Methods, systems, and computer program products for determining a serving home subscriber server (HSS) in a communications network are described. One method includes obtaining a subscriber identifier from a query message. An exceptions-based data structure contained in a database is accessed to locate a database entry associated with the subscriber identifier. Similarly, a range-based data structure contained in the database is accessed to locate the database entry associated with the subscriber identifier if the exceptions-based data structure does not contain the database entry. The method also includes acquiring serving HSS data corresponding to the located entry from either the exceptions-based data structure or the range-based data structure.

Patent
   7996541
Priority
Jun 15 2007
Filed
Aug 02 2007
Issued
Aug 09 2011
Expiry
Apr 11 2030
Extension
983 days
Assg.orig
Entity
Large
50
207
all paid
12. A non-transitory computer-readable medium having stored thereon a data structure for associating subscriber identifiers with IP Multimedia subsystem (IMS) home subscription servers (HSSs), comprising:
(a) a range-based data structure that associates serving HSSs with ranges of subscriber identifier values; and
(b) an exceptions-based data structure that associates serving HSSs with individual subscriber identifier values, the exceptions-based data structure including entries that are exceptions to entries in the range-based data structure,
wherein at least one entry in the exceptions-based data structure is indexed by a subscriber identifier within a range corresponding to an entry in the range-based data structure but includes different serving HSS information from the entry in the range-based data structure.
1. A method for identifying a serving home subscriber server (HSS) in a communications network, comprising:
obtaining a subscriber identifier from a message;
accessing an exceptions-based data structure contained in a database to locate an exceptions-based database entry associated with the subscriber identifier;
accessing a range-based data structure contained in the database to locate a range-based database entry associated with the subscriber identifier if the exceptions-based data structure does not contain the exceptions-based database entry; and
acquiring serving HSS identification data corresponding to the located database entry,
wherein at least one entry in the exceptions-based data structure is indexed by a subscriber identifier within a range corresponding to an entry in the range-based data structure but includes different serving HSS information from the entry in the range-based data structure.
17. A system for identifying a serving home subscriber server (HSS) in a communications network, comprising:
a database including a range-based data structure that includes range-based entries corresponding to subscriber identifier ranges and serving HSS data respectively associated with the range-based entries and an exceptions-based data structure that includes exceptions-based entries corresponding to subscriber identifiers that indicate exceptions to the entries corresponding to the subscriber identifier ranges and serving HSS data respectively associated with the exceptions-based entries, wherein at least one entry in the exceptions-based data structure is indexed by a subscriber identifier within a range corresponding to an entry in the range-based data structure but includes different serving HSS information from the entry in the range-based data structure; and
a subscriber locator function (SLF) for accessing the exceptions-based data structure to locate an exceptions-based entry associated with a subscriber identifier, accessing the range-based data structure to locate a range-based database entry associated with the subscriber identifier if the exceptions-based data structure does not contain the exceptions-based database entry, and acquiring serving HSS data corresponding to the located database entry.
2. The method of claim 1 wherein the message comprises a query message requesting the serving HSS data associated with the subscriber identifier.
3. The method of claim 2 wherein the query message is sent by an interrogating call session control function (I-CSCF).
4. The method of claim 2 wherein the query message is a Diameter query message.
5. The method of claim 3 comprising providing the serving HSS data to the I-CSCF.
6. The method of claim 5 comprising querying an HSS indicated in the serving HSS data to obtain serving call session control function (S-CSCF) data associated with the subscriber identifier.
7. The method of claim 1 wherein at least one entry of the range-based data structure specifies a numeric range.
8. The method of claim 1 wherein at least one entry of the range-based data structure specifies an alphabetic range.
9. The method of claim 1 wherein at least one entry in the exceptions-based data structure is indexed by a subscriber identifier that is outside of all of the ranges corresponding to entries in the range-based data structure.
10. The method of claim 1 wherein obtaining a subscriber identifier comprises initiating a reverse E.164 numbering (ENUM) lookup and obtaining a reverse ENUM response containing an E.164 subscriber number that is used as the subscriber identifier.
11. The method of claim 1 wherein obtaining a subscriber identifier comprises initiating an ENUM lookup and obtaining an ENUM response containing a URI that is used as the subscriber identifier.
13. The computer-readable medium of claim 12 wherein the ranges of subscriber identifier values include a range comprising numeric values.
14. The computer-readable medium of claim 12 wherein the ranges of subscriber identifier values include a range comprising alphabetic values.
15. The computer-readable medium of claim 12 wherein at least one entry in the exceptions-based data structure is indexed by a subscriber identifier that is outside of the ranges of subscriber identifier values.
16. The computer readable medium of claim 12 wherein the message comprises a query message requesting the serving HSS data associated with the subscriber identifier and wherein the query message is a Diameter query message.
18. The system of claim 17 comprising a requesting interrogating call session control function (I-CSCF), wherein the SLF is adapted to provide the serving HSS data to the requesting I-CSCF.
19. The system of claim 18 wherein the I-CSCF is adapted to query an HSS indicated in the serving HSS data to obtain serving call session control function (S-CSCF) data associated with the subscriber identifier.
20. The system of claim 18 wherein the I-CSCF is adapted to send a Diameter query message to the SLF.
21. The system of claim 17 wherein the entries of the range-based data structure include ranges comprising numeric values.
22. The system of claim 17 wherein the entries of the range-based data structure include ranges comprising alphabetic values.
23. The system of claim 17 wherein at least one entry in the exceptions-based data structure is indexed by a subscriber identifier that is outside of all of the ranges corresponding to entries in the range-based data structure.
24. The system of claim 17 wherein the SLF is adapted to initiate a reverse E.164 number (ENUM) lookup and to obtain a reverse ENUM response containing an E.164 subscriber number that is used as the subscriber identifier.
25. The system of claim 17 wherein the SLF is adapted to initiate an ENUM lookup and to obtain an ENUM response containing a URI that is used as the subscriber identifier.

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/934,703, filed Jun. 15, 2007; the disclosure of which is incorporated herein by reference in its entirety.

The subject matter described herein relates to optimizing a subscriber locator function (SLF) in an IP multimedia subsystem (IMS). More particularly, the subject matter described herein relates to methods, systems, and computer program products for identifying a serving home subscriber server (HSS) in a communications network.

Internet protocol (IP) multimedia subsystem (IMS) is defined by the Third Generation Partnership Project (3GPP) as a mobile network infrastructure that enables the convergence of data, speech, and mobile network technology over an IP-based infrastructure. IMS bridges the gap between the existing traditional telecommunications technology and Internet technology, allowing network operators to offer a standardized, reusable platform with new, innovative services by enhancing real time, multimedia mobile services, such as voice services, video telephony, messaging, conferencing, and push services. IMS can be used to provide services for both mobile networks and fixed networks at the same time, providing unique mixtures of services with transparency to the end-user.

IMS supports the establishment of any type of media session (e.g., voice, video, text, etc.) and provides the service creator the ability to combine services in the same session and dynamically modify sessions (e.g., adding a video component to an existing voice session). As a result, new and innovative user-to-user and multi-user services have become available, such as enhanced voice services, video telephony, chat, push-to-talk, and multimedia conferencing, all of which are based on the concept of a multimedia session. The underlying IMS infrastructure enables mobile IP communication services via its ability to find a user in the network and then to establish a session with the user. The key IMS components enabling mobility management are the call session control function (CSCF) and home subscriber server (HSS). The CSCF is essentially a proxy, which aids in the setup and management of sessions and forwards messages between IMS networks. The HSS holds all of the key subscriber information and enables users (or servers) to locate and communicate with other end users.

As the number of subscribers or processing load on an individual HSS increases, it may be desirable for a network operator to include multiple HSSs in a network. If each of the multiple HSSs is identically provisioned, i.e., includes copies of the same subscriber data, the HSSs may operate in a load sharing manner and it is not necessary to have a location function to determine which HSS holds a particular subscriber's data. However, if the multiple HSSs do not include identical data, it is necessary to identify the HSS that contains a particular subscriber's data when attempting to establish a call involving that subscriber. IMS documentation defines a subscriber locator function (SLF) for locating the HSS serving a particular subscriber when the subscriber's network includes multiple HSS functions. However, the implementation of the SLF is not believed to be specified.

Accordingly, there exists a need for improved methods, systems, and computer program products for identifying a serving home subscriber server in a communications network.

According to one aspect, the subject matter described herein comprises methods, systems, and computer program products for identifying a serving home subscriber server (HSS) in a communications network. One method includes obtaining a subscriber identifier from a message. An exceptions-based data structure contained in a database is accessed to locate a database entry associated with the subscriber identifier. Similarly, a range-based data structure contained in the database is accessed to locate the database entry associated with the subscriber identifier if the exceptions-based data structure does not contain the database entry. The method also includes acquiring serving HSS data that corresponds to the located entry from either the exceptions-based data structure and the range-based data structure.

The subject matter described herein for identifying a serving HSS may be implemented using a computer program product comprising computer executable instructions embodied in a computer readable medium. Exemplary computer readable media suitable for implementing the subject matter described herein includes disk memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be distributed across multiple physical devices and/or computing platforms.

Preferred embodiments of the subject matter described herein will now be explained with reference to the accompanying drawings of which:

FIG. 1 is a network diagram illustrating exemplary communications network adapted to identify a serving home subscriber server according to an embodiment of the subject matter described herein;

FIG. 2 is a flow chart illustrating exemplary steps for identify a serving home subscriber server in a communications network according to an embodiment of the subject matter described herein; and

FIG. 3 is a network diagram illustrating exemplary communications network adapted to identify a serving home subscriber server using an E.164 identifier according to an embodiment of the subject matter described herein; and

FIG. 4 is a flow chart illustrating exemplary steps for identifying a serving home subscriber server using an E.164 identifier in a communications network according to an embodiment of the subject matter described herein.

The present subject matter relates to systems and methods for identifying a serving home subscriber server (HSS) in a communications network. FIG. 1 illustrates an exemplary communications network 100 in which the present subject matter may be implemented according to an embodiment of the subject matter described herein.

Referring to FIG. 1, network 100 may include an interrogating call session control function (I-CSCF) 102, a subscriber location function (SLF) 104, and a plurality of home subscriber servers (HSS) 1061 . . . n. I-CSCF 102 and SLF 104 may each be located and supported by separate application servers in network 100. In other embodiments of the present subject matter, SLF 104 may be co-located/integrated with a network element, such as a CSCF element. In one embodiment, network 100 includes an IMS network.

In one embodiment, I-CSCF 102 may be adapted to receive a call signaling message (e.g., message 121), such as a SIP INVITE message, sent from a calling party (e.g., a calling subscriber) to a called party (e.g., a called subscriber). In an alternate embodiment, a proxy call session control function (P-CSCF) may be adapted to receive the call signaling message. In response to receiving message 121, I-CSCF 102 (or P-CSCF) is configured to subsequently obtain subscriber information (e.g., a subscriber identifier associated with the calling subscriber, such as the calling subscriber number) from the call signaling message. In order to locate a serving HSS of the calling subscriber (which is needed to further service the call), I-CSCF 102 transmits a query message 122 containing the subscriber information to SLF 104.

In one embodiment, SLF 104 is a function that resides on a dedicated application server in network 100. SLF 104 may include database 108, which may be accessed in response to receiving query message 122, which is specifically addressed to SLF 104. Namely, SLF 104 serves the function of storing and providing HSS identification information that identifies a serving HSS node for a given calling subscriber and does not intercept any messages directed to an HSS node or other like registry node (e.g., an HLR). In one embodiment, database 108 may include a hierarchical data structure that contains a range-based section 110 that is made up of block sections or ranges of subscriber identifiers (e.g., subscriber URI values) and corresponding HSS identifiers. Likewise, database 108 may also contain an exceptions-based section 112, which includes subscriber identifiers (i.e., subscriber URI values) that are exceptions to the subscriber identifier-to-HSS identifier associations in ranged-based section 110. The relationship between the two sections is described below in greater detail.

In one embodiment, range-based section 110 contains subscriber identifier data that may include ranges of SIP:URI, TEL:URI, Mailto:URI, or other URI values. Each entry in section 110 includes an alphabetic or numeric (e.g., E.164 formatted subscriber identifiers, mobile subscriber ISDN identifiers, plain old telephone service (POTS) identifiers, international mobile station identifiers (IMSI), etc.) range of subscriber identifiers, as defined by the wild card or “*” character in each entry. For example, the entry indicated by E* at VZW.com may include all subscriber URIs within the VZW.com domain that begin with “E”. In another example, the entry indexed by 336241* may correspond to a range of subscriber directory numbers from 3362410000-3362419999. It should also be noted that the wild card operator is shown in database 108 for illustrative purposes. In an actual implementation, ranges may be identified by values that indicate the start and end of a range. For example, a range of telephone numbers for 9193800000 to 9193809999 may be identified by the telephones at the endpoints of the range, i.e., 9193800000 and 9193809999. Any suitable method for identifying a range is intended to be within the scope of the subject matter described herein.

By utilizing a data structure that employs a range (or block) of subscriber identifiers as opposed to numerous single entries of subscriber identifiers that represent the exact same information, database 108 is capable of storing more subscribers (and serving HSS identification data) in the same amount of space. This configuration also allows for more efficient lookups since fewer entries need to be accessed as SLF 104 attempts to locate an entry that matches the subscriber identifier received in message 122.

Subscriber identifier section 112 of database 108 may include a database section that contains entries of individual subscriber identifier values, such as a SIP:URI value or a Mailto:URI value. Each subscriber identifier entry in section 112 may be associated with a corresponding HSS identifier. Exceptions-based subscriber identifier section 112 may also include numeric or Tel:URI values, such as POTS or mobile telephone numbers. For example, the URI value Ellie@VZW.com or the telephone number 9193803232 may be included in the exceptions-based data. Each URI value in section 112 has a corresponding HSS identifier (e.g., Ellie@VZW.com is associated with HSS B). In an alternate embodiment, an entry in exceptions-based section 112 may include a range or block of entries not unlike the format in section 110.

As used herein, the term “range-based data” refers to a grouping of data by numeric, alphabetic, or alphanumeric ranges. For example, a range-based grouping of telephone numbers may include a group of telephone numbers that fall within a numeric range. In another example, a range-based grouping of URIs may be all URIs that fall within the same alphanumeric range. The term “exceptions-based-data” refers to data that is within one of the ranges or groupings of range based data or outside of all of the groupings or ranges of range based data. For example, the number 3362415656 in exceptions-based section 112 of database 108 is within the range of 3362410000-3462419999 specified in range based section 110. However, 3362415656 contains a different HSS identifier to the range defined for 336241*. Accordingly, the HSS identification rule for the entry corresponding to 3362415656 is an exception to the rule defined for the remaining entries in the range 336241*. It will be appreciated that according to one embodiment, range-based section 110 of SLF database 108 may be thought of as default SLF routing rules, which are only utilized in the event that an exception-based SLF routing rule could not be located.

Upon receiving a query message (e.g., message 122), SLF 104 initially access and searches exceptions-based section 112 using the subscriber identifier. Namely, SLF 104 compares and attempts to match the subscriber URI with the URI entries in section 112 via a cross-referenced comparison. If a matching entry is found in exceptions-based section 112, then the associated HSS identification data is obtained and provided to the requesting entity (e.g., I-CSCF 102). If a match is not located in the exceptions-based section 112, then range-based section 110 is subsequently searched using the subscriber identifier. In one embodiment, SLF 104 searches section 110 to determine if the subscriber identifier falls within a designated range specified by an entry.

If a “match” (i.e., if subscriber identifier falls within a range) is located in the ranged-based section 110, then the associated HSS identifier is obtained and provided to the requesting entity. If a match is not located, then a default HSS identifier may be returned or an error indicator may be returned to the requesting entity.

For example, referring to database 108 in FIG. 1, Ellie@VZW.com is listed as an exception in section 112. The first entry in section 110 indicates that Ellie@VZW.com would normally be associated with HSS A. Notably, the first entry of section 210 includes a wildcard operator that indicates that all identifiers starting with the letter “E” in the VZW.com domain are supported by HSS A. However, since Ellie@VZW.com is listed as an exception in section 112, this particular subscriber URI is instead supported by HSS B (as indicated) as opposed to HSS A.

FIG. 2 is a flow chart illustrating the exemplary steps of a method 200 for determining a serving HSS in a communications network according to an embodiment of the subject matter described herein. In block 202, a call setup message is received. In one embodiment, I-CSCF 102 receives a SIP INVITE message (e.g., message 121 in FIG. 1) intended for a designated called subscriber from a calling subscriber. The INVITE message may include this called and calling subscriber information in the “To” and “From” parameters, respectively, of the message header.

In block 204, the subscriber identifier is obtained from the call signaling message. In one embodiment, I-CSCF 102 extracts a subscriber URI from INVITE message 121.

In block 206, a query message is sent to an SLF. For example, I-CSCF 102 transmits an SLF query message (e.g., query message 122 in FIG. 1), which includes the subscriber identifier, to SLF 104. In one embodiment, query message 122 may be a Diameter query message that includes the subscriber URI value. In this scenario, the connection between I-CSCF 102 and SLF 104 may include a Diameter interface.

In block 208, an exceptions data structure is searched using the subscriber identifier. In one embodiment, SLF 104 utilizes the received subscriber identifier to initially query an exceptions-based section 112 of database 108. As mentioned above, exceptions-based section 112 of database 108 includes a list of individual subscriber identifier values (or “sub-ranges” of subscriber identifier values) that are exceptions to the range-based entries in section 110.

In block 210, a determination is made as to whether the subscriber identifier matches one of the entries in exceptions-based section 212. In one embodiment, SLF 104 compares the subscriber identifier contained in query message 122 with the entries in section 112. If a matching entry is not found in exceptions-based section 112 by SLF 104, then method 200 continues to block 212. If a matching entry is found, then method 200 proceeds to block 216.

In block 212, a range-based data structure is searched using the subscriber identifier. In one embodiment, SLF 104 utilizes the received subscriber identifier to query a range-based section 112 of database 108 (since SLF 104 did not find an exception that matched the subscriber identifier). For example, SLF 104 compares the subscriber identifier with the ranges listed in section 110 to determine if the subscriber identifier falls within a particular range.

In block 214, a determination as to whether the subscriber identifier is included within a particular range listed in section 110. If a “match” is found (i.e., subscriber identifier is within a listed range), then method 200 continues to block 216. If a “match” is not found, then method 200 proceeds to block 220, where a predefined default HSS identifier is returned to I-CSCF 102. Alternatively, an error message may be sent to I-CSCF 102 indicating that a serving HSS cannot be found in either section 110 or section 112.

In block 216, the serving HSS identification data is obtained. In one embodiment, the SLF 104 acquires the serving HSS identification data associated with the subscriber identifier from database 108 (i.e., either from exceptions section 112 or range section 110). For example, SLF 104 obtains the HSS identifier that corresponds to the matched exceptions-based section entry.

In block 218, the serving HSS identification data (e.g., HSS identifier) is sent to the original querying entity. In one embodiment, after finding a match from either section 110 or section 112, SLF 104 transmits the HSS identification data associated with the subscriber identifier to I-CSCF 102.

In block 222, the serving HSS is queried. In one embodiment, I-CSCF 102 uses the HSS identifier to query the appropriate HSS (e.g., one HSS of HSSs 1061 . . . n). In one embodiment, I-CSCF 102 attempts to obtain the identity of the S-CSCF that is designated to handle the subscriber's call from the queried HSS.

In one embodiment, the subject matter described herein may include querying an E.164 number mapping (ENUM) server in order to obtain an E.164 number, which may be used as a subscriber identifier to access an SLF routing data structure (e.g., database 108). FIG. 3 illustrates an exemplary communications network 300 in which the present subject matter may be implemented according to an embodiment of the subject matter described herein. In one embodiment, network 300 is similar to network 100 except for the addition of ENUM server 302 (e.g., a computer supporting an E.164-to-URI mapping function) and ENUM database 304. One reason that it may be desirable to identify an E.164 number corresponding to a URI is that E.164 numbers can be used as access keys to entries corresponding to numeric ranges and exceptions to those ranges in database 108. A query that seeks, from an ENUM server, an E.164 number corresponding to a URI is referred to herein as a reverse ENUM query because such a query requests the reverse of the normal E.164 to URI mapping performed by ENUM servers.

In one embodiment, ENUM server 302 is adapted to receive a reverse ENUM query 323 from SLF 104. Query 323 may include a subscriber identifier, such as a subscriber URI, that is initially received by SLF 104. After receiving query 323, ENUM server 302 uses the subscriber identifier to access database 304 in order to obtain an associated E.164 number via a URI-to-E.164 number translation. In one embodiment, ENUM database 304 may include a data structure that contains a plurality of URIs and corresponding E.164 numbers (see FIG. 3). The associated E.164 number resulting from the reverse ENUM translation is then provided to SLF 104. SLF 104 then uses the E.164 number and is used to search an SLF data structure (e.g., database 108) and determine the serving HSS for the subscriber associated with the E.164 number in a similar manner mentioned above.

FIG. 4 is a flow chart illustrating the exemplary steps of a method 400 for determining a serving HSS using an E.164 number in a communications network according to an embodiment of the subject matter described herein. In block 402, a call setup message is received. In one embodiment, I-CSCF 102 receives a SIP INVITE message 121 intended for a designated called party from a calling subscriber. The INVITE message may include a subscriber identifier, such as a calling subscriber number or subscriber URI.

In block 404, the subscriber identifier is extracted from the call signaling message. In one embodiment, I-CSCF 102 extracts a subscriber URI from INVITE message 121.

In block 405, a query message is sent to a SLF. For example, I-CSCF 102 transmits an SLF query message (e.g., query message 122), which includes the subscriber identifier, to SLF 104.

In block 406, a determination is made as to whether the subscriber identifier is an E.164 identifier. In one embodiment, SLF 104 analyzes the subscriber identifier to ascertain whether it is an E.164 based identifier. In one embodiment, SLF 104 recognizes the subscriber identifier to be a subscriber URI that may be associated to an E.164 number. If the subscriber identifier is found to be an E.164 number, then method 400 proceeds to block 410 and continues normally.

If the subscriber identifier is found not to be an E.164 identifier, then method 400 continues to block 407, where a reverse-ENUM query message containing the subscriber identifier is sent to ENUM server 302. In block 408, ENUM server 302 receives the query message and performs a reverse ENUM translation to obtain an E.164 number associated with the subscriber identifier from the ENUM database 304. In block 409, the E.164 number is sent to SLF 104 via a reverse response message 324.

In block 410, an exceptions data structure is searched using the subscriber identifier. In one embodiment, SLF 104 utilizes the E.164 number contained in message 324 to initially query an exceptions-based section 112 of database 108.

In block 412, a determination is made as to whether the E.164 number matches one of the entries in exceptions-based section 112. In one embodiment, SLF 104 compares the E.164 number contained in message 122 with the entries in section 112. If a matching entry is not found in exceptions-based section 112 by SLF 104, then method 400 continues to block 414. If a matching entry is found, then method 400 proceeds to block 420.

In block 414, a range-based data structure is searched using the subscriber identifier. In one embodiment, SLF 104 utilizes the received E.164 number to query a range-based section 112 of database 108. For example, SLF 104 compares the subscriber identifier with all of the ranges listed in section 110 to determine if the subscriber identifier falls within a particular range.

In block 416, a determination as to whether the subscriber identifier matches or falls within a particular range listed in section 110. If a match is found, then method 400 continues to block 420. If a match is not found, then method 400 proceeds to block 418, where predefined default HSS identification data is sent to I-CSCF 102. Alternatively, an error message may be sent to I-CSCF 102 indicating that a serving HSS cannot be found in either section 110 or section 112.

In block 420, the serving HSS identification data is obtained. In one embodiment, the SLF 104 acquires the serving HSS identification data associated with the E.164 number from database 108.

In block 422, the serving HSS identification data (e.g., HSS identifier) is sent to the querying entity. In one embodiment, after finding a match from either section 110 or section 112, SLF 104 transmits the HSS identification data associated with the E.164 number to I-CSCF 102 via a response message 325.

In block 424, the serving HSS is queried. In one embodiment, I-CSCF 102 uses the HSS identification data to query the appropriate HSS of HSS 1061 . . . n to obtain the identity of a serving S-CSCF. The method 400 then ends.

In yet another embodiment, it may be desirable for an ENUM translation (i.e., E.164-to-URI translation) to be performed prior to performing SLF processing. In this case, an SLF function of the present subject matter is adapted to query an ENUM function prior to performing SLF processing. For example, an SLF function may receive a query message from a CSCF node that includes a numeric subscriber identifier (e.g., E.164 formatted telephone number). The SLF is adapted to generate an ENUM query that includes the numeric subscriber identifier, and transmit the query to an ENUM function. The SLF receives an ENUM response message, which includes a subscriber URI, from the ENUM function and is adapted to use perform SLF processing (such as that described previously in this disclosure) using the returned subscriber URI.

As described above, the present subject matter relates to various methods, systems, and computer program products for identifying a serving HSS in a communications network. For example, by employing the range-based and exceptions-based data hierarchy, the present subject matter is able to facilitate the storage of data in a highly efficient manner. Thus, more data may be stored in a fewer number of entries in a database structure. Similarly, by using the associated two-stage lookup procedure, high-speed data searches for identifying a subscriber's serving HSS in an IMS network may be realized.

It will be understood that various details of the subject matter described herein may be changed without departing from the scope of the subject matter described herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the subject matter described herein is defined by the claims as set forth hereinafter.

Marsico, Peter J., Marathe, Rohini

Patent Priority Assignee Title
10027760, May 22 2015 Oracle International Corporation Methods, systems, and computer readable media for short and long term policy and charging rules function (PCRF) load balancing
10084755, Aug 14 2015 Oracle International Corporation Methods, systems, and computer readable media for remote authentication dial in user service (RADIUS) proxy and diameter agent address resolution
10117127, Jul 08 2015 Oracle International Corporation Methods, systems, and computer readable media for communicating radio access network congestion status information for large numbers of users
10554661, Aug 14 2015 Oracle International Corporation Methods, systems, and computer readable media for providing access network session correlation for policy control
10951519, Jun 17 2015 Oracle International Corporation Methods, systems, and computer readable media for multi-protocol stateful routing
11283883, Nov 09 2020 Oracle International Corporation Methods, systems, and computer readable media for providing optimized binding support function (BSF) packet data unit (PDU) session binding discovery responses
8184798, Jun 13 2006 TEKELEC, INC Methods, systems and computer program products for accessing number portability (NP) and E.164 number (ENUM) data using a common NP/ENUM data locator structure
8254551, Dec 07 2006 TEKELEC, INC Methods, systems, and computer program products for providing quality of service using E.164 number mapping (ENUM) data in a communications network
8452325, May 11 2009 TEKELEC, INC Methods, systems, and computer readable media for providing scalable number portability (NP) home location register (HLR)
8478828, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for inter-diameter-message processor routing
8483233, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for providing local application routing at a diameter node
8498202, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for diameter network management
8504630, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for diameter application loop prevention
8527598, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for answer-based routing of diameter request messages
8532110, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for diameter protocol harmonization
8538000, Aug 10 2007 TEKELEC, INC Methods, systems, and computer program products for performing message deposit transaction screening
8547908, Mar 03 2011 TEKELEC, INC Methods, systems, and computer readable media for enriching a diameter signaling message
8554928, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for providing origin routing at a diameter node
8578050, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for providing peer routing at a diameter node
8594679, Mar 07 2008 TEKELEC GLOBAL, INC Methods, systems, and computer readable media for routing a message service message through a communications network
8601073, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for source peer capacity-based diameter load sharing
8613073, Oct 16 2009 TEKELEC, INC Methods, systems, and computer readable media for providing diameter signaling router with firewall functionality
8644324, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for providing priority routing at a diameter node
8730951, Jun 01 2012 AT&T Intellectual Property I, LP Apparatus and methods for origination of voice and messaging communication in a network
8750126, Oct 16 2009 TEKELEC, INC Methods, systems, and computer readable media for multi-interface monitoring and correlation of diameter signaling information
8792329, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for performing diameter answer message-based network management at a diameter signaling router (DSR)
8799391, Feb 12 2010 Tekelec, Inc. Methods, systems, and computer readable media for inter-diameter-message processor routing
8831016, Mar 18 2011 TEKELEC, INC Methods, systems, and computer readable media for configurable diameter address resolution
8958306, Oct 16 2009 TEKELEC, INC Methods, systems, and computer readable media for providing diameter signaling router with integrated monitoring functionality
8995256, Feb 12 2010 Tekelec, Inc. Methods, systems, and computer readable media for performing diameter answer message-based network management at a diameter signaling router (DSR)
8996636, Feb 12 2010 Tekelec, Inc. Methods, systems, and computer readable media for answer-based routing of diameter request messages
9015327, Jun 11 2012 AT&T Intellectual Property I, LP Apparatus and methods for flexible communicatons in a network
9088478, Feb 12 2010 TEKELEC, INC Methods, systems, and computer readable media for inter-message processor status sharing
9148388, May 23 2013 TEKELEC, INC Methods, systems, and computer readable media for performing enhanced service routing
9231986, Jun 01 2012 AT&T Intellectual Property I, LP Apparatus and methods for origination of voice and messaging communication in a network
9294591, Jun 11 2012 AT&T Intellectual Property I, IP Apparatus and methods for flexible communications in a network
9313759, Oct 16 2009 TEKELEC, INC Methods, systems, and computer readable media for providing triggerless equipment identity register (EIR) service in a diameter network
9509729, Jun 01 2012 AT&T Intellectual Property I, L.P. Apparatus and methods for origination of voice and messaging communication in a network
9537775, Sep 23 2013 Oracle International Corporation Methods, systems, and computer readable media for diameter load and overload information and virtualization
9584959, Nov 24 2008 TEKELEC GLOBAL, INC Systems, methods, and computer readable media for location-sensitive called-party number translation in a telecommunications network
9635526, Mar 15 2013 TEKELEC, INC Methods, systems, and computer readable media for utilizing a diameter proxy agent to communicate short message service (SMS) messages
9647980, Jun 07 2012 AT&T Intellectual Property I, L.P. Apparatus and methods for a scalable communications network
9647986, Oct 16 2009 Tekelec, Inc. Methods, systems, and computer readable media for providing diameter signaling router with firewall functionality
9668134, Aug 14 2015 Oracle International Corporation Methods, systems, and computer readable media for providing access network protocol interworking and authentication proxying
9668135, Aug 14 2015 Oracle International Corporation Methods, systems, and computer readable media for providing access network signaling protocol interworking for user authentication
9888001, Jan 28 2014 Oracle International Corporation Methods, systems, and computer readable media for negotiating diameter capabilities
9918229, Aug 14 2015 Oracle International Corporation Methods, systems, and computer readable media for providing access network protocol interworking and authentication proxying
9923984, Oct 30 2015 Oracle International Corporation Methods, systems, and computer readable media for remote authentication dial in user service (RADIUS) message loop detection and mitigation
9930528, Aug 14 2015 Oracle International Corporation Methods, systems, and computer readable media for providing access network signaling protocol interworking for user authentication
9935922, Jan 21 2011 TEKELEC, INC Methods, systems, and computer readable media for screening diameter messages within a diameter signaling router (DSR) having a distributed message processor architecture
Patent Priority Assignee Title
4310727, Feb 04 1980 Bell Telephone Laboratories, Incorporated Method of processing special service telephone calls
4754479, Sep 17 1986 Avaya Technology Corp Station number portability
5089954, Aug 08 1988 TTI Inventions B LLC Method for handling conversational transactions in a distributed processing environment
5237604, Jun 28 1991 AT&T Bell Laboratories Arrangement for serving a telephone office code from two switching systems
5247571, Feb 29 1992 Verizon Patent and Licensing Inc Area wide centrex
5251248, Jun 30 1989 Nippon Telegraph and Telephone Corporation Telephone network having personal numbers for position-independent
5400390, Jun 06 1991 Nokia Telecommunications Oy Method for establishing an inbound call to the mobile telephone in a GSM cellular mobile telephone network
5422941, Feb 28 1992 Verizon Patent and Licensing Inc Extension of centrex services
5423068, Jun 19 1992 KONINKLIJKE KPN N V Method of managing, in a telecommunication network, user data of a user who may move from a base work area associated with a base exchange to another work area associated with another exchange
5430719, Jun 28 1993 BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC ; Bellsouth Intellectual Property Corporation Mediation of open advanced intelligent network interface by shared execution environment
5442683, Jan 21 1993 AT&T IPM Corp Directory structure for large scale telecommunications network allowing location of roaming mobile subscribers
5455855, Feb 12 1993 NEC Infrontia Corporation System for connecting public network subscriber and private network subscriber
5457736, Apr 12 1994 Qwest Communications International Inc System and method for providing microcellular personal communications services (PCS) utilizing embedded switches
5481603, Sep 28 1993 AT&T IPM Corp Intelligent call processing based upon complete identification of calling station
5502726, Jan 31 1992 Nellcor Puritan Bennett Incorporated Serial layered medical network
5504804, Jan 19 1994 Telefonaktiebolaget LM Ericsson Providing individual subscriber services in a cellular mobile communications network
5526400, Apr 01 1994 Telefonaktiebolaget LM Ericsson System for routing calls to mobile subscribers
5579372, Dec 12 1994 Telefonaktiebolaget LM Ericsson Flow control method for short message service - busy subscriber
5590398, Feb 03 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Virtual mobile location area
5594942, Mar 31 1993 Telefonaktiebolaget LM Ericsson Restoration of a home location register in a mobile radio system
5623532, Jan 12 1995 Telefonaktiebolaget L M Ericsson Hardware and data redundant architecture for nodes in a communications system
5689548, May 21 1996 Ericsson, Inc. Emergency call back using MSC numbers
5706286, Apr 19 1995 Verizon Patent and Licensing Inc SS7 gateway
5711002, May 14 1996 Telefonaktiebolaget LM Ericsson (publ) Transfer-to c-number message triggering of a routing request message within a cellular telephone network
5819178, Jan 05 1996 Apple Methods and apparatus for accessing subscriber information in interconnected wireless telecommunications networks
5822694, Jun 30 1995 MOTOROLA SOLUTIONS, INC Method and apparatus for providing communication services to a communication unit based on registration type
5832382, Sep 16 1996 Ericsson Inc. Optimized routing of mobile calls within a telecommunications network
5854982, Aug 21 1995 Google Technology Holdings LLC Communication system architecture and method of routing therefor
5878347, Jun 03 1996 Ericsson, Inc. Routing a data signal to a mobile station within a telecommunications network
5878348, May 30 1996 Telefonaktiebolaget LM Ericsson (publ) System and method for implementing multiple home location registers for a single mobile station in a cellular telecommunications network
5890063, Jun 03 1996 Ericsson Inc. Downloading of routing numbers to donor switches within a telecommunications network
5953662, Apr 30 1996 Ericsson, Inc Dual home location registers in a mobile radio system
5953663, Sep 25 1996 Ericsson Inc.; Ericsson Inc Rerouting an incoming call to a ported telecommunications terminal
5983217, Mar 21 1997 AT&T Corp Apparatus and method for querying replicated databases
6006098, Nov 06 1997 ALCATEL USA SOURCING, L P System and method for application location register routing in a telecommunications network
6011803, Jan 13 1997 AVAYA Inc Distributed-protocol server
6014557, Mar 14 1996 BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC ; Bellsouth Intellectual Property Corporation Apparatus and methods for providing wireless system fraud and visibility data
6018657, May 05 1997 IRON OAKS TECHNOLOGIES, LLC System and method for communicating a message using a cellular telephone network
6038456, Oct 05 1994 France Telecom Mobile telecommunication system
6049714, Oct 31 1997 CLUSTER, LLC; Optis Wireless Technology, LLC Implementing number portability using a flexible numbering register and an interwork link register
6097960, Nov 06 1997 Alcatel USA Sourcing, L.P. System and method for application location register routing in a telecommunication network
6115463, Nov 21 1997 Telefonaktiebolaget L M Ericsson Migration of subscriber data between home location registers of a telecommunications system
6128377, Jun 30 1995 Siemens Information and Communication Systems, Inc. Method for routing a call
6137806, Dec 22 1997 Nortel Networks Limited Intelligent network with alternate routing of signalling messages, and method of operating such network
6138016, Dec 04 1996 LENOVO INNOVATIONS LIMITED HK Distributing location tracking functionality in wireless telephone systems
6138017, Dec 08 1997 LENOVO INNOVATIONS LIMITED HK Cellular communications system
6138023, Sep 23 1997 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Method for porting a directory number from one wireless service provider to another
6144857, Jun 27 1996 Nortel Networks Limited Cellular communications systems
6148204, Sep 12 1997 MOTOROLA SOLUTIONS, INC Method and apparatus for a distributed location register
6192242, Mar 16 1998 RPX Corporation Method for poring a mobile directory number from one wireless service provider to another
6205210, Nov 04 1996 Nortel Networks Limited Method for improved automatic message accounting in telephony
6226517, Oct 07 1997 Telefonaktiebolaget L M Ericsson (publ) Home location register and method of routing calls to portable numbers in a radio telecommunications network
6236365, Sep 09 1996 FineTrak, LLC Location of a mobile station using a plurality of commercial wireless infrastructures
6263212, Feb 17 1998 WSOU Investments, LLC Short message service center
6308075, May 04 1998 HANGER SOLUTIONS, LLC Method and apparatus for routing short messages
6327350, Apr 05 1999 TEKELEC GLOBAL, INC Methods and systems for collecting and processing signaling system 7 (SS7) message signal units (MSUs)
6377674, Dec 30 1998 AT&T Corp Method for global title translation processing
6411632, Sep 16 1997 Telefonaktiebolaget L M Ericsson publ Network hub for interconnecting a wireless office environment with a public cellular telephone network
6424832, Apr 29 1999 Telefonaktiebolaget L M Ericsson (publ) Method of supporting functionality for roamer port calls in a radio telecomminications network in which number portability is implemented
6434144, Jul 06 1998 BESTROUTE, INC Multi-level table lookup
6463055, Jun 01 1998 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Integrated radio telecommunications network and method of interworking an ANSI-41 network and the general packet radio service (GPRS)
6505046, Nov 19 1997 RPX CLEARINGHOUSE LLC Method and apparatus for distributing location-based messages in a wireless communication network
6515997, May 17 1999 Ericsson Inc. Method and system for automatic configuration of a gateway translation function
6535746, Mar 10 1998 RAKUTEN, INC Method and apparatus supporting short message services in a wireless number portability environment
6539077, Jun 05 1998 NETNUMBER COM, INC Method and apparatus for correlating a unique identifier, such as a PSTN telephone number, to an internet address to enable communications over the internet
6560216, Sep 17 1998 ALIANZA, INC Data network computing device call processing
6560456, May 24 1999 UNWIRED PLANET IP MANAGER, LLC; Unwired Planet, LLC System and method for providing subscriber-initiated information over the short message service (SMS) or a microbrowser
6574481, Nov 06 1997 Alcatel USA Sourcing, L.P. System and method for application location register routing in a telecommunications network
6577723, Jul 13 2000 AT&T MOBILITY II LLC Application of TCAP criteria in SCCP routing
6594258, May 26 1999 Ericsson Inc Integrated home location register and IP-SS7 gateway
6611516, Jun 21 1999 Nokia Technologies Oy Short message service support over a packet-switched telephony network
6643511, Apr 12 1999 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Administration of regional subscription restriction in a network that includes a gateway location register
6662017, Dec 23 1999 TEKELEC GLOBAL, INC Methods and systems for routing messages associated with ported subscribers in a mobile communications network
6683881, May 28 1999 Ericsson, Inc Interface between an SS7 gateway and an IP network
6684073, Aug 31 1999 Swisscom AG Signalling method and conversion device for telecommunications networks
6731926, Apr 02 2001 BellSouth Intellectual Property Corp System and method for delivering a message waiting indicator message to a wireless system
6738636, Apr 19 2000 Microsoft Technology Licensing, LLC Method for providing access to data
6748057, Jun 05 1998 Netnumber, Inc. Method and apparatus for correlating a unique identifier, such as a PSTN telephone number, to an internet address to enable communications over the internet
6775737, Oct 09 2001 Cisco Technology, Inc. Method and apparatus for allocating and using range identifiers as input values to content-addressable memories
6795701, May 31 2002 Intel Corporation Adaptable radio link for wireless communication networks
6836477, Dec 23 1999 TEKELEC, INC Methods and systems for routing messages in a communications network
6839421, Oct 29 2001 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Method and apparatus to carry out resolution of entity identifier in circuit-switched networks by using a domain name system
6871070, Jul 31 2001 Lucent Technologies Inc. Communication system for providing roaming between an internet protocol multimedia system and a circuit-switched domain
6885872, May 09 2003 TEKELEC GLOBAL, INC Methods and systems for providing short message gateway functionality in a telecommunications network
6917612, Sep 01 2000 Telefonaktiebolaged L M Ericsson System and method for address resolution in internet protocol (IP)-based networks
6950441, Mar 30 1999 RIBBON COMMUNICATIONS OPERATING COMPANY, INC System and method to internetwork telecommunication networks of different protocols
6993038, Jun 11 2002 TEKELEC, INC Methods and systems for automatically provisioning address translation information in a mobile services node address translation database
7010002, Jun 14 2001 AT&T Corp Broadband network with enterprise wireless communication method for residential and business environment
7027582, Jul 06 2001 InterDigital Patent Holdings, Inc Method and apparatus for resolving an entity identifier into an internet address using a domain name system (DNS) server and an entity identifier portability database
7035239, Dec 23 1999 TEKELEC, INC Methods and systems for routing messages in a communications network
7039037, Aug 20 2001 MAVENIR SYSTEMS, INC Method and apparatus for providing service selection, redirection and managing of subscriber access to multiple WAP (Wireless Application Protocol) gateways simultaneously
7054652, Nov 06 2001 Telefonaktiebolaget LM Ericsson (publ) Number portability resolving apparatus
7079524, Oct 11 2001 TEKELEC GLOBAL, INC Methods and systems for off-loading a-interface short message service (SMS) message traffic in a wireless communications network
7079853, Nov 06 1997 Alcatel USA Sourcing, L.P. System and method for application location register routing in a telecommunications network
7092505, Dec 23 1999 Tekelec Methods and systems for universal, automatic service selection in a telecommunications signaling network
7170982, Aug 26 2004 Lucent Technologies Inc Call authorization and billing message routing capability
7221952, Aug 26 2002 SK TELECOM CO , LTD Method for processing address of short message service center in IMT-2000 asynchronous network
7274683, Jun 03 2002 Google Technology Holdings LLC Method and apparatus for a telecommunications network to communicate using an internet protocol
7286839, Dec 23 1999 Tekelec Methods and systems for routing messages associated with ported subscribers in a mobile communications network
7366530, May 09 2003 TEKELEC GLOBAL, INC Methods and systems for providing short message gateway functionality in a telecommunications network
7397773, Oct 22 2002 Qualcomm Incorporated GSM cell broadcast SMS message transmission in CDMA communication systems
7551608, Apr 25 2001 AT&T Intellectual Property II, L.P. Common mobility management protocol for multimedia applications, systems and services
7715367, Jul 23 2004 Panasonic Corporation IP telephone system, IP telephone apparatus and communications method
7746864, Apr 30 2008 Cello Partnership System and method for routing inter-carrier short message service or multimedia message service messages
7751386, Aug 06 2004 Panasonic Corporation IP telephone apparatus, ENUM server, IP telephone system and method for deleting terminal information
7787445, Jul 20 2006 TEKELEC, INC Methods, systems, and computer program products for routing and processing ENUM queries
7889716, Dec 01 2005 TEKELEC, INC Methods, systems, and computer program products for using an E.164 number (ENUM) database for message service message routing resolution among 2G and subsequent generation network systems
20010029182,
20010030957,
20010040957,
20020054674,
20020147845,
20020173320,
20020176382,
20030007482,
20030026289,
20030054844,
20030065788,
20030081754,
20030109271,
20030128693,
20030193967,
20030227899,
20040003114,
20040076126,
20040081206,
20040082332,
20040087300,
20040125925,
20040141488,
20040142707,
20040198351,
20040202187,
20040243596,
20040246965,
20050119017,
20050182781,
20050286531,
20060002308,
20060034256,
20060067338,
20060072726,
20060095575,
20060098621,
20060136557,
20060165068,
20060245573,
20060293021,
20070019625,
20070061397,
20070104184,
20070115934,
20070116250,
20070133574,
20070203909,
20070286379,
20080114862,
20080130856,
20080247526,
20080258575,
20080281975,
20090022146,
20090043704,
20090103707,
20090227276,
20090264112,
20100020728,
20100285800,
20110116382,
20110126277,
EP512962,
EP936825,
EP944276,
EP1285545,
EP1558004,
EP1742452,
H1895,
KR1020040107271,
KR20000037801,
KR20030040291,
WO16583,
WO60821,
WO147297,
WO154444,
WO3005664,
WO3021982,
WO3105382,
WO2004006534,
WO20040087686,
WO2004075507,
WO2004102345,
WO2005013538,
WO2006072473,
WO2007045991,
WO2007064943,
WO2007092205,
WO2007146257,
WO2008011101,
WO2009023573,
WO2009070179,
WO9512292,
WO9611557,
WO9733441,
WO9818269,
WO9856195,
WO9911087,
WO9957926,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 02 2007Tekelec(assignment on the face of the patent)
Aug 06 2007MARATHE, ROHINITekelecASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198060339 pdf
Aug 22 2007MARSICO, PETER J TekelecASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198060339 pdf
Jan 27 2012TekelecWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0280350659 pdf
Jan 27 2012CAMIANT, INC WILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0280350659 pdf
Jan 30 2012TekelecTEKELEC GLOBAL, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0280780287 pdf
Apr 27 2012TEKELEC GLOBAL, INC TEKELEC, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0281840119 pdf
Date Maintenance Fee Events
Jan 21 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 24 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 25 2023M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 09 20144 years fee payment window open
Feb 09 20156 months grace period start (w surcharge)
Aug 09 2015patent expiry (for year 4)
Aug 09 20172 years to revive unintentionally abandoned end. (for year 4)
Aug 09 20188 years fee payment window open
Feb 09 20196 months grace period start (w surcharge)
Aug 09 2019patent expiry (for year 8)
Aug 09 20212 years to revive unintentionally abandoned end. (for year 8)
Aug 09 202212 years fee payment window open
Feb 09 20236 months grace period start (w surcharge)
Aug 09 2023patent expiry (for year 12)
Aug 09 20252 years to revive unintentionally abandoned end. (for year 12)