The present invention provides a composite structure having a supporting substrate between a piezoelectric substrate and a compensation layer. The materials used to form the piezoelectric substrate and the compensation layer in isolation, have higher thermal coefficients of expansion (tce) relative to the tce of the materials forming the supporting substrate. Once the composite structure is created, the piezoelectric substrate and compensation layer tend to expand and contract in a similar manner as temperature changes. The expansion and contraction forces applied to the supporting substrate by the piezoelectric substrate due to temperature changes are substantially countered by similar opposing forces applied by the compensation layer, resulting in the opposing forces substantially counteracting one another. Due to the counteraction, the composite structure resists bending or warping, reducing expansion and contraction and increasing stress of the piezoelectric substrate, and thus reducing the effective tce and TCF of the piezoelectric substrate.
|
4. A method for manufacturing a composite structure comprising:
providing a supporting substrate having a first isolated thermal coefficient of expansion (tce) value, a first surface, and a second surface that is opposite the first surface;
providing a piezoelectric substrate over the first surface of the supporting substrate and having a second isolated tce value higher than the first isolated tce value; and
providing a compensation layer over the second surface of the supporting substrate to resist bending or warping of the composite structure, and having a third isolated tce value higher than the first isolated tce value;
wherein the supporting substrate is formed over the piezoelectric substrate; and
attaching the piezoelectric substrate to a temporary carrier prior to forming the supporting substrate over the piezoelectric substrate.
3. A method for manufacturing a composite structure comprising:
providing a supporting substrate having a first isolated thermal coefficient of expansion (tce) value, a first surface, and a second surface that is opposite the first surface;
providing a piezoelectric substrate over the first surface of the supporting substrate and having a second isolated tce value higher than the first isolated tce value; and
providing a compensation layer over the second surface of the supporting substrate to resist bending or warping of the composite structure, and having a third isolated tce value higher than the first isolated tce value;
wherein the supporting substrate is formed over the piezoelectric substrate; and
wherein the compensation layer is provided over the second surface of the supporting substrate after the supporting substrate is formed over the piezoelectric substrate.
1. A method for manufacturing a composite structure comprising:
providing a supporting substrate having a first isolated thermal coefficient of expansion (tce) value, a first surface, and a second surface that is opposite the first surface;
providing a piezoelectric substrate over the first surface of the supporting substrate and having a second isolated tce value higher than the first isolated tce value; and
providing a compensation layer over the second surface of the supporting substrate to resist bending or warping of the composite structure, and having a third isolated tce value higher than the first isolated tce value;
wherein the piezoelectric substrate is attached over the first surface of the supporting substrate; and
wherein the compensation layer is provided over the second surface of the supporting substrate after the piezoelectric substrate is attached over the first surface of the supporting substrate.
2. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
|
This application is a Divisional of U.S. patent application Ser. No. 11/623,939 filed Jan. 17, 2007, the disclosure of which is incorporated herein by reference in its entirety.
The present invention relates to a Surface Acoustic Wave (SAW) device, and more particularly to a SAW device formed on an improved piezoelectric substrate.
Surface acoustic wave (SAW) devices use one or more interdigitated transducers (IDTs), and perhaps reflectors, provided on a piezoelectric substrate to convert acoustic waves to electrical signals and vice versa. SAW devices are often used in filtering applications for high-frequency signals. Of particular benefit is the ability to create low loss high order bandpass and notch filters without employing complex electrical filter circuits, which may require numerous active and passive components. A common location for a filtering application is in the transceiver circuitry of wireless communication devices.
With reference to
Notably, the fingers 20 are parallel to one another and aligned within an acoustic cavity, which essentially encompasses the area in which the reflectors 18 and the IDTs 16 reside. In this acoustic cavity, the standing wave or waves generated when the IDTs 16 are excited with electrical signals essentially reside within the acoustic cavity. As such, the acoustic wave energy essentially runs perpendicular across the various fingers 20. In the example illustrated in
The operating frequency of the SAW device 10 is a function of the pitch (P). The pitch is the spacing between the interdigitated fingers 20 of the IDTs 16 and reflectors 18. An objective of most SAW designs is to maintain a consistent frequency response of the SAW device 10. If the spacing changes between the interdigitated fingers 20, the frequency response of the SAW device 10 changes. However, the spacing changes are only a part of the response change. Another factor that significantly affects the frequency response change in the SAW device 10 is the change in SAW velocity which occurs in response to the change in elastic properties of the piezoelectric substrate 12. Unfortunately, piezoelectric substrates 12 generally have a relatively high thermal coefficient of expansion (TCE) and a significant dependence on the temperature coefficient of velocity (TCV), and as temperature changes, the piezoelectric substrate 12 will expand and contract and the velocity will increase and decrease. Such expansion and contraction changes the pitch, or spacing, between the interdigitated fingers 20 as the velocity changes, with temperature variations, in an unfavorable way. Expansion and contraction of the piezoelectric substrate 12, along with an increase and decrease of SAW velocity changes the frequency response of the SAW device 10. The thermal coefficient of frequency (TCF=TCV−TCE) is a measure of how much the frequency response changes as a function of temperature. Given the need for a SAW device 10 having a frequency response that is relatively constant as temperature changes, there is a need for a piezoelectric substrate 12 that has an effective TCF that is relatively low. To obtain a low TCF, the piezoelectric substrate 12 needs to have a relatively low difference between the effective TCE and the effective TCV. This condition may coincide with simultaneously low TCE and TCV to limit expansion and contraction of the piezoelectric substrate 12 as temperature changes.
A piezoelectric substrate 12 having a higher TCE also injects issues during manufacturing of the SAW device 10. As noted, the piezoelectric substrate 12 is formed on a supporting substrate 14. The supporting substrate 14 generally has a significantly lower TCE than the piezoelectric substrate 12 and thus will not expand or contract as much as the piezoelectric substrate 12 as temperature changes. As such, the change in velocity is minimal for the supporting substrate 14 as temperature changes. As temperature changes during the manufacturing process, the piezoelectric substrate 12 tends to expand and contract more than the supporting substrate 14, which results in bending or warping of both the supporting substrate 14 and the piezoelectric substrate 12, as shown in
The present invention provides a composite structure having a supporting substrate between a piezoelectric substrate and a compensation layer. The materials used to form the piezoelectric substrate and the compensation layer in isolation have higher thermal coefficients of expansion (TCE) relative to the TCE of the materials forming the supporting substrate. Once the piezoelectric structure is created, the piezoelectric substrate and the compensation layer tend to expand and contract in a similar manner as temperature changes. As such, the expansion and contraction forces applied to the supporting substrate by the piezoelectric substrate due to temperature changes are substantially countered by opposing forces applied by the compensation layer. Since the expansion or contraction forces on opposing faces of the supporting substrate, applied to the supporting substrate by the piezoelectric substrate and the compensation layer are similar, and thus counter one another, the composite structure resists bending or warping as temperature changes. Reducing bending and warping reduces expansion and contraction of the piezoelectric substrate, and thus the effective TCE of the piezoelectric substrate. Preferably, the supporting substrate has a relatively high Young's Modulus to provide sufficient rigidity to withstand the forces applied by the piezoelectric substrate and the compensation layer, and thus further reduces expansion and contraction of the piezoelectric substrate.
Since providing the compensation layer on the opposite side of the supporting substrate reduces the effective TCE of the piezoelectric substrate, the amount of expansion and contraction along the surface of the piezoelectric substrate as temperature changes is reduced. Therefore, the change in spacing, or pitch, between the interdigitated fingers of the IDTs and the reflectors as temperature changes is reduced. Reducing the change in spacing between the interdigitated fingers reduces the effective thermal coefficient of frequency (TCF) of the piezoelectric substrate to improve overall frequency response of the IDTs and the reflectors, and thus the SAW device, as temperature changes. At the same time, the amount of stress in the region of ultrasonic propagation on the surface of the piezoelectric substrate is increased leading to a stronger change in elastic properties, and thus, leading to favorable changes in ultrasonic velocity. Applying larger stress to the piezoelectric substrate leads to improvement of the TCV to further improve the overall frequency response of the IDTs and the reflectors, and thus the SAW device, as temperature changes.
Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
With reference to
The present invention provides a composite structure 24 having a supporting substrate 14 between the piezoelectric substrate 12 and a compensation layer 26. The materials used to form the piezoelectric substrate 12 and the compensation layer 26 in isolation have relatively high thermal coefficients of expansion (TCE) relative to the TCE of the materials forming the supporting substrate 14. Once the composite structure 24 is created, the piezoelectric substrate 12 and the compensation layer 26 tend to expand and contract in a similar manner as temperature changes. As such, the expansion and contraction forces applied to the supporting substrate 14 by the piezoelectric substrate 12 due to temperature changes are substantially countered by opposing forces applied by the compensation layer 26. Since the expansion and contraction forces applied to the supporting substrate 14 by the piezoelectric substrate 12 and the compensation layer 26 substantially counter or mirror one another, the composite structure 24 resists bending or warping as temperature changes. Reducing bending and warping reduces expansion and contraction of the piezoelectric substrate 12, and thus, the effective TCE of the piezoelectric substrate 12. Preferably, the supporting substrate 14 has a relatively high Young's Modulus to provide sufficient rigidity to withstand the forces applied by the piezoelectric substrate 12 and the compensation layer 26, and thus, further reduce expansion and contraction of the piezoelectric substrate 12.
Since providing the compensation layer 26 on the opposite side of the supporting substrate 14 reduces the effective TCE of the piezoelectric substrate 12, the amount of expansion and contraction along the surface of the piezoelectric substrate 12 as temperature changes is reduced. Therefore, the change in spacing, or pitch, between the interdigitated fingers 20 of the IDTs 16 and the reflectors 18 as temperature changes is reduced. Reducing the change in spacing between the interdigitated fingers 20 reduces the effective thermal coefficient of frequency (TCF) of the piezoelectric substrate 12 to improve overall frequency response of the IDTs 16 and the reflectors 18, and thus the SAW device 10, as temperature changes. At the same time, the amount of stress in the region of ultrasonic propagation on the surface of the piezoelectric substrate is increased leading to a stronger change in elastic properties, and thus, leading to favorable changes in ultrasonic velocity reflected in the temperature coefficient of velocity (TCV).
With reference to
The supporting substrate 14 has a relatively low isolated TCE value with respect to the piezoelectric substrate 12 and a high Young's Modulus. For example, the isolated TCE value of the supporting substrate 14 may be approximately −10 to 10 ppm/degree C. and the Young's Modulus may be approximately 20 to 1200 Gpa, with 100 to 200 Gpa being the preferred range. In a preferred embodiment the isolated TCE value of the supporting substrate 14 is approximately less than 4 ppm/degree C. and the Young's Modulus value is approximately 140 GPa. The supporting substrate 14 may be silicon, silicon dioxide, fused silica, sapphire, ceramic alumina, ceramic glass, low TCE glass, diamond, Invar, Elinvar, Kovar, Titanium Niobium Invar, chromium, platinum, or palladium based Invar, tungsten carbide foil, chromium foil, titanium dioxide doped silica, powder filled or sol-gel based solidifying compositions, or any solid dielectric with a relatively low TCE value, and may be approximately 10 to 1000 μm in thickness. In a preferred embodiment, the supporting substrate 14 is silicon and is approximately 200 to 500 μm in thickness.
The piezoelectric substrate 12 is bonded or otherwise attached to the top surface of the supporting substrate 14. The bonding method may be organic adhesive bonding, non-organic adhesive bonding, direct bonding, metal layer bonding, metal glue bonding, or the like. As described further below in association with another embodiment, the supporting substrate 14 may also be formed on the piezoelectric substrate 12 by evaporation, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), sputtering, or similar deposition, growth, or electroplating process. In a preferred embodiment, the bonding method is direct bonding, because it provides more compatibility with typical integrated circuit processing, minimizes contamination, and offers long-term stability of the bond between the piezoelectric substrate 12 and the supporting substrate 14. In a preferred embodiment, the process of bonding the piezoelectric substrate 12 to the supporting substrate 14 occurs at or around room temperature.
In
In
The composite structure 24, including the piezoelectric substrate 12, the supporting substrate 14, and the compensation layer 26, has an effective TCE value that is lower than the isolated TCE value of the piezoelectric substrate 12. The effective TCE value of the composite structure 24 may be approximately −10 to 16 ppm/degree C. In a preferred embodiment, the effective TCE value of the composite structure 24 is approximately 0 ppm/degree C. The corresponding effective TCF value of the composite structure 24 may be approximately −10 to 40 ppm/degree C. In a preferred embodiment, the effective TCF value of the composite structure 24 is approximately 0 ppm/degree C. The composite structure 24 may be approximately 20 to 1000 μm in thickness. In a preferred embodiment, the composite structure 24 is approximately 200 to 500 μm in thickness.
Those skilled in the art will recognize that other thicknesses, TCE values, and TCF values for the piezoelectric substrate 12, the supporting substrate 14, the compensation layer 26, and the composite structure 24 are applicable. Although the piezoelectric substrate 12, the supporting substrate 14, and the compensation layer 26 are depicted on top of one another in this example, those skilled in the art will recognize that there may be any number of layers in between those depicted without departing from the functionality or concepts of the present invention. Further, the piezoelectric substrate 12, the supporting substrate 14, and the compensation layer 26 may include one or more layers of the same or different materials.
In
With reference to the graphical representations of
In
Alternatively, prior to growing the supporting substrate 14 onto the piezoelectric substrate 12, the piezoelectric substrate 12 may be temporarily attached to a carrier. The carrier is joined to the bottom surface of the piezoelectric substrate 12 by a glue bonding method or the like, and the piezoelectric substrate 12 is then polished and thinned. The temporary carrier may be removed prior to forming the IDTs 16 and reflectors 18 on the surface of the piezoelectric substrate 12.
With reference to the graphical representations of
In
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Bhattacharjee, Kushal, Zhgoon, Sergei
Patent | Priority | Assignee | Title |
10033085, | Mar 15 2016 | Airoha Technology Corp. | Acoustic-wave device with active calibration mechanism |
10326192, | Mar 15 2016 | Airoha Technology Corp. | Acoustic-wave device with active calibration mechanism |
10660205, | Dec 01 2016 | Avery Dennison Retail Information Services, LLC | Functional substrates for printed electronic devices |
11665823, | Dec 01 2016 | Avery Dennison Retail Information Services LLC | Functional substrates for printed electronic devices |
Patent | Priority | Assignee | Title |
3585415, | |||
4464639, | Sep 17 1982 | Rockwell International Corporation | Ferroelectric surface acoustic wave devices |
5010269, | Dec 14 1987 | Hitachi, Ltd.; Hitachi Denshi Kabushiki Kaisha; Hitachi Communication System, Inc. | SAW resonator having a broad bandwidth |
5338999, | May 05 1993 | Apple Inc | Piezoelectric lead zirconium titanate device and method for forming same |
5446330, | Mar 15 1993 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Surface acoustic wave device having a lamination structure |
5448126, | Oct 05 1993 | Matsushita Electric Industrial Co., Ltd. | Surface acoustic wave-semiconductor composite device |
5453652, | Dec 17 1992 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Surface acoustic wave device with interdigital transducers formed on a holding substrate thereof and a method of producing the same |
5682126, | Dec 23 1994 | SNAPTRACK, INC | Ladder saw filter contained in a single acoustic track |
5815900, | Mar 06 1995 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Method of manufacturing a surface acoustic wave module |
5846320, | Mar 31 1986 | Canon Kabushiki Kaisha | Method for forming crystal and crystal article obtained by said method |
6034578, | Sep 11 1998 | HITACHI MEDIA ELECTRONICS CO , LTD | Surface acoustic wave device with closely spaced discharge electrodes electrically independent of the interdigital transducers |
6313568, | Dec 01 1999 | Cummins Engine Company, Inc | Piezoelectric actuator and valve assembly with thermal expansion compensation |
6353372, | Jun 09 1997 | SNAPTRACK, INC | Dual-mode surface acoustic wave filter with split input/output converters determining impedance |
6420820, | Aug 31 2000 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations |
6420946, | Oct 28 1998 | Epcos AG | Surface acoustic wave arrangement with a junction region between surface acoustic wave structures having a decreasing then increasing finger period |
6441539, | Nov 11 1999 | Murata Manufacturing Co., Ltd. | Piezoelectric resonator |
6573635, | Mar 30 2001 | TAIYO YUDEN MOBILE TECHNOLOGY CO , LTD ; TAIYO YUDEN CO , LTD | Surface acoustic wave device |
6599781, | Sep 27 2000 | LI FAMILY HOLDING, LTD | Solid state device |
6685168, | Feb 17 1998 | SNAPTRACK, INC | Surface acoustic wave component |
6737941, | Oct 15 1999 | SNAPTRACK, INC | Interface acoustic waves filter, especially for wireless connections |
6754471, | Dec 06 1999 | Skyworks Solutions, Inc; WASHINGTON SUB, INC ; ALPHA INDUSTRIES, INC | Surface acoustic wave filter packaging |
6759928, | Jun 30 2000 | TAIYO YUDEN MOBILE TECHNOLOGY CO , LTD ; TAIYO YUDEN CO , LTD | Surface acoustic wave device with divided interdigital transducers |
6801100, | May 23 1996 | SKYWORKS FILTER SOLUTIONS JAPAN CO , LTD | Inter-digital transducer, surface acoustic wave filter and communication apparatus using the same |
6816035, | Aug 08 2002 | Intel Corporation | Forming film bulk acoustic resonator filters |
6853113, | Feb 29 2000 | SNAPTRACK, INC | Interdigital transducer with distibuted excitation |
6861927, | Apr 27 2001 | TRIQUINT, INC | Longitudinally coupled leaky surface acoustic wave resonator filter |
7019435, | Mar 31 2003 | SKYWORKS FILTER SOLUTIONS JAPAN CO , LTD | Surface acoustic wave device |
7042313, | Jun 22 2001 | MURATA MANUFACTURING CO , LTD | Surface acoustic wave device and communication device using the same |
7071796, | Dec 10 2001 | TAIYO YUDEN MOBILE TECHNOLOGY CO , LTD ; TAIYO YUDEN CO , LTD | Surface acoustic wave filter |
7078989, | Oct 18 2002 | TAIYO YUDEN CO , LTD ; TAIYO YUDEN MOBILE TECHNOLOGY CO , LTD | Multi-mode surface acoustic wave filter device and duplexer |
7101721, | Jul 22 2002 | Qorvo US, Inc | Adaptive manufacturing for film bulk acoustic wave resonators |
7112912, | Mar 16 2004 | SNAPTRACK, INC | Surface acoustic wave device and branching filter |
7126259, | Nov 20 2003 | Parker Intangibles LLC | Integral thermal compensation for an electro-mechanical actuator |
7304553, | Mar 25 2002 | SNAPTRACK, INC | Filter with acoustically coupled resonators |
7358831, | Oct 30 2003 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Film bulk acoustic resonator (FBAR) devices with simplified packaging |
7528684, | May 24 2005 | Qorvo US, Inc | Edge chirping within series connected interdigitated transducers |
20040104791, | |||
20040164650, | |||
20040256624, | |||
20050057323, | |||
20050099091, | |||
20060138902, | |||
20060186556, | |||
20070109075, | |||
20070296306, | |||
, | |||
JP2000932, | |||
JP2005347295, | |||
JP2006222512, | |||
JP7086866, | |||
WO2005013481, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 15 2007 | BHATTACHARJEE, KUSHAL | RF Micro Devices, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020364 | /0819 | |
Jan 15 2007 | ZHGOON, SERGEI | RF Micro Devices, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020364 | /0819 | |
Jan 15 2008 | RF Micro Devices, Inc. | (assignment on the face of the patent) | / | |||
Mar 19 2013 | RF Micro Devices, INC | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 030045 | /0831 | |
Mar 26 2015 | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | RF Micro Devices, INC | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED 3 19 13 AT REEL FRAME 030045 0831 | 035334 | /0363 | |
Mar 30 2016 | RF Micro Devices, INC | Qorvo US, Inc | MERGER SEE DOCUMENT FOR DETAILS | 039196 | /0941 |
Date | Maintenance Fee Events |
Feb 23 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 29 2019 | REM: Maintenance Fee Reminder Mailed. |
Oct 14 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 06 2014 | 4 years fee payment window open |
Mar 06 2015 | 6 months grace period start (w surcharge) |
Sep 06 2015 | patent expiry (for year 4) |
Sep 06 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 06 2018 | 8 years fee payment window open |
Mar 06 2019 | 6 months grace period start (w surcharge) |
Sep 06 2019 | patent expiry (for year 8) |
Sep 06 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 06 2022 | 12 years fee payment window open |
Mar 06 2023 | 6 months grace period start (w surcharge) |
Sep 06 2023 | patent expiry (for year 12) |
Sep 06 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |