2023 | patent expiry (for year 12) |
Jul 26 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |