A gas turbine engine airfoil component having an airfoil body with a core cavity, an end opening in communication with the core cavity, and a wall having a plurality of cooling holes defined therein, each cooling hole being oriented such that the respective hole axis extends out of the core cavity through the end opening.
|
1. An airfoil component for a gas turbine engine, the airfoil component comprising an airfoil body defining a leading edge and a trailing edge, the body having opposed first and second walls interconnected at the leading and trailing edges to define a core cavity therebetween, the body also having an end opening defined therein in communication with the core cavity and bordered by the walls, at least the first wall having a plurality of radially extending rows of non parallel cooling holes defined therein with a respective hole axis being defined for each of the cooling holes, the cooling holes of the first wall being oriented such that all of the hole axes extend within the core cavity and through the end opening without intersecting the second wall.
8. An airfoil assembly for a gas turbine engine, the assembly comprising:
an annular inner platform;
an annular outer platform extending outwardly of and concentric with the inner platform to define an annular gas path therebetween; and
a plurality of airfoils extending between the inner and outer platforms, each airfoil having an airfoil body defining a core cavity therein, the body and one of the inner and outer platforms including aligned openings defined therein in communication with the core cavity, the body including a suction side wall having a plurality of rows of non parallel cooling holes defined therethrough in communication with the core cavity with the rows being defined along a direction extending between the inner and outer platforms, all of the cooling holes of said plurality of rows each defining a respective hole axis oriented such as to extend across the core cavity and through the aligned openings without intersecting the airfoil body.
2. The airfoil component as defined in
3. The airfoil component as defined in
4. The airfoil component as defined in
5. The airfoil component as defined in
6. The airfoil component as defined in
7. The airfoil component as defined in
9. The airfoil assembly as defined in
10. The airfoil assembly as defined in
11. The airfoil assembly as defined in
12. The airfoil assembly as defined in
13. The airfoil assembly as defined in
|
The invention relates generally to gas turbine engines and, more particularly, to cooled airfoil components for such engines.
A commonly used method to cool an airfoil component of a gas turbine engine is to duct cooling air inside the component and then vent this cooling air through a plurality of cooling holes defined through a wall thereof. Such a method is generally used to cool vanes, particularly nozzle guide vanes located at the entry of the turbine section.
The cooling holes defined in the suction side of the nozzle guide vanes are usually oriented in the stream wise direction. As such, due to the curvature of the airfoil of the vane, the cooling holes generally have a substantially large angle with respect to the surface of the vane, and are machined with the tool progressing from the outside of the vane to the inside thereof.
Determining the exact location of each hole before machining is thus based on a substantially complex outer profile of the vane, which becomes even more complex when the vanes are cast as multi-airfoil segments. As such, machining of the cooling holes generally necessitates the determination of multiple reference points on the outer surface of the vane or vane segments, substantially complex manipulation of the vane or vane segments and/or of the machining tool.
In addition, care must be exercised when machining such cooling holes in order to avoid machining too far and damaging the inner surface of the opposed wall of the vane. In particular, when the holes are machined using a laser, a material is generally inserted within the vane to absorb the laser beam when it breaks through the wall being machined to stop the laser from reaching the opposed wall. The insertion of the material within the vane, and its removal after the cooling holes are defined, increases the cost and time of the vane manufacturing process.
In addition, when the vanes are cast as multi-airfoil segments, the location of these holes can generally not be seen and hence are called blind holes or non-line of sight holes. The machining of non-line of sight holes usually requires special electrodes which increases the cost of making these holes.
Accordingly, there is a need to provide an improved cooled airfoil component.
It is therefore an object of this invention to provide an improved cooled airfoil component for a gas turbine engine.
In one aspect, the present invention provides an airfoil component for a gas turbine engine, the airfoil component comprising an airfoil body defining a leading edge and a trailing edge, the body having opposed walls interconnected at the leading and trailing edges to define a core cavity therebetween, the body also having an end opening defined therein in communication with the core cavity and bordered by the walls, at least one of the walls having a plurality of cooling holes defined therein with a respective hole axis being defined for each of the cooling holes, each cooling hole being oriented such that the respective hole axis extends out of the core cavity through the end opening.
In another aspect, the present invention provides an airfoil assembly for a gas turbine engine, the assembly comprising an annular inner platform, an annular outer platform extending outwardly of and concentric with the inner platform to define an annular gas path therebetween, and a plurality of airfoils extending between the inner and outer platforms, each airfoil having an airfoil body defining a core cavity therein, the body and one of the inner and outer platforms including aligned openings defined therein in communication with the core cavity, the body including a suction side wall having a plurality of cooling holes defined therethrough in communication with the core cavity, each cooling hole defining a respective hole axis oriented such as to extend across the core cavity and through the aligned openings without intersecting the airfoil body.
In a further aspect, the present invention provides a method of manufacturing a cooled airfoil component for a gas turbine engine, the method including forming an airfoil body defining a core cavity therein and an end opening in communication with the core cavity, passing a tool through the end opening and across the core cavity to machine an inner surface of a wall of the airfoil body, and forming at least one cooling hole through the wall from the inner surface thereof along a longitudinal axis of the tool.
Further details of these and other aspects of the present invention will be apparent from the detailed description and figures included below.
Reference is now made to the accompanying figures depicting aspects of the present invention, in which:
The turbine section 18 further comprises at least a high pressure turbine stage 17 which is immediately downstream from the combustor 16. The high pressure turbine (HPT) stage 17 includes a turbine rotor (not shown) with a plurality of radially extending turbine blades, and a HPT vane assembly or nozzle guide vane assembly 22 (see
Referring to
The HPT vane assembly 22 is located immediately downstream from the combustor 16, and is accordingly engaged thereto at the combustor exit. Generally, the vane inner platform 26 of the HPT vane assembly 22 is engaged to a radially inner wall 30 of the combustor 16 by an inner joint assembly 34, and the vane outer platform 28 is engaged to a radially outer wall 32 of the combustor 16 by an outer joint assembly 36.
Referring to
Referring to
Referring to
Referring to
Referring particularly to
Accordingly, in a particular embodiment, the vane is manufactured according to the following. The airfoil body 24 is formed including the core cavity 42 and the end opening 58 defined therein, for example through a casting operation. The airfoil body 24 can optionally be formed together with and interconnected to one or more identical airfoil bodies such as to define a multi-airfoil segment. A tool is passed through the end opening 58 and across the core cavity 42 to machine the inner surface 64 of the wall in which the cooling holes 44 are to be defined, which in the embodiment shown is the suction side wall 40. The tool then defines one cooling hole 44 through the wall 40 along a longitudinal axis of the tool (corresponding to the respective hole axis 46). The process is repeated until all the cooling holes 44 are machined.
In a particular embodiment, the tool is an electro discharge (EDM) drill. Alternate tools include, for example, laser drills.
Referring to
The orientation of the cooling holes 44, 144 allows the machining thereof from inside the core cavity 42, by passing through the end opening 58. The inventors have found that even with a radial orientation of the cooling holes 44, 144 (0=near or at 90 degrees), the aerodynamic penalty is minimal or absent with respect to usual cooling holes oriented in the stream wise direction. However, as the cooling holes 44, 144 can be manufactured from inside the core cavity 42, the machining process is simplified. As the position of the cooling holes 44, 144 is computed for machining with respect to the inner profile of each airfoil body 24, 124, the cooling holes 44, 144 can be manufactured regardless of the outer profile of the airfoil body 24, 124 which can be relatively complex, especially in the case of multi-airfoil segments. As such, the manufacturing time and costs are minimized.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without department from the scope of the invention disclosed. For example, although the present invention has been described with respect to the nozzle guide vane assembly 22, the present invention could be applied to any other adequate airfoil components of a gas turbine engine, such as for example other types of vane assemblies. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
Sreekanth, Sri, Papple, Michael
Patent | Priority | Assignee | Title |
10828718, | Jun 14 2018 | RTX CORPORATION | Installation of waterjet vent holes into vertical walls of cavity-back airfoils |
10919116, | Jun 14 2018 | RTX CORPORATION | Installation of laser vent holes into vertical walls of cavity-back airfoils |
11898458, | Aug 10 2022 | Hamilton Sundstrand Corporation | Radial fan with leading edge air injection |
Patent | Priority | Assignee | Title |
4118146, | Aug 11 1976 | United Technologies Corporation | Coolable wall |
4762464, | Nov 13 1986 | Chromalloy Gas Turbine Corporation | Airfoil with diffused cooling holes and method and apparatus for making the same |
4767260, | Nov 07 1986 | United Technologies Corporation | Stator vane platform cooling means |
4808785, | Nov 13 1986 | Chromalloy Gas Turbine Corporation | Method and apparatus for making diffused cooling holes in an airfoil |
5281084, | Jul 13 1990 | General Electric Company | Curved film cooling holes for gas turbine engine vanes |
6420677, | Dec 20 2000 | BARCLAYS BANK PLC | Laser machining cooling holes in gas turbine components |
6781091, | Oct 30 2001 | Rolls-Royce plc | Method of forming a shaped hole |
7019257, | Nov 15 2002 | Rolls-Royce plc | Laser drilling shaped holes |
7041933, | Apr 14 2003 | Meyer Tool, Inc.; MEYER TOOL, INC | Complex hole shaping |
20030068222, | |||
20050058546, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 21 2006 | SREEKANTH, SRI | Pratt & Whitney Canada Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019145 | /0279 | |
Dec 21 2006 | PAPPLE, MICHAEL | Pratt & Whitney Canada Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019145 | /0279 | |
Dec 29 2006 | Pratt & Whitney Canada Corp. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 11 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 28 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 20 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 30 2014 | 4 years fee payment window open |
Mar 02 2015 | 6 months grace period start (w surcharge) |
Aug 30 2015 | patent expiry (for year 4) |
Aug 30 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 30 2018 | 8 years fee payment window open |
Mar 02 2019 | 6 months grace period start (w surcharge) |
Aug 30 2019 | patent expiry (for year 8) |
Aug 30 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 30 2022 | 12 years fee payment window open |
Mar 02 2023 | 6 months grace period start (w surcharge) |
Aug 30 2023 | patent expiry (for year 12) |
Aug 30 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |