A method for washing multiple units of blood product including providing a centrifuge having a wash cell for each unit of blood product, balancing the centrifuge to accommodate for differences in the wash cells, and transferring supernatant including any wash solution from each unit of blood product on the centrifuge.
|
10. A method of reducing proteins in a blood product comprising
collecting a plurality of units of blood product;
mixing each unit of blood product with washing solution;
adding each unit of blood product with washing solution to a wash cell on a centrifuge;
simultaneously centrifuging the plurality of units of blood product with washing solution to separate supernatant from the blood product;
removing the resulting supernatant including any proteins and washing solution from the centrifuging units;
reducing proteins in the blood product through the removing step.
1. A method of washing multiple units of blood product to remove any prions contained therein comprising
adding washing solution to each unit of blood product;
providing a centrifuge having a plurality of washing cells;
placing each unit of blood product with wash solution into a washing cell of the centrifuge;
rotating the centrifuge to sediment the blood product from supernatant including the washing solution in each unit of blood product;
balancing the centrifuge to accommodate for any variations in the washing cells; and
transferring the supernatant including any prions contained therein from each washing cell to leave washed blood product in each washing cell.
4. The method of
adding washing solution to a wash bag containing each unit of blood product and the placing step comprises;
placing each wash bag containing wash solution and blood product in one of the plurality of washing cells.
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
adding washing solution to a wash bag containing the unit of blood product; and
the transferring step comprises transferring the supernatant to a satellite bag fluidly connected to the wash bag.
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
18. The method of
19. The method of
20. The method of
adding riboflavin to each unit of washed blood product; and
illuminating the riboflavin and washed blood product to further reduce the viral level.
|
This application claims the priority of U.S. Provisional Application 60/853,397 filed on Oct. 20, 2006.
The United States Government has certain rights in this invention pursuant to grant number W81XWH-05-2-0001 awarded by the United States Department of Defense.
The present invention relates to an apparatus and a method for washing multiple units of a red blood cell component in a balanced centrifuge.
An apparatus for processing blood components is known from document WO 03/089027. This document describes a centrifuge adapted to cooperate with an annular separation bag connected to at least one product bag, e.g. a platelet component bag. The centrifuge includes a rotor having a turntable for supporting the separation bag, a central compartment for containing the product bag connected to the separation bag; and a squeezing system for squeezing the separation bag and causing the transfer of a separated component (e.g. platelets suspended in plasma) from the separation bag into the product bag. The centrifuge of this apparatus processes one composite fluid or unit of whole blood at a time.
Also, an apparatus for separating or processing multiple volumes of blood in a balanced centrifuge is known from the publication WO2007/001754 or PCT/U.S. 2006/21827.
One object of the instant invention is to wash multiple individual units of blood components or blood products simultaneously using a single balanced centrifuge.
Another object of the instant invention is to process blood components or blood products to remove any prions contained therein or to reduce the amount of pathogens contained therein.
The invention relates to a method of washing multiple units of blood product wherein the method includes the steps of adding washing solution to each unit of blood product; placing each unit of blood product into a separate washing cell of a centrifuge having a plurality of rotating cells; rotating the centrifuge to sediment the blood product from supernatant including the washing solution; balancing the centrifuge to accommodate for any variations in the washing cells; and transferring the supernatant from the washing cell to leave washed blood product in the washing cell. The blood product can be an already separated blood component such as red blood cells or whole blood can be collected and separated into components prior to washing of the desired component.
The invention further relates to a method of reducing proteins in a blood product that includes the steps of collecting a plurality of units of blood product; mixing each unit of blood product with washing solution; simultaneously centrifuging the plurality of units of blood product with washing solution; and removing the resulting supernatant including any proteins and wash solution from the centrifuging units. The proteins to be removed can include prion proteins. Also pathogens may be removed to reduce the resulting pathogen amount in the collected blood product. The collected blood product for prion and/or pathogen removal includes red blood cells separated from collected whole blood or a collected red blood cell product.
The invention additionally relates to a method of washing multiple units of blood product wherein the method includes adding washing solution to each unit of blood product; providing a centrifuge having a plurality of washing cells; placing each unit of blood product into a separate washing cell of the centrifuge; rotating the centrifuge to sediment the blood product from supernatant including the washing solution; and transferring, during the rotating step, the supernatant from the washing cell to leave washed blood product in the washing cell.
The wash bag 21 initially contains a volume of cell product to be washed, and as described below, the cell product is a red blood cell product though it is understood that other products or components, such as platelets, could be washed using the principals of the invention.
The second tube 25 is a washing liquid tube having a needle or spike 22 connected to its distal end. Prior to the initiation of the wash cycle, the needle 22 or spike is inserted into a bag of wash solution (not shown) and the wash solution flows into the wash bag 21. After a desired volume of wash solution has entered the wash bag 21, the wash solution tube 25 is sealed and cut. The wash solution is added to the wash bag 21 prior to insertion of the bag into a centrifuge.
The first satellite bag 23 is intended for receiving washing solution or supernatant after use. It is flat and substantially rectangular. It is connected to the distal end of the first tube 24. First tube 24 further includes an optional breakable stopper or frangible connector 20 for blocking flow therethrough.
In an alternative embodiment bag 23 may initially contain the wash solution. Thus the solution containing bag 23 may be attached to the wash bag 21 of the bag set of
The centrifuge of this embodiment comprises four satellite cavities 341, 342, 343, 344 that are arranged around or may form part of a central cylindrical cavity 340, in which four pairs of pinch valve members 70, 71 are mounted with their longitudinal axes parallel to the rotation axis 31 (see second embodiment,
The centrifuge 40 is adapted to hold satellite bags (2, or 23, and optionally 3) in the cavities 341, 342, 343, and 344. The cavities 341, 342, 343, and 344 may also contain fixed or removable containers for receiving the satellite bags.
The centrifuge, as shown in
Although four washing cells 41, 42, 43, 44 and associated satellite bag cavities, 341, 342, 343, 344, are shown, it is understood that only two opposing cavities and cells, (41, 341 and 43, 343), for example, could also be provided. Similarly the number of washing cells and satellite cavity sets can be increased to six or beyond depending on the size of the centrifuge.
Also, although pairs of valve elements 70 and 71 are shown it is understood that for the bag set of
For the embodiments of
The centrifuge 200 and the centrifuge 40 further include a motor 36 coupled to the rotor by a belt 37 engaged in a groove of the pulley 33 so as to rotate the rotor about the rotation axis 31.
The embodiment of
The washing cells 100, or 41, 42, 43, and 44 are mounted on the turntable 35 so that their respective median longitudinal axes intersect the rotation axis 31, so that they are located substantially at the same distance from the rotation axis 31, and so that the angles between their median longitudinal axes are substantially the same (i.e. 90 degrees). The exact position of the washing cells 100, or 41, 42, 43, and 44 on the turntable 35 is adjusted so that the weight on the turntable is equally distributed when the washing cells 100, or 41, 42, 43, and 44 are empty, i.e. so that the rotor is balanced. Due to the arrangement of the washing cells 100 or 41, 42, 43, and 44 on the turntable 35 such cells are inclined with respect to the rotation axis 31 of an acute angle equal to the angle of the frustum of a cone that geometrically defines the turntable 35.
The centrifuge of
As shown in
The washing apparatus further comprises a transferring mechanism for transferring supernatant and optionally washed cells into a satellite bag 2 or 23 connected thereto. The transferring mechanism comprises a squeezing system for squeezing washing bag 21 or 1 within the washing compartment or cells 41, 42, 43, 44 or 100 for causing the transfer of supernatant including any remaining plasma, cells and wash solution into the satellite bag. The transferring mechanism will be described with respect to cell 100 though it is understood that the operation and structure is the same for cells 41, 42, 43, and 44.
As shown in
The transferring mechanism includes the reservoir 120 that is directly connected to the rotor duct 56 by the rotary seal 122, the hydraulic chambers 103, and the motor 36 that drives the rotor in rotation. When the valve 123 is opened and the rotation speed of the rotor reaches a determined threshold, which depends on the height between the reservoir 120 and the washing cells 100 and the distance between the rotation axis 31 and the washing cells 100, then the hydraulic liquid flows from the reservoir 120 into the hydraulic chambers 103 so as to fill up the hydraulic chamber 103 and squeeze the wash bag 1 or 21 therein, whatever the volume/weight of the wash bag 1 or 21. The speed threshold is substantially below the rotation speed at which the rotor is rotated for separating the supernatant from the red blood cells as described below. The transfer of the supernatant from the wash bag 21 or 1 into a satellite bag 23 or 2 is then controlled by the opening/closing of the pinch valve member 70 (described below) in which the tube 4 or 24 connecting the two bags is inserted.
As the apparatus of the instant invention can be used to wash multiple bags of red blood cells in multiple wash bags and cells and since the starting red blood cell product can vary in weight and volume as well as hematocrit, the washing apparatus thus includes a balancing mechanism which includes the reservoir 120 that is directly connected to the rotor duct 56 through the rotary seal 122, the hydraulic chambers 103, the interconnecting tubing 52 between the chambers, the motor 36 that drives the rotor in rotation, and the valve 123. At the onset of a separation process, the valve 123 is opened for a predetermined period of time so as to allow the transfer, in the interconnected hydraulic chambers 103, of a volume of hydraulic liquid sufficient to fill container 101. With all containers 101 full of fluid (hydraulic and wash solution) the rotor comes into balance even in the most unbalanced situation. This balancing volume takes into account the maximum difference in volume between two starting products
A variant of the washing apparatus eliminates the valve 123 on the conduit 121 connecting the reservoir 120 to the rotor duct 56. As a result, when the threshold speed is reached, the hydraulic liquid is pumped from the reservoir 120 into the hydraulic chambers 103 until the pressure that is building up within the washing cells 100 prevents further pumping.
The washing apparatus further comprises four pairs of a first and second pinch valve members 70, 71 that are mounted on the rotor around the opening of the central container 34 or 340. Although four pairs of pinch valve members are shown in the figures it is understood that if only the bag set of
Each pair of pinch valve members 70, 71 faces one washing cell 41, 42, 43, 44 or 100, with which it is associated. The pinch valve members 70, 71 are designed for selectively blocking or allowing a flow of liquid through a flexible plastic tube, and selectively sealing and cutting the plastic tube. Each pinch valve member 70, 71 comprises an elongated cylindrical body and a head having a groove 72 (
The washing apparatus further comprises four sensors 74 for monitoring the movement of the supernatant or blood component occurring within each wash bag 1 or 21 when the apparatus operates. Each sensor 74 is embedded in the lid 47, 105, 106 of the washing cells 41, 42, 43, 44 or 100. When a wash bag 1 or 21 rests in the container 41, 42, 43, 44 or 100 and the lid 47 or 105, 106 is closed, the sensor 74 (later the tube sensor) faces the proximal end of the first tube 4 or 25. The tube sensor 74 is able to detect the presence or absence of liquid in the tube 4 or 24 as well as to detect blood cells in a liquid. Each sensor 74 may comprise a photocell including an infrared LED and a photo-detector. Electric power is supplied to the sensor 74 through the slip ring array 38 that is mounted around the lower portion of the rotor shaft 32.
The washing apparatus may also optionally include a second balancing mechanism, for balancing the rotor when the weights of the supernatant transferred into the satellite bags 2 or 23 in the central container 34 or 340 are different. For example, when two starting red blood cell components have the same hematocrit and different volumes, the volumes of any plasma extracted with the supernatant from each donation are different, and the same is true when two starting components have the same volume and different hematocrit. As shown in
The washing apparatus further comprises a controller 90 including a control unit (e.g. a microprocessor) and a memory unit for providing the microprocessor with information and programmed instructions relative to various washing protocols as described below and to the operation of the apparatus in accordance with such washing protocols. In particular, the microprocessor is programmed for receiving information relative to the centrifugation speed(s) at which the rotor is to be rotated during the various stages of the washing process and information relative to the various transfer flow rates at which supernatant and/or components are to be transferred from the washing bag 1, 21 into the satellite bags 2 or 23. The information relative to the various transfer flow rates can be expressed, for example, as hydraulic liquid flow rates in the hydraulic circuit. The microprocessor is further programmed for receiving, directly or through the memory, information from the four photocells or sensors 74 for controlling the centrifuge motor 36. It further receives and transmits information about the valve 123 and the four pairs of pinch valve members 70, 71 so as to cause the washing apparatus to operate along a selected washing protocol.
Instead of the centralized hydraulic squeezing system described above, a washing apparatus can be fitted with as many independent squeezing means as washing cells 100. An independent squeezing means may be comprised, for example, of a plate that can be moved by any electro-magnetic, electro-mechanical or hydraulic mechanism so as to squeeze a wash bag against a wall of the cavity 102 of the container 101 of a washing cell 100.
Instead of a system of interconnected hydraulic chambers or pouches, the first and/or second balancing means can comprise a ball balancer including a circular cage in which heavy balls can move freely. The circular cage is mounted on the rotor so as to be centered on the rotation axis 31.
The alternative washing apparatus does not comprise a fixed reservoir directly connected to the washing chambers, via a conduit, a rotary seal and a rotor duct. Also, the alternative washing apparatus includes a hydraulic liquid reservoir 130 that is mounted on the rotor.
The rotor of the apparatus of
The reservoir 130 is fluidly connected to the hydraulic chamber 103 of each washing cell 100 by an outlet aperture 133 through the turntable 35 that coincides with the inlet aperture 104 of the hydraulic chambers 103. As shown, the outlet apertures 133 are located the farthest from the rotation axis 31. With this arrangement, the hydraulic liquid flows from the reservoir 130 into the hydraulic chambers 103 of the washing cells 100 under centrifugal forces as soon as the rotor starts rotating. The density of the hydraulic fluid is selected so as to be between the density of packed red cells and the density of the washing solution.
In this embodiment of the washing apparatus, the transferring mechanism essentially comprises the reservoir 130, the hydraulic chambers 103 and the motor 36 that drives the rotor in rotation. When the rotor rotates, the hydraulic liquid drains from the reservoir 130 into the hydraulic chambers 103 under centrifugal forces and presses the wash bag 1 or 21 within the washing cell 100 through the elastic diaphragm 110. The transfer of supernatant or component from a wash bag 1 or 21 into a satellite bag 2 or 23 is controlled by the opening/closing of the pinch valve member 70 in which the tube 4 or 24 connecting the two bags is inserted.
The first balancing mechanism essentially comprises the reservoir 130, the hydraulic chambers 103 and the motor 36 that drives the rotor in rotation. As soon as the rotor starts rotating, hydraulic fluid flows from the reservoir 130 into the hydraulic chambers 103 until it completely fills up the space left vacant in the washing cells 100 by the wash bag 1 or 21, which happens before the rotor has reached the desired sedimentation speed.
The method of washing cells utilizing the washing apparatus described above is as follows.
The cells to be washed may have been separated in a centrifugal separator such as that described in WO/2007/001754. This separation apparatus has a number of features in common with the instant washing apparatus allowing the separator to be used for washing after separation following the below described protocol.
Alternatively cells may separated from whole blood or other blood components utilizing any known cell separators including apheresis equipment or a centrifuge for separating multiple bags of whole blood.
When cell separation or apheresis equipment is used, the initial starting product is a cell component, such as red blood cells, from which a significant amount of the plasma has been removed. For the remainder of the washing protocol the description will refer to a red blood cell component though it is understood that other components or products could also be washed.
The starting red blood cell component is in wash bag 1 or 21 depending on the bag set used. For the purpose of the rest of the washing description only the bag set of
After the wash bag 1 contains the red blood cells and wash solution, the bag set can be placed in the centrifuge.
The rotor is then balanced in order to compensate for the difference in weights of the separation bags resulting in weight variation between the washing cells.
At the onset of this balancing stage, the pinch valve members 70 and 72, in which the tubes 4 and optionally 6 are engaged, are closed. The valve 123 on the conduit connecting the reservoir 120 to the rotor duct 56 is opened. The rotor is set in motion by the centrifuge motor 36 and its rotation speed increases steadily until it rotates at a predetermined speed to separate the red blood cells from the supernatant. During rotation, the rotor reaches a threshold speed at which its rotation causes the pumping of hydraulic liquid from the reservoir 120 into the interconnected hydraulic chambers 103 of the washing cells 100. The valve 123 is closed after a predetermined time sufficient to allow hydraulic fluid for balancing the rotor to be transferred into the hydraulic chambers 103. Because the hydraulic chambers 103 are interconnected by the peripheral manifold 52, the hydraulic liquid gets automatically distributed in the washing cells 100 so as to balance the rotor. When the weights of the washing bags 1 are the same, the distribution of the hydraulic liquid is even. When they are not, the distribution of the hydraulic liquid is uneven, and the smaller the weight of blood in a specific washing bag 1, the larger the volume of the hydraulic fluid in the associated hydraulic chamber 103.
The washed blood cells are sedimented out or separated from the washing solution and any other residual cells or plasma when the rotor reaches a sedimentation speed (about 3200 RPM, usually referred to as “hard spin”).
The rotor is rotated at the selected sedimentation speed for a predetermined period of time that is selected so that, whatever the hematocrit of the red blood cells in the wash bag 1, the red blood cells sediment from the supernatant. Since, as mentioned above, the density of the hydraulic liquid is selected so as to be between the density of the packed red cells and the density of the wash solution, the wash bag 1 will take a hour-glass shape at the end of the sedimentation stage, as shown in
The supernatant is then transferred to bag 2. For this transfer, the four pinch valve members 70 controlling the access to the bag 2 are opened. Valve 123 is opened. This causes a decrease in pressure within the wash cells 100 and hydraulic liquid starts flowing again into the hydraulic chambers 103. The raising volume of hydraulic fluid in the hydraulic chamber 103 squeezes the wash bags 1 and causes the transfer of the supernatant which includes the wash solution and any residual cells or plasma into the first satellite bags 2 or 23. Because the hydraulic liquid has a lower density than the density of the packed red blood cells, the red blood cells remain at the bottom of the wash cell 100 and the wash bag 1 progressively collapse above the red cells as shown in
When each tube sensor 74 detects blood cells, then the associated pinch valve member 70 is closed. When the volumes of red blood cells in the four separation bags 1 are different, and/or the hematocrit of the red blood cells in the four wash bags 1 or 21 are different (which will be generally the case), then the four pinch valve members 70 close one after the other.
When the last pinch valve member 70 closes, the rotation speed of the rotor is decreased until the rotor stops. The hydraulic liquid simultaneously drains from the hydraulic chambers 103 into the reservoir 120. The red blood cells remain in the wash bag 1.
When this stage is completed, the four bag sets are removed from the separation apparatus and each bag set is separately handled manually.
If the bag set of
Alternatively the red blood cells may be expressed during centrifugation through the filter 3. In this embodiment another sensor is provided for controlling the expression of the red blood cells. To transfer the storage solution into the wash bag the hydraulic fluid flow may be reversed so that storage solution can flow from the satellite bag 3 in the center compartment, through the filter 13, to the wash bag 1. Using a lower centrifuge speed then that required for separation or sedimentation the storage solution is mixed with the red blood cells to reduce the viscosity thereof. The hydraulic fluid flow is then increased so that expression pressure is applied to the wash bag to express or push the red blood cells and the storage solution through the filter 13 to the satellite bag 3.
The above has been described without the optional second balancing mechanism. During the expression or squeezing stage, when the supernatant is transferred, the balancing liquid in the pouches 81, 82, 83 and the fourth pouch will self adjust due to the connecting tubing to compensate for the differences in weight in the satellite bags.
The above washing process can also be effective in reducing protein levels in red blood cells and thus possibly aid with respect to any subsequent viral inactivation or viral reduction procedures such as those described in U.S. Pat. No. 6,258,577.
Also the above washing process can be effective as a viral reduction or inactivation process even without further treatment.
As the washing process is effective at removing proteins it also can be used for removing prion proteins.
The analysis was continued using PMCA protein misfolding cyclic amplification studies. The PMCA study is shown in
Round 1 amplification also shows no prion proteins in the spiked samples. Only during second round amplification can any residuals be detected. It is estimated that 99.9% or 3 logs of protein including prion protein removal occurs during a 300 mL saline wash using the apparatus described above. The log removal amount is based on the protein amount of whole blood prior to separation and removal. It is calculated that an additional second wash step of adding through the same or additional tubing a second 300 mL of saline wash solution with subsequent expression of the second batch of supernatant as described above would remove 99.999% in the process. It is estimated to be 5 logs total of protein reduction including prior protein reduction as compared to the protein amount of whole blood.
Washing also removes extra cellular viral agents or pathogens. Whole blood was spiked with virus and then separated with the separated red blood cells being washed as described above. The virus or pathogen reduction levels are shown in the table below for red blood cells spiked with tissue culture infectious dose 50. All the data shown is with 4 replicates except for that of CPV which has 3 replicates.
Pathogen
Log Reduction
Type
BVDV
3.0-4.7
Enveloped
HIV
>3.9->4.2
Enveloped
HAV
3.4-4.5
Non-Enveloped
CPV
3.4-4.1
Non-Enveloped
Although the above has been described with respect to red blood cells after separation it is understood that similar apparatus could be used to separate whole blood into components with subsequent washing of the desired component. For a whole blood process using the bag set of
As described above washing red blood cells after separation can reduce the viral or pathogen levels of these blood products. To further reduce the viral level, the washed cells may be subject to a subsequent viral inactivation process. As shown in
The systems and method described above permit the simultaneous washing of up to or greater than six red blood cell or other blood product or component units. It is believed each washing step will take a laboratory technician less than five minutes with the result being up to or greater than six washed units ready for use, storage or subsequent viral inactivation.
It will be apparent to those skilled in the art that various modifications can be made to the apparatus and method described herein. Thus, it should be understood that the invention is not limited to the subject matter discussed in the specification. Rather, the present invention is intended to cover modifications and variations.
Hlavinka, Dennis J., Goodrich, Raymond P., Hansen, Eric T.
Patent | Priority | Assignee | Title |
10004841, | Dec 09 2013 | Blood purifier device and method | |
10518021, | Feb 20 2015 | Terumo BCT, Inc; ANDREAS HETTICH GMBH & CO KG | Composite liquid bag system holder |
10806848, | Feb 20 2015 | Terumo BCT, Inc.; ANDREAS HETTICH GMBH & CO. KG | Composite liquid bag system holder |
11013850, | Dec 02 2016 | Terumo BCT, Inc | Composite fluid separation |
11541161, | Jun 24 2016 | Haemonetics Corporation | System and method for continuous flow red blood cell washing |
9713327, | Mar 20 2014 | Biomet, Inc; Biomet Manufacturing, LLC; ZB MANUFACTURING, LLC | Cell washing device using non-mechanical fluid vortex flow |
Patent | Priority | Assignee | Title |
3211368, | |||
3452924, | |||
3640388, | |||
3718133, | |||
3747843, | |||
3921898, | |||
3954414, | Mar 29 1974 | Damon Corporation | Self-contained apparatus for the storage processing of blood |
4091989, | Jan 04 1977 | Continuous flow fractionation and separation device and method | |
4098456, | Mar 29 1977 | Baxter Travenol Laboratories, Inc. | Centrifuge system having collapsible centrifuge bags |
4157781, | Jul 19 1978 | Self balancing centrifuge | |
4191469, | Jan 20 1977 | Gesellschaft fur biotechnologische Forschung m.b.H. | Interference optical sensing device for a centrifuge |
4296882, | Feb 26 1979 | Terumo Corporation | Centrifugal fluid processing device |
4303193, | Jan 22 1979 | HAEMONETICS CORPORATION, A MASSACHUSETTS CORP | Apparatus for separating blood into components thereof |
4412831, | Jul 09 1981 | HAEMONETICS CORPORATION, A MASSACHUSETTS CORP | Two plane self-balancing centrifuge |
4557717, | Sep 20 1982 | American National Red Cross | Cup insert for balancing |
4767397, | Mar 09 1987 | VERENIGING HET NEDERLANDS KANKER INSTITUUT | Apparatus for liquid separation |
4781687, | Oct 16 1986 | Allegiance Corporation | Irrigation system utilizing air bladder pressure regulator and method of use |
4842576, | Oct 15 1986 | BAXTER INTERNATIONAL INC , DEERFIELD, ILLINOIS, A DE CORP | System for generating substantially constant fluid pressure |
4850952, | Jan 13 1986 | INTERNATIONAL EQUIPMENT COMPANY, A CORP OF DE | Method and device for the separation and isolation of blood or bone marrow components |
4887411, | Jun 25 1987 | PDC PHARMACEUTICAL SYSTEMS, INC | Apparatus for filling bags or pouches with a perfusion liquid |
4911703, | Oct 15 1986 | Fenwal, Inc | Mobile, self-contained blood collection system and method |
4919646, | Jan 18 1988 | Acutronic France | System for automatically balancing a centrifuge in operation |
4939081, | May 27 1987 | NETHERLANDS CANCER INSTITUTE, THE | Cell-separation |
5651766, | Jun 07 1995 | Haemonetics Corporation | Blood collection and separation system |
5715731, | Mar 14 1995 | Kendro Laboratory Products GmbH | Balancing device for a rotating body |
5728060, | Jun 07 1995 | Haemonetics Corporation | Blood collection and separation system |
5733253, | Oct 13 1994 | Haemonetics Corporation | Fluid separation system |
5770069, | Jun 07 1995 | LIFE SCIENCE HOLDINGS, INC | Collapsible container for holding a fluid during a centrifugation operation |
5779660, | Jun 07 1995 | Haemonetics Corporation | Blood collection and separation process |
5788621, | Jun 23 1994 | Method and apparatus for centrifugal separation of solids from mud and compaction | |
5853382, | Jun 07 1995 | Haemonetics Corporation | Blood collection and separation process |
5885239, | Oct 13 1994 | Haemonetics Corporation | Method for collecting red blood cells |
6007509, | Jun 07 1995 | Haemonetics Corporation | Blood collection and separation system |
6019742, | Oct 13 1994 | Haemonetics Corporation | Method for liquid separation |
6027441, | Jul 01 1997 | Baxter International Inc | Systems and methods providing a liquid-primed, single flow access chamber |
6039711, | Feb 12 1997 | Haemonetics Corporation | System for liquid separation |
6060022, | Jul 05 1996 | Beckman Coulter, Inc | Automated sample processing system including automatic centrifuge device |
6074335, | Oct 13 1994 | Haemonetics Corporation | Rotor with elastic diaphragm defining a liquid separating chamber of varying volume |
6099491, | Oct 13 1994 | Haemonetics Corporation | Fluid separation system |
6102883, | Jun 07 1995 | Haemonetics Corporation | Blood collection and separation process |
6168561, | Jul 01 1997 | Baxter International Inc. | Blood processing chamber counter-balanced with blood-free liquid |
6251291, | Dec 28 1998 | Haemonetics Corporation | Reservoir-and-filter system and method of use |
6254784, | Oct 30 1997 | Baxter International Inc | Optical interface detection system for centrifugal blood processing |
6258577, | Jul 21 1998 | Terumo BCT Biotechnologies, LLC | Method and apparatus for inactivation of biological contaminants using endogenous alloxazine or isoalloxazine photosensitizers |
6261217, | Apr 16 1997 | Gambro, Inc | Separation set having plate-like separation container with annular pinch valve for blood component preparation |
6296602, | Mar 17 1999 | Haemonetics Corporation | Method for collecting platelets and other blood components from whole blood |
6315706, | Feb 26 1996 | CaridianBCT, Inc | Method for separating cells, especially platelets, and bag assembly therefor |
6348031, | Feb 12 1997 | Terumo BCT, Inc | Centrifuge and container system for treatment of blood and blood components |
6348156, | Sep 03 1999 | Fenwal, Inc | Blood processing systems and methods with sensors to detect contamination due to presence of cellular components or dilution due to presence of plasma |
6398760, | Oct 01 1999 | Baxter International, Inc. | Volumetric infusion pump with servo valve control |
6413200, | Mar 15 1999 | Biomet 3i, LLC | Platelet collection method |
6524231, | Sep 03 1999 | Fenwal, Inc | Blood separation chamber with constricted interior channel and recessed passage |
6582349, | Jul 01 1997 | Baxter International Inc | Blood processing system |
6585499, | Mar 04 1999 | Baxter International Inc. | Fluid delivery mechanism having a flush-back operation |
6602179, | Oct 13 1994 | Haemonetics Corporation | Rotor with elastic diaphragm defining a liquid separating chamber of varying volume |
6605223, | Jun 20 2000 | MEDICEPT, INC | Blood component preparation (BCP) device and method of use thereof |
6652475, | Jul 07 1999 | TERUMO MEDICAL CORPORATION | Automated blood component separation system |
6666665, | Mar 04 1999 | Baxter International Inc. | Fluid delivery mechanism having a plurality of plungers for compressing a metering chamber |
6733433, | Dec 24 1998 | BIOSAFE S.A. | Blood separation system particularly for concentrating hematopoietic stem cells |
6827863, | Apr 09 2001 | ARTERIOCYTE MEDICAL SYSTEMS, INC | Flexible centrifuge bag and methods of use |
6852074, | May 20 1997 | Velico Medical, Inc | Biological processing apparatus for expressing fluid material |
20020082153, | |||
20030191005, | |||
20030194104, | |||
20030195104, | |||
20030211927, | |||
20040104182, | |||
20060205581, | |||
DE20015684, | |||
EP14093, | |||
EP235160, | |||
EP350495, | |||
EP536594, | |||
EP578086, | |||
EP587257, | |||
EP1208856, | |||
EP1757318, | |||
NL1008210, | |||
WO54823, | |||
WO54824, | |||
WO3026802, | |||
WO3089027, | |||
WO2007001754, | |||
WO9200145, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 18 2007 | HLAVINKA, DENNIS J | NAVIGANT BIOTECHNOLOGIES, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019989 | /0158 | |
Oct 18 2007 | GOODRICH, RAYMOND P | NAVIGANT BIOTECHNOLOGIES, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019989 | /0158 | |
Oct 18 2007 | HANSEN, ERIC T | NAVIGANT BIOTECHNOLOGIES, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019989 | /0158 | |
Oct 19 2007 | CaridianBCT Biotechnologies, LLC | (assignment on the face of the patent) | / | |||
Jul 14 2008 | NAVIGANT BIOTECHNOLOGIES, LLC | CaridianBCT Biotechnologies, LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 021301 | /0079 | |
Jan 31 2009 | CaridianBCT Biotechnologies, LLC | CITICORP TRUSTEE COMPANY LIMITED | IP SECURITY AGREEMENT SUPPLEMENT | 022714 | /0560 | |
Jul 27 2011 | CITICORP TRUSTEE COMPANY LIMITED, AS SECUIRTY AGENT | CaridianBCT Biotechnologies, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026737 | /0537 | |
Jan 04 2012 | CaridianBCT Biotechnologies, LLC | Terumo BCT Biotechnologies, LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 027715 | /0552 |
Date | Maintenance Fee Events |
Feb 25 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 14 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 18 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 13 2014 | 4 years fee payment window open |
Mar 13 2015 | 6 months grace period start (w surcharge) |
Sep 13 2015 | patent expiry (for year 4) |
Sep 13 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 13 2018 | 8 years fee payment window open |
Mar 13 2019 | 6 months grace period start (w surcharge) |
Sep 13 2019 | patent expiry (for year 8) |
Sep 13 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 13 2022 | 12 years fee payment window open |
Mar 13 2023 | 6 months grace period start (w surcharge) |
Sep 13 2023 | patent expiry (for year 12) |
Sep 13 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |