A lens barrel, an image pickup apparatus, a lens drive method and a method of producing a shape memory alloy used for the drive device are disclosed. A drive device includes: a lens group for guiding light from a subject; a shape memory alloy adopted to be deformed by an electricity supplied to the shape memory alloy, for moving the lens group in a direction of an optical axis; and electricity-supply controlling means for controlling an amount of the electricity supplied to the shape memory alloy; and a detecting means for detecting whether a movement of the lens group starts or not. In the drive device, a movement amount of the lens group in the direction of the optical axis is controlled based on the amount of electricity supplied when the detecting means detects the movement of the lens group.
|
3. A drive device comprising:
a driven body;
a shape memory alloy engaged with the driven body;
a heating section for heating the shape memory alloy;
a controlling section for controlling a drive of the driven body by controlling the heating section,
wherein the shape memory alloy is applied an aging treatment in advance, the aging treatment repeating a predetermined number or more of times of heating and no-heating processes.
5. A lens barrel comprising:
a lens group for guiding light from a subject to an image pickup element;
a lens frame supporting the lens group; and
a shape memory alloy formed in a shape of a string for moving the lens frame in a predetermined direction,
wherein a part of the shape memory alloy is arranged in an optical path of the lens group, and
the shape memory alloy moves the lens frame by being contracted due to an electricity supplied to the shape memory alloy.
1. A drive device comprising:
a driven body;
a shape memory alloy engaged with the driven body;
a heating section for heating the shape memory alloy;
a controlling section for controlling a drive of the driven body by controlling the heating section,
wherein the controlling section applies an aging treatment to the shape memory alloy when the shape memory alloy is initially used, the aging treatment controlling the heating section to repeat a predetermined number or more of times of heating and no-heating processes.
2. The drive device of
4. The drive device of
6. The lens barrel of
7. The lens barrel of
10. The drive device of
11. The drive device of
12. An image pickup apparatus comprising:
an image pickup element; and
the drive device of
13. An image pickup apparatus comprising:
an image pickup element; and
the drive device of
|
This is a U.S. National Phase Application under 35 USC 371 of International Application PCT/JP2006/315261 filed on Aug. 2, 2006.
This application claims the priority of Japanese application nos. 2005-232920 filed Aug. 11, 2005, 2005-239758 filed Aug. 22, 2005 and 2005-265023 filed Sep. 13, 2005, the entire content of all of which is hereby incorporated by reference.
The present invention relates to a drive device constructed to move a lens group representing a driven body by using expansion and contraction of a shape memory alloy, a lens barrel, an image pickup apparatus, a lens drive method and a method of producing a shape memory alloy used for the drive device.
With regard to the shape memory alloy (hereinafter referred to sometimes as “SMA”), even if it is plastically deformed due to receiving force in a temperature not higher than martensitic transformation completion temperature, it recovers its shape when it is heated to the temperature that is not less than reverse transformation completion temperature.
As shown in
However, actions of a shape memory alloy (SMA) are provided by heating SMA with Joule heat through supplying electricity for SMA, and thereby obtaining displacement of a driven member by utilizing a deformation corresponding to the temperature resulted from the heating. Therefore, it has been difficult to determine the unique input condition for SMA to obtain desired displacement, because of various un-uniformity in the constituted system such as, for example, errors in a length of SMA, errors in a resistance value of SMA, errors of mechanical dimensions of constituent members and the ambient temperature.
For dissolving the aforesaid problems, therefore, there has been proposed a position-control drive device that detects a position of a lens group representing a driven body, and partially changes the shape memory alloy based on the results of the detection (for example, see Patent Document 1 Japanese Patent Publication Open to Public Inspection No. 10-307628)
Further, Japanese Patent Publication Open to Public Inspection (JP-A) No. 11-324896 discloses a drive mechanism that detects the ambient temperature with a temperature sensor, and controls a current value and a voltage value to be supplied to a wire formed by a shape memory alloy, or controls a duty ratio of a pulse current or of a pulse voltage to be supplied to the wire, based on the detected result.
Further, JP-A No. 2002-99019 discloses a drive mechanism using a string-like shape memory alloy which is formed to be in a doglegged shape to be in contact with a driven body at the substantial center position of the string-like shape memory alloy and to be fixed at both ends of the string-like shape memory alloy.
The position control drive device in the aforesaid JP-A No. 10-307628 is suitable to drive a lens group with being arranged in a lens barrel of a device such as a camera. However, when it is applied to a lens drive device of a small-sized and thin image pickup apparatus provided to be housed in, for example, a mobile terminal, there are needed position detecting sensors for acquiring information about the present position of a driven member to be arranged on the total area where the driven member moves, resulting in slight disadvantage for downsizing and cost reduction, which is a problem.
In the drive mechanism described in the aforesaid JP-A No. 11-324896, it is suitable to be utilized at the inside of the apparatus where temperature distribution is relatively uniform such as a rear cover of a camera. However, when it is applied to a lens drive device of a small-sized and thin image pickup apparatus provided to be housed in, for example, a mobile terminal, circuit parts that operate other functions are arranged densely in the vicinity of the drive mechanism, whereby, temperature distribution in the apparatus is not uniform, and detection values vary depending on a position where a temperature sensor is arranged. Thus, it is sometimes provide a situation hardly to conduct optimum control.
Further, the drive mechanism described in JP-A No. 2002-99019 wherein a string-like shape memory alloy which is formed to be in a doglegged shape is used, is not so problematic for mounting in a large equipment such as binocular glasses. However, it requires any other ideas for applying the drive mechanism to a small-sized image pickup apparatus to mount it in a mobile terminal, because fixed sections on both ends are protruded greatly from both sides of a driven body.
It is known that the shape memory alloy occurs an initial creep phenomenon that a deformation amount changes depending on the number of times of supplying electricity at the initial step where the frequency of supplying electricity is small. When a drive device utilizing a shape memory alloy controls a position of a driven body, the deformation amount changes unwillingly even when applying the same amount of current, because of the aforesaid initial creep phenomenon. Therefore, there is also in a problem that accurate position control is difficult.
In view of the aforesaid problems, an object of the invention is to obtain a small-sized and low-cost drive device that employs a shape memory alloy for an actuator, and can stop a lens group at a desired position and is suitable to be mounted in a mobile terminal; a lens barrel; an image pickup apparatus; a lens drive method; and a method of producing a shape memory alloy used for the drive device.
The aforesaid problems are solved by the structures listed below:
1. A drive device comprising: a lens group for guiding light from a subject; a shape memory alloy adopted to be deformed by an electricity supplied to the shape memory alloy, for moving the lens group in a direction of an optical axis; an electricity-supply controlling means for controlling an amount of the electricity supplied to the shape memory alloy; and a detecting means for detecting whether a movement of the lens group starts or not,
wherein a movement amount of the lens group in the direction of the optical axis is controlled based on the amount of the electricity supplied when the detecting means detects the movement of the lens group.
2. A drive device comprising: a lens group for guiding light from a subject; a shape memory alloy adopted to be deformed by an electricity supplied to the shape memory alloy, for moving the lens group in a direction of an optical axis; an electricity-supply controlling means for controlling an amount of the electricity supplied to the shape memory alloy; and a detecting means for detecting a movement of the lens group at the two predetermined positions,
wherein a movement amount of the lens group in the direction of the optical axis is controlled based on each of amounts of the electricity supplied when the detecting means detects the movement of the lens group between two predetermined positions along the optical axis.
3. The drive apparatus of Item 1 or 2, wherein the detecting means is an output of an image pickup element.
4. A drive device comprising: a driven body; a shape memory alloy engaged with the driven body; a heating section for heating the shape memory alloy; a controlling section for controlling a drive of the driven body by controlling the heating section,
wherein the controlling section applies an aging treatment to the shape memory alloy when the shape memory alloy is initially used, the aging treatment controlling the heating section to repeat a predetermined number or more of times of heating and no-heating processes.
5. The drive device of Item 4, wherein the heating section heats the shape memory alloy by applying an electric current to the shape memory alloy.
6. A drive device comprising: a driven body; a shape memory alloy engaged with the driven body; a heating section for heating the shape memory alloy; a controlling section for controlling a drive of the driven body by controlling the heating section,
wherein the shape memory alloy is applied an aging treatment in advance, the aging treatment repeating a predetermined number or more of times of heating and no-heating processes.
7. The drive device of Item 6, wherein the shape memory alloy is heated by applying an electric current to the shape memory alloy.
8. A lens barrel comprising: a lens group for guiding light from a subject; a lens frame supporting the lens group; and a shape memory alloy formed in a shape of a string for moving the lens frame in a predetermined direction,
wherein a part of the shape memory alloy is arranged in an optical path of the lens group, and
the shape memory alloy moves the lens frame by being contracted due to an electricity supplied to the shape memory alloy.
9. The lens barrel of Item 8, wherein the shape memory alloy moves the lens frame in a direction of an optical axis by being contracted.
10. The lens barrel of Item 9, wherein the shape memory alloy moves the lens frame close to the subject by being contracted.
11. The lens barrel of Item 10, wherein the lens frame is pressed toward an image-forming surface.
12. An image pickup apparatus comprising the drive apparatus of any one of Items 1 to 7.
13. An image pickup apparatus comprising the lens barrel of any one of Items 8 to 11.
14. A lens drive method of driving a lens group for controlling an amount of a movement of a lens group for guiding light from a subject in an optical axis, by controlling the lens group, a shape memory alloy, and an amount of an electricity supplied to the shape memory alloy, the method comprising:
a step of gradually changing an electricity supplied to the shape memory alloy and detecting whether a movement of the lens group starts or not;
a step of determining an amount of an electricity to be supplied to the shape memory alloy which is needed to move the lens group to a predetermined position based on an amount of an electricity supplied when the movement of the lens group starts; and
a step of supplying the electricity which is determined to the shape memory alloy.
15. A lens drive method of driving a lens group for controlling an amount of a movement of a lens group for guiding light from a subject in an optical axis, by controlling the lens group, a shape memory alloy, and an amount of an electricity supplied to the shape memory alloy, the method comprising:
a step of gradually changing an electricity supplied to the shape memory alloy and detecting a movement of the lens group at two predetermined positions along the optical axis;
a step of determining an amount of an electricity to be supplied to the shape memory alloy which is needed to move the lens group to a predetermined position based on each of amounts of the electricity supplied when the movement of the lens group are detected at the two predetermined positions; and
a step of supplying the electricity which is determined to the shape memory alloy.
16. A method of producing shape memory alloy for use in a drive apparatus comprising a driven body, a shape memory alloy connected to the driven body, a heating section for heating the shape memory alloy, a controlling section for controlling a drive of a driven body by controlling the heating section, the method comprising: a step of applying an aging treatment to the shape memory alloy, the aging treatment repeating a predetermined number or more of times of heating and no-heating processes.
17. The method of producing shape memory alloy of Item 16, wherein the shape memory alloy is heated by applying an electric current to the shape memory alloy.
The invention makes it possible to obtain a small-sized and low cost drive device that has a simple and convenient structure and can stop a lens group at a desired position accurately, a lens barrel, an image pickup apparatus, a lens drive method and a method of producing a shape memory alloy used for the drive device.
Each of
Each of
Each of
Each of
The invention will be explained in detail as follows, referring to the embodiment, to which, however, the invention is not limited.
In the mobile phone T shown in
Hereupon, this image pickup apparatus 100 may also be arranged above or on the side surface of the display image screen D2 in the upper casing 71. Further, it is of cause that the mobile phone is not limited to a folding type.
As shown in
Incidentally, on the flexible print board 32, there is formed contact point section 32t for connecting to another board of a mobile terminal, and reinforcing plate 33 is pasted on the reverse side of the flexible print board 32. Now, the symbol ◯ represents an optical axis of lens group 11. Further, the contact point section 32t represents an element which has 20 pins or more such as a power supply, control signals, image signal output and a terminal for inputting to a shape memory alloy, and it is shown schematically.
Next, internal structures of the image pickup apparatus relating to the present embodiment will be explained as follows, referring to
Inside the image pickup apparatus 100, there are arranged the first lens frame 17 (hereinafter referred to as lens frame 17) that houses therein lens group 11 that is composed of a single lens or of plural lenses, and the second lens frame 8 (hereinafter referred to as lens frame 18) that holds the lens frame 17 in the outside of lens frame 17.
The lens frame 17 is engaged with the lens frame 18 through screw sections 17n and 18n, and the lens frame 17 can be moved in the optical axis direction against the lens frame 18 when the lens frame 17 is rotated on the lens frame 18. Incidentally, the lens frame 17 and the lens frame 18 may also be arranged so that both of them may be moved relatively in the optical axis direction through a helicoid or through other structures.
The bottom plate 13 is formed to be a quadrangle substantially when it is viewed in the optical axis direction. Guide shafts 15 and 16 are located at almost diagonal positions with in-between optical axis ◯ on the bottom plate. Guide shaft 15 is planted in the bottom plate 13 to be in substantially parallel with the optical axis, and guide shaft 16 is integrally formed with the bottom plate as one body. Alternatively, the guide shaft 15 may also be integrally formed as one body with the bottom plate 13 and the guide shaft 16 may be planted in the bottom plate 13.
Cylindrical section 18p through which the guide shaft 15 is engaged and is penetrated is integrally formed as one body on the lens frame 18, and U-shaped engaging section 18u that engages with the guide shaft 16 is formed on the lens frame 18. Owing to this, the lens frame 18 can move in the optical axis direction along the guide shafts 15 and 16, and lens frame 17 and lens group 11 can move together with the lens frame 18 in the optical axis direction. Further, this cylindrical section 18p is pressed by helical compression spring 19 representing a pressing member in the axial direction of the guide shaft 15. In the present example, the cylindrical section 18p is pressed toward image pickup element 34 arranged in the rear of the lens group 11.
Further, there is integrally formed light-shielding plate 18s on the cylindrical section 18p of the lens frame 18 as one body. This light-shielding plate 18s is arranged in the optical path of light emitted from or received by photo-interrupter 41 that is fixed on the bottom plate 13 with screw 42. Thus, the light-shielding plate 18s is moved by a movement of the lens frame 18 in the optical axis direction, to shield the optical path of light emitted from or received by photo-interrupter 41, or to retreat from the optical path of light emitted from or received by photo-interrupter 41.
Further, there is integrally formed protrusion section 18t on the side of the lens frame 18 as one body. On the other hand, boss 20 is formed on the bottom plate 13, and flat-head screw 21 is screwed in an unillustrated hole of the boss 20. The protrusion section 18t is in contact with a head portion of this screw 21. Namely, the lens frame 18 is pressed toward the image pickup element side by compression coil spring 19 representing a pressing member, and a position of the lens frame 18 on the image pickup element side is determined when the protrusion section 18t touches the head portion of the screw 21 that is a contact member arranged on the bottom plate 13.
Two columnar sections 22 are integrally formed on the bottom plate 13 as one body. These two columnar sections 22 are formed at the position to be arranged at both ends of a line connecting optical axis ◯ of lens group 11 to a center line of the cylindrical section 18p. Both ends of shape memory alloy 23 which is in a string shape are fixed on the two columnar sections 22. The string-like shape memory alloy 23 is extended with being in contact with a bottom portion of the lens frame 18 closer to image pickup element 34 between optical axis ◯ of lens group 11 and the cylindrical section 18p.
As shown in
Further, each of the both end portions of the shape memory alloy 23 formed in a string shape is cut with being held by plate member 23k, and this plate member 23k is fixed at the upper portion of the columnar section 22.
When predetermined current or voltage is applied to the shape memory alloy 23 thus extended, from flexible print board 32f (see
The foregoing is the internal structure of the image pickup apparatus 100 relating to the present embodiment.
Next, a drive device and a drive method for moving lens group 11 of image pickup apparatus 100 having the aforesaid structure housed in cell-phone T will be explained as follows.
First, a lens drive device and a lens drive method relating to the First Embodiment will be explained. In the First Embodiment, the presence or absence of movement of a lens group is detected by gradually changing electricity supplied to a shape memory alloy. Based on an amount of electricity supplied at a point in time when the movement is detected, an amount of the electricity to move the lens group by a predetermined amount in the optical axis direction is determined, and then, drive control for the lens group is conducted.
Each of
First, lens frame 18 of image pickup apparatus 100 is adjusted so that it may be located at its predetermined position, and a position of the light-shielding plate 18s is adjusted so that a part of a light flux emitted from or received by photo-interrupter 41 may be shielded as shown in
More closely, a position of the lens frame 18 is determined by flat-head screw 21 so that a position of the light-shielding plate 18s may agree with a position in a range of illustrated D representing a transition area between the state of shielding and the state of retreating caused by light-shielding plate 18s within an area where light is emitted from or received by photo-interrupter 41 shown in
Next, focal point is adjusted by moving lens frame 17 in the optical axis direction ◯ by rotating the lens frame 17 on lens frame 18. A focal point of lens group 11 held by lens frame 17 is adjusted so that, for example, a subject positioned at a hyperfocal distance may be focused on an image pickup surface of image pickup element 34. In this case, the shape memory alloy 23 is in the tensional state against lens frame 18 as shown in
Namely, the lens drive device 100 relating to the First Embodiment is adjusted so that a subject positioned at a hyperfocal distance may be focused under the state of no-electricity. Incidentally, this focus position is not limited to only to the hyperfocal distance, and it may also be a position where a subject positioned at an infinite distance is focused. However, in the present embodiment, an explanation is given under the condition of an adjustment where a subject positioned at a hyperfocal distance is focused.
In
When the photographing mode is set (step S101; Yes), the image pickup element is driven to display preview images (which are also called through images) on a display screen on a real time basis (step S102). Then, the flow is in a state waiting for an operation that a button corresponding to a release button among buttons on a cell-phone is turned on (step S103). When a button corresponding to a release button is not turned on (step S103; No), the flow returns to step S101.
When a button corresponding to a release button is turned on (step S103; Yes), an image for evaluating focus is taken in (step S104). It means that the image for evaluating focus taken in at step S104 is an image on the occasion where a lens group is at a hyperfocal position.
Then, a current value set in advance is applied to the shape memory alloy (step S105), and an output of a photo-interrupter is judged whether it changes or not (step S106). When the output of the photo-interrupter does not change (step S106; No), a current whose value increases from the current value applied previously by a predetermined increment amount is applied to the shape memory alloy (step S107). Then, an output of a photo-interrupter is judged again whether it changes or not (step S108). When the output of the photo-interrupter does not change (step S108; No), the flow returns to step S107, a current whose value further increases from the current value applied previously by a predetermined increment amount is applied to the shape memory alloy, and judgment whether the output of the photo-interrupter changes at step S108 or not is repeated.
It means that a current value applied to the shape memory alloy gradually increases until the moment when the output of the photo-interrupter changes. The current value at which the output of the photo-interrupter starts changing means that the current value at which a component in the optical axis direction of force that acts on the shape memory alloy exceeds pressing force in the optical axis direction by helical compression spring 19, and protrusion section 18t of the lens frame leaves a head of screw 21.
When the output of the photo-interrupter changes (step S108; Yes), a current amount to be applied to the shape memory alloy for moving a lens group to a predetermined position (macro position) is determined based on the current value on that occasion (step S109). The amount of current thus determined is applied to the shape memory alloy (step S110). The method of determining an amount of current in step S109, for example, is described below.
When a current value Ia1 is obtained at a point of time when an output of the photo-interrupter is changed, current value Ia2 which is increased by a prescribed amount from the current value Ia1 is applied to the shape memory alloy. On the other hand, when a current value Ib1 is obtained at a point of time when an output of the photo-interrupter is changed, current value Ib2 which is increased by a prescribed amount from the current value Ib1 is applied to the shape memory alloy. By doing this, it is possible to move lens frame 18 from its initial state by a predetermined amount. Namely, it is possible to move a lens group from a position for focusing to hyperfocal distance to a position for macro photographing.
By employing the structure, as stated above, determining an amount of electricity to move the lens group to the position for macro photographing based on the current value at the point of time when an output of the photo-interrupter changes, and supplying the amount of electricity to the shape memory alloy, it is possible to dissolve microscopic errors in a length of the shape memory alloy, mounting errors and un-uniformity of an amount of movement of lens group caused by ambient temperatures, and to obtain an image pickup apparatus which does not provides individual difference when moving a lens group to a macro position.
Incidentally, though a method of determining a current value in step S109 has been explained by using a graph, it is naturally possible to employ those using a lookup table and to employ those determining by calculation.
Returning to the flow in
Then, a lens group is set at the position where the image having larger high-frequency component between two images in evaluation in step S112 (step S113). Specifically, when the image for evaluation obtained in step S104 has larger high-frequency component, applying current to the shape memory alloy is stopped and a lens group is positioned in the initial state, namely, the lens group is located at the position for focusing to the hyperfocal distance. When the image for evaluation obtained in step S111 has larger high-frequency component, the current value determined in step S110 is applied to the shape memory alloy, and the lens group is located at the macro photographing position.
Then, photographing and image recording on a recording material are conducted at the lens group position established in step S113 (step S114), and the flow returns to step S101.
As explained above, by detecting whether the movement of the lens group has started or not while gradually changing an amount of electricity supplied to the shape memory alloy, then, by determining an amount of electricity to move the lens group to a desired position, based on the amount of electricity at the time when the movement starts, and by applying the amount of electricity thus determined to the shape memory alloy, it is possible to dissolve microscopic errors in a length of the shape memory alloy, mounting errors and un-uniformity of an amount of movement of lens group caused by ambient temperatures, and to obtain a lens drive device which does not provide individual difference when moving a lens group to a macro position, and thereby to obtain a small-sized and low-cost image pickup apparatus wherein the structure is simple, and a lens group can be stopped accurately at a desired position.
Incidentally, although the explanation has been given about the position control for two points including a hyperfocal position and a macro position, in the aforesaid explanation, it is also possible to provide a structure such that plural current values each being increased from Ia1 are established stepwise, to be capable of being stopped at plural steps of lens positions. Further, though the explanation uses the example wherein a position for detecting changes of output of a photo-interrupter and a hyperfocal position of the lens are at the substantially same position, the present invention is not limited to this. A position of the lens which is protruded by a prescribed distance from the hyperfocal position may also be set as a position for detecting changes of output of a photo-interrupter.
Further, though the explanation has so far been given referring to the example of a self-focusing image pickup apparatus, the invention can also be applied to manual setting as the followings: when the hyperfocal position is selected, the electricity does not supplied to the shape memory alloy, while, when a macro position is selected, a position of a lens group is set manually by following operations of step S105-step S110 in
Further, in the aforesaid example, a photo-interrupter is used to detect whether the movement of the lens group has started or not. However, it is also possible to provide a structure, for example, to monitor a predetermined area of preview images continuously, and a point of time when the focusing condition changes is regarded as the time of starting movement.
In the Second Embodiment, movement of the lens group is detected at two locations by gradually changing current values to be supplied to the shape memory alloy. Based on the amounts of electricity at points of time when movement of lens group were detected at two predetermined positions, an amount of electricity necessary for moving the lens group to the desired position is determined, and then, drive control for the lens group is conducted.
Initial state (state of no-electricity) of each section of lens drive device 100 is the same as one shown in
In
When the photographing mode is set (step S101; Yes), a current value set in advance is applied to the shape memory alloy (step S202), and output of a photo-interrupter is judged whether it is changed or not (step S203). When output of a photo-interrupter changes (step S203; Yes), the applied current value is stored (step S204).
When the output of the photo-interrupter does not change (step S203; No), a current whose value increases from the current value applied previously by a predetermined increment amount is applied to the shape memory alloy (step S205). Then the output of the photo-interrupter is judged again whether it changes or not (step S206).
When the output of the photo-interrupter does not change (step S206; No), the flow returns to step S205, and a current whose value further increases from the current value applied previously by a predetermined increment amount is applied to the shape memory alloy, and judgment to check whether the output of the photo-interrupter changes or not (step S206) is repeated.
When the output of the photo-interrupter changes (step S206; Yes), the applied current value is stored (step S207). Then, it is judged whether the number of the stored current values becomes two (step S208). When it remains to be one (step S208; No), the flow returns to step S205 and a current whose value further increases from the current value applied previously by a predetermined increment amount is applied to the shape memory alloy, to repeat step S205 and step S206 until the output of the photo-interrupter changes again. When the number of the stored current value becomes two (step S208; Yes), the flow moves to step S209, and relationship between an amount of lens movement and an amount of current is obtained from two current values obtained. The relationship obtained in the step S209 is as follows.
Output of the photo-interrupter changes, at the first time, at the point of time when light-shielding plate 18s united with lens frame 18 starts moving to the subject side in the optical axis direction from the initial state shown in
In
Namely, when a thickness of light-shielding plate 18s is represented by A (mm), a current value to move lens frame 18 by B (mm) in the optical axis direction from the initial state shown in
Owing to the foregoing, it is possible to obtain a current value to move lens frame 18, namely, lens group 11 from a position of the initial state to the position on the subject side in the optional optical axis direction.
Returning to the flow in
Then, when it is judged again whether a photographing mode is set or not (step S211) and the photographing mode is not set (step S211; No), the flow returns to step S201. While, when the photographing mode is set (step S211; Yes), an image pickup element is driven, and a preview image (which is also called a through image) is displayed on a display screen on a real time (step S212). Then, a button corresponding to a release button among buttons on a cell-phone is on standby to be turned on (step S213). When the button corresponding to a release button is not turned on (step S213; No), the flow returns to step S211.
When the button corresponding to a release button is turned on (step S213; Yes), an image for evaluating focusing is taken in first (step S214). Namely, the image for evaluating focusing which is taken in at step S214 is an image when a lens group is at a hyperfocal position.
Then, relationship between a current amount to be applied to a shape memory alloy obtained in the foregoing and an amount of movement of a lens frame is used to obtain a current value to move the lens group to the desired lens position, and this current value is applied to the shape memory alloy (step S215). Due to this, the lens group is moved from its initial position to a desired focusing position on the short distance side. At this position, an image for evaluating focusing is taken in (step S216).
Incidentally, when plural focusing positions on the short distance side has been set, a current value to move to each lens position is obtained and step S215 and step S216 are repeated, thereby, an image for evaluating a focus is taken in at each position.
Then, images for evaluation taken in at step S214 and at step S216 are evaluated (step S217).
The lens group is set at the position at which evaluation at step S217 was obtained, for example, at which an image having larger high frequency component among obtained images for evaluation was obtained (step S218). Specifically, when an obtained image for evaluation at step S214 contains larger high frequency component, applying of a current to the shape memory alloy is stopped. The lens group is set to the initial state, namely, a lens group is set at a position where the lens group is focused at a hyperfocal position. When any of images for evaluation obtained in step S216 contains larger high frequency component, the lens group is set to state wherein an amount of current to move the lens group to the position where the aforesaid image was obtained is applied to a shape memory alloy.
Then, photographing and recording of images on a recording medium are conducted at the position where the lens group was set in step S218 (step S219), and the flow returns to step S201.
In other words, the Second Embodiment is one wherein a current value to move a lens group by an amount determined in advance is detected, and based on this, an amount of current to move to the desired position is obtained.
As explained above, by providing a structure wherein a movement of a lens group is detected at two predetermined positions in the optical axis direction while gradually changing electricity supplied to the shape memory alloy, and an amount of electricity to move a lens group to the desired position is determined based on the amount of electricity at each of these two positions, and a lens group is moved to the desired position by supplying the determined amount of electricity to the shape memory alloy, it is possible to dissolve fluctuations of an amount of movement of the lens group caused by errors in length of the shape memory alloy, errors in mounting and by ambient temperatures, and to obtain a lens drive device which does not provides individual difference when moving a lens group, to obtain a small-sized and low cost image pickup apparatus that can stop the lens group accurately at the desired position with a simple structure.
Further, by detecting the movement at two positions, it is possible to conduct accurate position control, even when fluctuations of inclination in characteristic curves caused by un-uniformity of pressing force of helical compression spring and by un-uniformity of wire diameter of the shape memory alloy are generated, which is different from the occasion where detection is conducted at one position.
Incidentally, although the explanation has been given referring to the example of the self-focusing image pickup apparatus, the invention can be applied also the occasion of manual setting. In this case, changing the steps S214-S218, when the hyperfocal position is selected, electricity to the shape memory alloy is stopped, while, when the focus position on the desired short distance side is selected, a current value to move the lens group to the designated lens position is obtained from the relation acquired in step S209, and it is applied to the shape memory alloy. Thus, it is possible to conduct manual setting.
Further, although the explanation has been given referring to the occasion where the initial setting of the lens group is on the hyperfocal position, it is also possible to use a position for focusing on infinity in place of the hyperfocal position, or, it is further possible to position the lens group on the image pickup element side.
In the foregoing, current values at two positions where photo-interrupter outputs changes were obtained before taking in images for evaluation, in the structure. However, the invention is not limited to this, and current values may also be obtained after the step S213, or it is also possible to obtain current value with a change of the first photo-interrupter output before step S213 and to obtain current value with a change of the second photo-interrupter output after step S213.
As shown in
An edge portion on one side of the sheet member 43 is superposed as illustrated on an area of pixels that are not used for image among light-receiving pixels of the image pickup element 34, to shield a light flux of a subject coming from lens group 11. If lens frame 18 is moved from this state in the optical axis direction, the sheet member 43 fixed on the lens frame 18 is moved in the direction of the illustrated arrow, and pixel output of the pixel area that is not used as an image is changed.
Namely, by monitoring pixel output of image pickup element 34 while gradually changing electricity supplied to shape memory alloy 23, and by detecting the change of pixel output on the pixel area that is not used for image, a start of movement of the lens group can be detected. Further, when movement between prescribed number of pixels is detected by the sheet member 43, movement of a lens group can be detected at prescribed two positions in the optical axis direction.
By providing this structure, it is possible to detect movement of a lens group without adding a new member such as a photo-interrupter, and thereby to make an image pickup apparatus to be lower cost.
Though the explanations were given in the aforesaid First and Second Embodiments referring to those wherein a current value changes when electricity supplied to the shape memory alloy, the invention is not limited to this. It is naturally possible to employ the structure wherein voltage is changed or a current value is fixed with duty ratio being changed. Further, the shape memory alloy, as described above, provides an initial creep phenomenon wherein a deformation amount changes with the number of times of turning electricity on in the initial stage where the frequency of turning electricity on is small. The initial creep phenomenon is described as follows.
As shown in
As shown in
It is preferable to do as follows for coping with the initial creep phenomenon described above.
Incidentally, the prescribed frequency may be set to the frequency at which a deformation amount is stabilized, and there is no upper limit for the prescribed frequency.
As stated above, by operating the aging treatment by repeating prescribed number of switching of electricity-supply between ON and OFF, an amount of deformation for applied current is stabilized as seen in
Incidentally, though heating and no-heating processes for the shape memory alloy were repeated by joule heat that is generated due to current applied to the shape memory alloy, it is also possible to externally repeat heating and no-heating processes.
Though the aging processing was applied to shape memory alloy 23 after completion of assembly of an image pickup apparatus unit, the aging processing for the shape memory alloy can be conducted by external heating process, for example, at any time before sheet member 23k is fixed on both edge portions, or before mounting on columnar section 22, or before pressing by helical compression spring 19. In particular, aging processing can be conducted either under the state where the shape memory alloy is stressed, or under the state where the shape memory alloy is not stressed.
In the aforesaid embodiment, the explanation was given referring to the example wherein the string-like shape memory alloy 23 is in contact with a bottom portion of lens frame 18 on the image pickup element 34 side between optical axis ◯ of lens group 11 and cylindrical section 18p, to be extended, as shown in
In the image pickup apparatus shown in
A central portion of the shape memory alloy 23 is arranged to be capable of touching a rear end portion of the second lens frame 18 on the image pickup element 34 side (image forming surface side). Therefore, the shape memory alloy 23 is extended under the condition that the central portion is arranged in the optical path of lens group 11.
Each of
As shown in
Under the aforesaid condition, if an electricity is applied to the shape memory alloy 23 through plate member 23k, the shape memory alloy 23 representing a resistor generates heat and its temperature rises, and its total length contracts to be shortened. Owing to this, the second lens frame 18 is guided by guide shafts 15 and 16 against pressing force of helical compression spring 19, to be moved to the subject side that is opposite to image pickup element 34, as shown in
It is therefore recommended that no-electricity is supplied to shape memory alloy 23 in the case of long-range photographing and intermediate-range photographing, and that electricity is applied to shape memory alloy 23 in the case of close-range photographing such as photographing flowers.
Further, in the case where an image pickup apparatus has an AF function and where manual setting of distance for long-range and close-range is structured to be possible, electric power to be supplied to the shape memory alloy can be adjusted in many steps depending on a photographing distance.
Since the shape memory alloy 23 is arranged in the condition to cross optical axis ◯ of lens group 11, and the second lens frame 18 is pressed uniformly, the second lens frame 18 can be moved in the optical axis direction efficiently. Incidentally, though an example wherein the shape memory alloy 23 is arranged in the condition to cross optical axis ◯ of lens group 11 in the illustration, the shape memory alloy 23 can also be extended to avoid the optical axis.
Incidentally, the central portion of the shape memory alloy 23 mentioned above means a portion that is not an edge portion, and it does not mean the center position that is at equal distance from both ends.
Further, in the aforesaid structure, a central portion of the shape memory alloy 23 is arranged in the optical path of lens group 11. Therefore, a part of the optical path is interrupted by the shape memory alloy 23, and it becomes difficult to see an image, depending on conditions. A way of solving this problem will be explained based on
Each of
First, it is known that, if a size of a subject arranged in the optical axis of an image pickup lens is 3% or less of an area of the optical axis crossing the subject, an image of the subject is difficult to be observed even when the image is formed on an image pickup element.
When D represents a diameter of the optical path at a position where the shape memory alloy 23 is arranged in the optical path of lens group 11, and d represents a diameter of the shape memory alloy 23, as shown in
d·D/(πD2/4)<0.03 (1)
This conditional expression (1) can be simplified as follows.
d/D<0.02 (2)
Incidentally, for satisfying the conditional expression (2), it is preferable to arrange the shape memory alloy 23 at the position where an area of the optical path in the vicinity of a final surface of lens group 11 is large. However, if an arrangement is constituted so that an image of the shape memory alloy 23 formed on image pickup element 34 may be removed by an image processing, the conditional expression (2) does not always need to be satisfied.
According to circumstances, the shape memory alloy may either be arranged between lenses of an image pickup lens having plural lenses, or be arranged on the subject side of the image pickup lens.
Further, there is a possibility that a cell-phone housing therein an image pickup apparatus employing the shape memory alloy of this kind is used under the condition of high temperature. Therefore, it is preferable to make up the constitution wherein the shape memory alloy 23 is arranged to be loosened slightly so that the second lens frame 18 may not be advanced even if the shape memory alloy 23 shrinks at the temperature of 50-60° C. or the temperature lower than that, and the shape memory alloy 23 shrinks when the temperature becomes 100° C., for example, to touch rear end portion 18d and the second lens frame 18 may be advanced.
A lens barrel having the structure that is different from the foregoing will be explained as follows, referring to
First, leaf spring 25 of a diaphragm type shown in
As shown in
Though the occasion of using leaf spring 25 of a diaphragm type is also the same as the occasion of using the aforesaid helical compression spring 19 in terms of basic function, the second lens frame 18, the first lens frame 17 and lens group 11 can be supported without tilting an optical axis, by using two leaf springs 25 and 26, and thereby, guide shafts 15 and 16 are made redundant, which makes a lens barrel to be smaller than that in the aforesaid structure.
Incidentally, in the aforesaid structure, the shape memory alloy 23 does not always need to cross optical axis ◯, but it is preferable to cross a location that is as close as possible to optical axis ◯.
The orientation for the shape memory alloy to move a lens group in the optical axis direction is not always limited to that toward the subject side, and it is also possible to constitute to move toward the image forming surface side according to circumstances. For example, a lens group is arranged so that it may be in the depth of field only for close-range, and the lens group is moved toward the image forming surface side when photographing for the long-range including infinity.
It is also possible to provide a structure so that a lens may be moved in the direction perpendicular to its optical axis for a lens movement for correction of shake of an image pickup apparatus and for a movement of a lens converter. Even in the case of the structure of this kind, a shape memory alloy is arranged in an optical path of a lens group. However, what is arranged in an optical path of a lens group is not always a central portion of the shape memory alloy, but a part of the shape memory alloy is arranged in the optical path of the lens group.
Incidentally, in the aforesaid explanation, there was used an example wherein the first lens frame 17 and the second lens frame 18 are provided. However, it is also possible to employ an example wherein the first lens frame 17 and the second lens frame 18 are integrated.
Hirata, Saori, Ohtsuka, Katsumi, Nemoto, Chie, Tsuchiya, Kenpo
Patent | Priority | Assignee | Title |
8441749, | Feb 09 2009 | Cambridge Mechatronics Limited | Shape memory alloy actuation apparatus |
8995068, | Jun 14 2011 | Samsung Electro-Mechanics Co., Ltd. | Image photographing device |
9880565, | Oct 06 2016 | DOLPHIN FLUIDICS S.R.L. | Two-stage valve |
Patent | Priority | Assignee | Title |
5459544, | Feb 01 1993 | Konica Corporation | Camera with a shape memory alloy member |
5624508, | May 02 1995 | LITANA LTD | Manufacture of a two-way shape memory alloy and device |
5836066, | Jul 22 1996 | Innovative Dynamics, Inc. | Process for the production of two-way shape memory alloys |
6804068, | Jan 21 2002 | Olympus Corporation | Optical unit |
20020112788, | |||
20050207896, | |||
JP10307628, | |||
JP11324896, | |||
JP2001263221, | |||
JP2002099019, | |||
JP2002296633, | |||
JP7233432, | |||
JP8269654, | |||
WO2004099611, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 02 2006 | Konica Minolta Opto, Inc. | (assignment on the face of the patent) | / | |||
Jan 08 2008 | HIRATA, SAORI | Konica Minolta Opto, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020535 | /0928 | |
Jan 08 2008 | TSUCHIYA, KENPO | Konica Minolta Opto, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020535 | /0928 | |
Jan 12 2008 | NEMOTO, CHIE | Konica Minolta Opto, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020535 | /0928 | |
Jan 17 2008 | OHTSUKA, KATSUMI | Konica Minolta Opto, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020535 | /0928 |
Date | Maintenance Fee Events |
Feb 04 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 08 2019 | REM: Maintenance Fee Reminder Mailed. |
Sep 23 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 16 2014 | 4 years fee payment window open |
Feb 16 2015 | 6 months grace period start (w surcharge) |
Aug 16 2015 | patent expiry (for year 4) |
Aug 16 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 16 2018 | 8 years fee payment window open |
Feb 16 2019 | 6 months grace period start (w surcharge) |
Aug 16 2019 | patent expiry (for year 8) |
Aug 16 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 16 2022 | 12 years fee payment window open |
Feb 16 2023 | 6 months grace period start (w surcharge) |
Aug 16 2023 | patent expiry (for year 12) |
Aug 16 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |