The invention relates to the use of a compound comprising the following amino acid sequence X1X2X3X4X5X6X7, wherein X1 is an amino acid, except of C, X2 is an amino acid, except of C, X3 is an amino acid, except of C, X4 is an amino acid, except of C, X5 is an amino acid, except of C, X6 is not present or any amino acid, X7 is not present or any amino acid, and wherein X1X2X3X4X5X6 is not DAEFRH, said compound having a binding capacity to an antibody being specific for the natural N-terminal Aβ42 sequence DAEFRH, and 5-mers thereof having a binding capacity to said antibody being specific for the natural N-terminal Aβ42 sequence DAEFRH, for the preparation of a vaccine for Alzheimer's disease.
|
1. An isolated or purified peptide consisting of 6 to 15 contiguous amino acid residues and containing an amino acid sequence selected from the group consisting of DAEFRWP (SEQ ID NO: 27), DNEFRSP (SEQ ID NO: 28), SAEFRTQ (SEQ ID NO: 31), SAEFRAT (SEQ ID NO: 32), SWEFRNP (SEQ ID NO: 33), SWEFRLY (SEQ ID NO: 34), SWELRQA (SEQ ID NO: 35), SVEFRYH (SEQ ID NO: 36), SYEFRHH (SEQ ID NO: 37), SQEFRTP (SEQ ID NO: 38), SSEFRVS (SEQ ID NO: 39), DWEFRD (SEQ ID NO: 40), DAELRY (SEQ ID NO: 41), DWELRQ (SEQ ID NO: 42), SLEFRF (SEQ ID NO: 43), GPEFRW (SEQ ID NO: 44), and GKEFRT, wherein said peptide has a binding capacity to an antibody being specific for the N-terminal Aβ42 sequence DAEFH (SEQ ID NO: 26).
2. A composition comprising a complex comprising the isolated or purified peptide according to
3. The composition according to
4. The composition according to
5. The composition according to
6. The composition according to
7. An immunogenic composition comprising at least one peptide of
8. An immunogenic composition comprising the isolated or purified peptide of
9. An immunogenic composition comprising the isolated or purified peptide of
12. The isolated or purified peptide of
13. The isolated or purified peptide of
14. The isolated or purified peptide of
|
The present application is a 35 U.S.C. §371 National Stage patent application of International patent application PCT/EP05/053225, filed on Jul. 6, 2005, which claims priority to Austrian patent application AT A 1184/2004, filed on Jul. 13, 2004.
The present invention relates to methods for preventing and treating Alzheimer's disease (AD).
Amyloid-β peptide (Aβ) plays a central role in the neuropathology of Alzheimer's disease (AD) (Roher et al 1993: “β-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: Implications for the pathology of Alzheimer disease” PNAS 90:10836). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino acid form of the peptide (Aβ42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. An animal model for the disease is commercially available. The PDAPP transgenic mouse, which over-expresses mutant human APP (in which the amino acid at position 717 is F instead of V), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-dependent manner (Games et al 1995: “Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein” Nature 373:523).
Vaccination studies with a “normal”, not mimotope-based vaccine have already been performed. Transgenic animals were immunized with aggregated Aβ42, either before the onset of AD-type neuropathologies (6 weeks) or at an older age (11 months): Immunization of young animals prevented the development of plaque formation, neuritic dystrophy and astrogliosis. Treatment of older animals markedly reduced AD-like neuropathologies. This experimental vaccination approach induced the development of antibodies against Aβ42 able to cross the blood-brain barrier and attack amyloid plaques (Schenk et al 1999: “Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PD-APP mouse” Nature 400:173). The plaques are subsequently removed by several mechanisms, including Fc-receptor mediated phagocytosis (Bard et al 2000: “Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease” Nature Med 6:916). This vaccine was also able to delay memory deficits (Janus et al 2000: “Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease” Nature 408:979).
A highly promising immunization therapy for AD has been in clinical trials since late 1999. Immunization is presumed to trigger the immune system to attack the plaques and clear these deposits from the affected human brain, although the precise mechanism underlying needs to be characterized in more detail.
These clinical trials were conducted by the pharmaceutical company Elan in conjunction with its corporate partner, American Home Products (therapeutic vaccine AN-1792, QS21 as adjuvant). Phase I trials were successfully completed in 2000. Phase II trials were begun late 2001 to test efficacy in a panel of patients with mild to moderate AD.
Now these phase II trials have been permanently discontinued due to neuroinflammation in several patients (Editorial 2002 “Insoluble problem?” Nature Med 8:191). The symptoms included aseptic meningoencephalitis leading to the immediate halt of these world-wide trials. In the worst case scenario, affected patients will be shown to have mounted an autoimmune response—a risk inherent in many immunotherapies. Autoimmune complications could have been anticipated given the ubiquity of APP, which of course bears antigenic determinants in common with its proteolytic product. More recently, additional studies concentrated on the nature of aggregated Aβ42 immunization-induced antibodies (in humans and mice) revealing that most antibodies recognize a small domain between amino acid 4 and 10 of Aβ42 (Aβ4-10). The mouse antibodies were able to block Aβ fibrillogenesis and disrupted pre-existing Aβ fibers (McLaurin et al 2002: “Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4-10 and inhibit cytotoxicity and fibrillogenesis” Nature Med 8:1263). Of note, the human antibodies do not react with APP exposed on the surface of cells or any other non-aggregated proteolytic product of the precursor (Hock et al 2002: “Generation of antibodies specific for β-amyloid by vaccination of patients with Alzheimer disease” Nature Med 8:1270). A clear difference was observed between human and mouse sera: In contrast to human antibodies, mouse antibodies detect monomeric, oligomeric, and fibrillar Aβ. This is of importance and may be a prerequisite for the therapeutic potency since evidence is accumulating that small oligomers of Aβ, which are not recognized by human anti-Aβ, are the major toxic players in the disease (Walsh et al 2002: “Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo” Nature 416:535). Thus, a potential new strategy is the immunization with a vaccine containing β-amyloid amino acids 4-10 (instead of aggregated Aβ42). Despite unknown efficacy this strategy may also face autoimmune problems since patients shall be directly immunized with a (linear B cell) “self” epitope.
Despite these disappointing developments in recent AD vaccination strategies, an Aβ vaccine is still regarded as the most promising way for combatting AD. However, there is an urgent need for improvements and new strategies in AD vaccination. Especially, such a vaccine should not induce autoreactive T and/or B cells. Mimotope peptides which have a binding capacity to an antibody and are specific for the natural N-terminal Aβ42 sequence DAEFRH (SEQ ID NO: 26), and 5-mers thereof which have a binding capacity to said antibody being specific for the natural N-terminal Aβ42 sequence DAEFRH (SEQ ID NO: 26) for the preparation of a vaccine for Alzheimer's disease (AD) are described in PCT/EP04/00162 (incorporated herein by reference). Preferred mimotopes in that application comprise the following amino acid sequence
X1X2X3X4X5X6,
wherein
X1 is G or an amino acid with a hydroxy group or a negatively charged amino acid, preferably E, Y, S or D,
X2 is a hydrophobic amino acid or a positively charged amino acid, preferably I, L, V, K, W, R, Y, F or A,
X3 is a negatively charged amino acid, preferably D or E,
X4 is an aromatic amino acid or L, preferably Y, F or L,
X5 is H, K, Y, F or R, preferably H, F or R, and
X6 is S, T, N, Q, D, E, R, I, K, Y, or G, preferably T, N, D, R, I or G,
especially EIDYHR (SEQ ID NO: 1), ELDYHR (SEQ ID NO: 2), EVDYHR (SEQ ID NO: 3), DIDYHR (SEQ ID NO: 4), DLDYHR (SEQ ID NO: 5), DVDYHR (SEQ ID NO: 6), DIDYRR (SEQ ID NO: 7), DLDYRR (SEQ ID NO: 8), DVDYRR (SEQ ID NO: 9), DKELRI (SEQ ID NO: 10), DWELRI (SEQ ID NO: 11), YREFRI (SEQ ID NO: 12), YAEFRG (SEQ ID NO: 13), EAEFRG (SEQ ID NO: 14), DYEFRG (SEQ ID NO: 15), ELEFRG (SEQ ID NO: 16), DRELRI (SEQ ID NO: 17), DKELKI (SEQ ID NO: 18), DRELKI (SEQ ID NO: 19), GREFRN (SEQ ID NO: 20), EYEFRG (SEQ ID NO: 21), DWEFRD (SEQ ID NO: 22), SWEFRT (SEQ ID NO: 23), DKELR (SEQ ID NO: 24) or SFEFRG (SEQ ID NO: 25).
Furthermore, the natural L- or D-amino acids can be substituted by non natural L- or D-amino acids. For example, L, I or V can be substituted by Nle, Nva, Cha or alpha amino acids with other linear or cyclic aliphatic side chains, W or F by aromatic amino acids and R and K by basic amino acids like ornithin or homoarginine. Serin and threonine can be substituted by amino acids with aliphatic or aromatic side chains with a terminal OH-group.
The present invention provides further mimotope peptides (mimicking DAEFRH (SEQ ID NO: 26)) to be used for vaccination for AD.
Also the compounds according to the present invention are provided by screening peptide libraries with an antibody being specific for the natural N-terminal Aβ42 sequence DAEFRH (SEQ ID NO: 26). Preferably the peptides in the library have or comprise the following amino acid sequence
X1X2X3X4X5X6X7,
wherein X1 is an amino acid, except of C,
X2 is an amino acid, except of C,
X3 is an amino acid, except of C,
X4 is an amino acid, except of C,
X5 is an amino acid, except of C,
X6 is not present or any amino acid, preferably except of C,
X7 is not present or any amino acid, preferably except of C,
and wherein X1X2X3X4X5X6 is not DAEFRH (SEQ ID NO: 26), said peptide having a binding capacity to an antibody being specific for the natural N-terminal Aβ42 sequence DAEFRH (SEQ ID NO: 26), and 5-mers thereof having a binding capacity to said antibody being specific for the natural N-terminal Aβ42 sequence DAEFRH (SEQ ID NO: 26), for the preparation of a vaccine for Alzheimer's disease (AD).
According to the present invention an Aβ42 mimotope is used for vaccination against AD: The mimotope induces the production of antibodies against Aβ42 but not against the native APP. The mimotope may be identified with a (monoclonal) antibody and (commercially available) peptide libraries (e.g. according to Reineke et al. 2002: “Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences” J Immunol Methods 267:37). A (monoclonal) anti-body is used that does not recognize APP but detects only different Aβ species with amino-terminal aspartic acid (an example for such an antibody is described in Johnson-Wood et al 1997: “Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease” PNAS 94:1550). Such an antibody has been proven to be an ideal tool to identify vaccine-suitable mimotopes in the course of the present invention. Although such monoclonal antibodies were shown to have beneficial effects in a mouse model of AD when directly administered to mice (Bard et al 2000: “Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease” Nature Med 6:916), these antibodies have never been proposed to be used as mimotope search tools for isolating AD vaccine compounds.
In the prior art, all efforts were concentrated on the naturally occurring Aβ peptide. As mentioned above, Aβ peptide vaccine clinical trials were stopped due to neuroinflammation events. Indeed, T cell epitope prediction programs (BIMAS for class I-restricted epitopes and TEPITOPE for class II-restricted epitopes) propose high score (self) epitopes within the sequence. This could imply that the neuroinflammatory events are due to autoimmune reactions which would make such a vaccine unsuitable for a general application.
In contrast to such Aβ vaccines proposed by the prior art, no autoimmune reactions are expected to occur during treatment with a vaccine containing a mimotope according to the present invention, because the (monoclonal) antibody used for mimotope identification according to the present invention does not recognize APP and the mimotope sequence is different from Aβ42-derived self sequences that have been used in trials so far or shall be used in future trials.
The antibody used for the mimotope identification according to the present invention detects the Aβ-derived amino acid sequence DAEFRH (SEQ ID NO: 26) (=original epitope) with a free amino terminal aspartic acid, thus it does not recognize native APP. The antibody may be a monoclonal or polyclonal antibody preparation or any antibody part or derivative thereof, the only prerequisite is that the antibody molecule specifically recognises the DAEFRH (SEQ ID NO: 26) epitope, i.e. that it does not bind to the natural N-terminally prolonged forms of the amyloid precursor protein, which means that the binding capacity to the DAEFRH (SEQ ID NO: 26) epitope is at least 100 times, preferably at least 1000 times, more preferred at least 105 times, higher than to the APP molecule. The antibody may be an antibody showing the same or a higher binding capacity to the DAEFRH (SEQ ID NO: 26) sequence as the antibody described by Johnson-Wood et al., 1997. Of course, also antibodies with a lower binding capacity may be used (>10%, >50% or >80% of the binding capacity of the Johnson-Wood et al.-antibody), although the higher binding capacity is more preferred.
The compounds according to the present invention bind to those antibodies with comparable specificity as the DAEFRH (SEQ ID NO: 26) sequence.
Preferably, the compound to be used according to the present invention comprises or is consisting of a peptide, wherein
Therein, the 20 naturally occurring amino acids may be replaced by their chemical analogs or by D-amino acids; e.g. L may be replaced by Nle, Nva or Cha. Workability of such an exchange can easily be tested with the experimental model described in the example section of the present application. Steric considerations can also be calculated via computer models for the binding of the antibody to the peptide.
Specifically preferred are peptides containing the following sequence(s): DAEFRWP (SEQ ID NO: 27), DNEFRSP (SEQ ID NO: 28), GSEFRDY (SEQ ID NO: 29), GAEFRFT (SEQ ID NO: 30), SAEFRTQ (SEQ ID NO: 31), SAEFRAT (SEQ ID NO: 32), SWEFRNP (SEQ ID NO: 33), SWEFRLY (SEQ ID NO: 34), SWELRQA (SEQ ID NO: 35), SVEFRYH (SEQ ID NO: 36), SYEFRHH (SEQ ID NO: 37), SQEFRTP (SEQ ID NO: 38), SSEFRVS (SEQ ID NO: 39), DWEFRD (SEQ ID NO: 40), DAELRY (SEQ ID NO: 41), DWELRQ (SEQ ID NO: 42), SLEFRF (SEQ ID NO: 43), GPEFRW (SEQ ID NO: 44), GKEFRT (SEQ ID NO: 45), AYEFRH (SEQ ID NO: 46), DKE(Nle)R (SEQ ID NO: 47), DKE(Nva)R (SEQ ID NO: 48) or DKE(Cha)R (SEQ ID NO: 49), especially DAEFRWP (SEQ ID NO: 27), DNEFRSP (SEQ ID NO:28), SAEFRTQ (SEQ ID NO: 31), SAEFRAT (SEQ ID NO: 32), SWEFRNP (SEQ ID NO: 33), SWEFRLY (SEQ ID NO: 34), SWELRQA (SEQ ID NO: 35), SVEFRYH (SEQ ID NO: 36), SYEFRHH (SEQ ID NO: 37), SQEFRTP (SEQ ID NO: 38), SSEFRVS (SEQ ID NO: 39), DWEFRD (SEQ ID NO: 40), DAELRY (SEQ ID NO: 41), DWELRQ (SEQ ID NO: 42), SLEFRF (SEQ ID NO: 43), GPEFRW (SEQ ID NO: 44) or GKEFRT (SEQ ID NO: 45).
The compound (mimotope) according to the present invention has a preferred length of 5 to 15 amino acids. This compound may be provided in the vaccine in isolated (peptide) form or may be coupled or complexed to other molecules, such as pharmaceutical carrier substances or polypeptide, lipid or carbohydrate structures. Preferably, the mimotopes according to the present invention have a (minimum) length of between 5 and 15, 6 and 12 amino acid residues, specifically between 9 and 11. The mimotopes can, however, be coupled (covalently or non-covalent) to unspecific linkers or carriers, especially peptide linkers or protein carriers. Furthermore, the peptide linkers or protein carriers might consist of or contain T-cell helper epitopes.
Preferably, the pharmaceutically acceptable carrier is KLH, tetanus toxoid, albumin binding protein, bovine serum albumin, a dendrimer (MAP; Biol. Chem. 358:581) as well as the adjuvant sub-stances described in Singh et al., Nat. Biotech. 17 (1999), 1075-1081 (specifically those in table 1 of this document) and O'Hagan et al., Nature Reviews, Drug Discovery 2(9)(2003), 727-735 (specifically the innate immune-potentiating compounds and the delivery systems described therein), or mixtures thereof. In addition, the vaccine composition may contain aluminium hydroxyde.
A vaccine comprising the present compound (mimotope) and the pharmaceutically acceptable carrier may be administered by any suitable application mode, e.g. i.v., i.p., i.m., intranasal, oral, subcutaneous, etc. and in any suitable delivery device (O'Hagan et al., Nature Reviews, Drug Discovery 2(9)(2003), 727-735). Typically, the vaccine contains the compound according to the present invention in an amount of 0.1 ng to 10 mg, preferably 10 ng to 1 mg, especially 100 ng to 100 μg or, alternatively e.g. 100 fmole to 10 μmole, preferably 10 pmole to 1 pmole, especially 100 pmole to 100 nmole. The vaccine may also comprise typical auxiliary substances, e.g. buffers, stabilizers, etc.
Isolating suitable 5-mers according to the present invention can be achieved in the way described above, adapted to libraries with 5 amino acid variables, and may preferably be performed either by screening a library having amino acid variables X1 to X5 as described herein or by identifying suitable 5-mers in a positive member screened in a 6-mer-library (see: above). In the same way, also 7-mer, 8-mer, 9-mer, 10-mer, . . . libraries may be applied accordingly to screen for suitable sequences which bind to the present antibody-type. Suitable antibody-binding fragments of such longer sequences can be found, e.g. by testing these fragments with a length of 5, 6, 7, 8, 9, . . . amino acid residues for binding to the present antibody.
Such a method has been proven to be successful for providing AB mimotopes according to the present invention.
Preferably, said peptides are provided in individualised form in said library, especially immobilised on a solid surface, such as e.g. possible with the MULTIPIN™ peptide technology. The library may also be provided as a peptide mixture and the antibody:peptide complexes may be isolated after antibody binding. Alternatively, the antibody may be immobilised and the peptide library (in suspension or solution) is then contacted with the immobilised antibodies.
Preferably, the screening antibodies (or the members of the peptide library) comprise a suitable marker which allows the detection or isolation of the antibody or the antibody:peptide complex when bound to a peptide of the library. Suitable marker systems (i.a. biotinylation, fluorescence, radioactivity, magnetic markers, colour developing markers, secondary antibodies) are readily available to the skilled man in the art.
The library has to be constructed to exclude the naturally occurring Aβ sequence (e.g. DAEFRH (SEQ ID NO: 26)), since vaccination with this sequence is clearly excluded from this invention.
A further suitable technique for isolating the epitopes according to the present invention is screening in phage-peptide libraries as e.g. described in WO 03/020750.
The present invention also relates to a composition comprising an anti N-terminal Aβ42-antibody-binding peptide (or, in certain cases preferred, a larger molecule comprising such a peptide (e.g. the peptide linked to a carrier or delivery molecule)) as defined herein (optionally as single effective component), preferably to a vaccine against Alzheimer's Disease comprising such an antigen. A suitable antigen includes at least one peptide selected from the group DAEFRWP (SEQ ID NO: 27), DNEFRSP (SEQ ID NO: 28), GSEFRDY (SEQ ID NO: 29), GAEFRFT (SEQ ID NO: 30), SAEFRTQ (SEQ ID NO: 31), SAEFRAT (SEQ ID NO: 32), SWEFRNP (SEQ ID NO: 33), SWEFRLY (SEQ ID NO: 34), SWELRQA (SEQ ID NO: 35), SVEFRYH (SEQ ID NO: 36), SYEFRHH (SEQ ID NO: 37), SQEFRTP (SEQ ID NO: 38), SSEFRVS (SEQ ID NO: 39), DWEFRD (SEQ ID NO: 40), DAELRY (SEQ ID NO: 41), DWELRQ (SEQ ID NO: 42), SLEFRF (SEQ ID NO: 43), GPEFRW (SEQ ID NO: 44), GKEFRT (SEQ ID NO: 45), AYEFRH (SEQ ID NO: 46), DKE(Nle)R (SEQ ID NO: 47), DKE(Nva)R (SEQ ID NO: 48) or DKE(Cha)R (SEQ ID NO: 49). These peptides are—besides the other peptides provided with the present invention specifically suited to be used for the preparation of a pharmaceutical composition, especially for AD vaccines. These sequences are purely artificial Aβ-mimotopes. The peptides may—for vaccination purposes—be coupled (covalently or non-covalently) to suitable carriers and may be provided as peptide compounds or complexes together with other compounds or moieties, e.g. adjuvants, peptide or protein carriers, etc. and administered in a suitable manner (as e.g. described in O'Hagan et al., Nature Reviews, Drug Discovery 2(9)(2003), 727-735).
The invention is further described in the following examples and the drawing figures, of course without being restricted thereto.
1.: Generation of Monoclonal Antibodies (mAb) to Detect Aβ42-Derived Peptide Species with Free N-Terminus (Free Aspartic Acid at the N-Terminus)
Mice are vaccinated with the 6mer peptide DAEFRH (SEQ ID NO: 26) (natural N-terminal Aβ42 sequence) linked to the protein bovine serum albumin BSA (to make use of the hapten-carrier-effect), emulsified in CFA (first injection) and IFA (booster injections). DAEFRH (SEQ ID NO: 26)-peptide-specific, antibody-producing hybridomas are detected by ELISA (DAEFRH (SEQ ID NO: 26)-peptide-coated ELISA plates). Peptide SEVKMDAEFRH (SEQ ID NO: 50) (natural N-terminally prolonged sequence, APP-derived, containing the Aβ42-derived sequence DAEFRH (SEQ ID NO: 26)) is used as negative control peptide: hybridomas recognizing the prolonged peptide are excluded because they do not distinguish between Aβ42-derived peptides with free aspartic acid at the N-terminus and APP-derived peptide DAEFRH (SEQ ID NO: 26) without free aspartic acid.
2.: Construction of Peptide Libraries
The mimotopes of the present invention have been found by adapting the method of Reinke et al., 2000, by screening peptide libraries for binding to an antibody (preferably a monoclonal antibody) which is specific for Aβ species with amino-terminal aspartic acid. Another method is commercially available as MULTIPIN™ peptide technology.
The Multipin™ peptide technology involves synthesizing peptides on to specially prepared polyethylene pins mounted on blocks in a format which is compatible with the standard 8×12 microtiter plate used for many biological assays. Both pin-bound (non-cleavable peptides which remain covalently bound to the pin) and solution phase peptides (those that have been cleaved off the pin surface) can be produced by this method. PepSets, based on the Multipin synthesis system, permit the simultaneous synthesis and screening of large numbers of peptides.
PepSets consist of blocks of 96 individually synthesized peptides, two of which are carefully selected control sequences. Cleaved controls are assessed for purity by reverse phase HPLC and peptide content quantitated by amino acid analysis. Positive and negative non-cleavable controls are assessed by standard ELISA techniques.
PepSet peptides are available with a variety of chemical modifications including acetylation, biotinylation, phosphorylation and cyclization. The solution phase (cleaved) peptides are shipped as lyophilized powders.
For the production of solution phase peptides there is a choice of C-terminal endings, including acid and amide, depending on the intended peptide application. The cleavable bond is incorporated onto the pin surface, either as a preformed ester derivative of the C-terminal amino acid, or onto the “Rink” amide linker. Peptides with acid or amide end groups are then released by treating the pin-bound peptide with strong acid. Options for the scale of synthesis are a nominal 1 micromole or 5 micromole scale. Factors such as hydrophobicity and cleavage efficiency will affect peptide recovery, such that the expected yield of peptide is 0.5 to 1 micromole (around 1 mg of a 15mer peptide) when the peptides are synthesized on the nominal 1 micromole scale, or a yield of 2.5 to 5 micromole for peptides synthesized on the nominal 5 micromole scale.
Non-cleavable peptides remain covalently bound to the pins and can be used to rapidly screen for peptides of interest using ELISA techniques. Such peptides are useful for the purposes of antibody epitope scanning and structure-activity relationship (SAR) studies. Removal of bound antibodies or other proteins regenerates the peptides and allows their reuse in further assays. PepSets are used for a variety of applications including the identification of peptide leads of biological interest from scanning through protein sequences, the optimization of peptide leads, and the development of new generations of analogs. Flexibility in terms of the overall strategy used in screening procedures is greatly enhanced through the use of a variety of synthesis designs which together provide a systematic method to fully characterize the lead candidate.
The comprehensive results obtained from systematic peptide sets not only identify peptides of interest, but also indicates critical residues, their replaceability and optimal peptide length. Consequently, a range of related peptides may be ranked as a result of such findings. Replacement of L-amino acids with D-amino acids and other unusual residues is a powerful approach to manipulate the structure and conformation of a peptide. This method is also a rapid way to discover new analogs with different pharmacological properties, such as antagonists and peptides with increased stability.
Starting with a known protein sequence, all sequential antibody epitopes can be mapped using the Multipin approach. Several alternative procedures for mapping sequential B-cell epitopes are now possible. These include pin-bound peptides, solution phase peptides coated directly onto microtiter plates, and biotinylated peptides captured on microtiter plates previously coated with avidin or streptavidin.
For the present examples, the antibody described in example 1 is used for screening peptide libraries, however, any antibody preparation specifically recognizing the DAEFRH (SEQ ID NO: 26)-sequence, but not the naturally N-terminally prolonged sequence of the Aβ molecule (e.g. MDAEFRH (SEQ ID NO: 55), KMDAEFRH (SEQ ID NO: 56), SEVKMDAEFRH (SEQ ID NO: 50) or the complete amyloid (precursor) protein, APP), such as e.g. described by Johnson-Wood et al., 1997.
Four libraries have been constructed for this purpose:
2.1.: Library 1: This 6mer library contains peptides with the following sequences (amino acid positions 1 to 6):
Library 1 is a mixture of hexapeptides. Theoretically, all possible peptides containing 17 different amino acids (see below) are included. The mixture does not contain any lysine and cysteine residue. Furthermore, the mixture does not contain:
The synthesis is performed on an Applied Biosystems 431A-Synthesizer following the FastMoc protocol, with a synthesis scale of 0.25 mmol.
The synthesis starts with weighing 1 mmol of all desired amino acids (amino groups and side chains protected). Then, a mixture of Asn, Gln, Gly, Ile, Leu, Met, Pro, Ser, Thr, Trp, Tyr, Val was produced. Position-specific, the following amino acids are added:
Mixture 6 was used to load the resin (2-chloro-tritylchloride resin, 1.49 mmol/g, Alexis Germany):
The mixture is shaken in a flask for 1 h. Then, 1 ml methanol is added and the mixture is shaken for an additional 10 min. The loaded resin is extracted via a frit and washed twice with dimethylformamide, dichlormethane, isopropanol, methanol, and ether (30 ml of each). The drying is performed overnight in a high vacuum. The weigh-out quantity is 737 mg.
An aliquot of 5.66 mg is treated for 30 min with 1 ml of 20% piperidine in DMF to define the density of the resin. Then, the mixture is centrifuged. The free Fmoc protective group is photometrically measured in the supernatant (301 nm, coefficient of extinction=7800 M (e-1)). Accordingly, the density of the resin is 0.49 mmol/g.
All following steps are performed at the synthesizer, using the other mixtures (put in 5 different cartridges). 515 mg of loaded resin are used (corresponding to 0.25 mmol: amino acid mixtures are used in 4-times excess). The N-terminal Fmoc protective group is cleaved at the end of the synthesis. After washing with ethanol and drying overnight, cleavage of the peptides from the resin is accomplished by TFA/H2O (95:5, v:v). The TFA solution is concentrated in a Speed Vac to 1/5 volume and precipitated and washed in diethylether and lyophilized.
The 6mer peptides EIDYHR (SEQ ID NO: 1), ELDYHR (SEQ ID NO: 2), and EVDYHR (SEQ ID NO: 3) are examples for mimotopes that can be detected by the monoclonal antibody produced according to example 1. above.
2.2.: Library 2: This 6mer library contains peptides with the following sequences (amino acid positions 1 to 6):
Peptide library 2 was constructed according to the method described above (under 2.1) for library 1.
The 6mer peptides DIDYHR (SEQ ID NO: 4), DLDYHR (SEQ ID NO: 5), and DVDYHR (SEQ ID NO: 6) are examples for mimotopes that can be detected by the monoclonal antibody produced according to 1. above.
2.3.: Library 3: A third peptide library is used in an additional approach to define mimotope sequences. This library contains the original sequence, and allows the detection of mimotopes more closely related to the original epitope.
This 6mer library contains peptides with the following sequences (amino acid positions 1 to 6):
Peptide library 3 was constructed according to the method described above (under 2.1) for library 1.
The 6mer peptides DIDYRR (SEQ ID NO: 7), DLDYRR (SEQ ID NO: 8), and DVDYRR (SEQ ID NO: 9) are examples for mimotopes that can be detected by the monoclonal antibody produced according to 1. above (D in position 1 and R in position 5 are identical with the original epitope).
2.4.: Library 4: This peptide library 4 consists of 5×18=90 peptides, is commercially available from Mimotopes Ltd. (Paris, France; see manufacturer's guidelines) and is designed according to the natural N-terminal Aβ42 sequence DAEFRH (SEQ ID NO: 26).
The individualised peptide members of library 4 are depicted in
2.5.: ELISA with Peptide Libraries:
As mentioned above, peptide libraries 1, 2, and 3 are generated with an Applied Biosystems 431A peptide synthesizer following classical Fmoc-chemistry. The commercially available peptide library 4 is generated according to the manufacturer's description (see above and under www.mimotopes.com). The 90 peptides are C-terminally linked to a pin.
The ELISA with each of the peptide libraries have been carried out following standard protocols:
The peptide library is dissolved in 100% DMSO (final concentration 10 mg/ml).
The peptide solution is further diluted in PBS.
The peptide mixture is coated overnight (4° C.) onto ELISA plates (Nunc Maxisorp, Germany), starting with 500 μg/well, and titrated to 100 ng/well.
The plates are washed 3× times with PBS/Tween 20 (0.1% v/v).
The plates are blocked with PBS/BSA (2 h at room temperature).
The plates are washed 3× times with PBS/Tween.
The plates are incubated with biotinylated DAEFRH (SEQ ID NO: 26)-specific mAb (10 μg/ml in PBS) for 4 h at room temperature.
The plates are washed 3× times with PBS/Tween.
The plates are incubated with streptavidin-horseradish-peroxidase (30 min at room temperature).
The plates are washed 5× times with PBS/Tween.
The plates are incubated with ABTS+H2O2 (0.1% w/v; 10 to 45 min) and the reaction is stopped with citric acid followed by photometric evaluation (wavelength 405 nm).
3.: Verification of Mimotopes by Inhibition Assay
3.1. Additional Library
In addition to the 4 libraries described above (see 2.1., 2.2., 2.3., and 2.4.) a fifth library is used to define mimotope sequences. This 6mer library is commercially available at EMC microcollections (Tübingen Germany) and contains 114 different hexapeptide mixtures, one position per mixture is defined by one of all natural aa except of C (19 possibilities), the remaining 5 positions are variable:
Mixtures 01 to 06 (one position fixed, alanine A, remaining 5 variable, X):
Mixtures 07 to 12 (one position fixed, arginine R, remaining 5 variable, X):
Accordingly, mixtures 13 to 114 are designed using all natural aa except of C.
3.2. Inhibition Assay
The following peptides are used:
Peptide 1737 DAEFRH (SEQ ID NO: 26)
Peptide 3001 DKELRI (SEQ ID NO: 10)
Peptide 3002 DWELRI (SEQ ID NO: 11)
Peptide 3003 YREFFI (SEQ ID NO: 57)
Peptide 3004 YREFRI (SEQ ID NO: 12)
Peptide 3005 YAEFRG (SEQ ID NO: 13)
Peptide 3006 EAEFRG (SEQ ID NO: 14)
Peptide 3007 DYEFRG (SEQ ID NO: 15)
Peptide 3008 ELEFRG (SEQ ID NO: 16)
Peptide 3009 SFEFRG (SEQ ID NO: 25)
Peptide 3010 DISFRG (SEQ ID NO: 58)
Peptide 3011 DIGWRG (SEQ ID NO: 59)
Procedure:
ELISA plates (Nunc Maxisorp) are coated with the original peptide epitope DAEFRH (SEQ ID NO: 26) (C-terminally prolonged with C and coupled to bovine serum albumin BSA) at a concentration of 0.1 μg/ml peptide-BSA (100 μl/well, 12 h, 4° C.). After blocking with PBS/BSA 1% (200 μl/well, 12 h, 4° C.), the plates are washed 3× times with PBS/Tween. Then, biotinylated monoclonal antibody (1:2000, 50 μl/well) and peptides (50 μl/well) at 50, 5, 0.5, 0.05, 0.005, and 0.0005 μg/ml are added for 20 min. at 37° C. The plates are washed 3× times with PBS/Tween and are incubated with horseradish peroxidase (HRP)-labeled streptavidin (100 μl/well, 30 min, RT). The plates are washed 5× times with PBS/Tween and are incubated with ABTS+H2O2 (0.1% w/v, 10 to 45 min) and the reaction is stopped with citric acid followed by photometric evaluation (wavelength 405 nm).
As expected and seen in
As expected and seen in
Table 1 briefly summarizes the inhibitory capacity of mimotopes included in and obtained from libraries (as described):
Table 1: Inhibitory capacity of mimotopes:
Peptide 3001 DKELRI (SEQ ID NO: 10) strong
Peptide 3002 DWELRI (SEQ ID NO: 11) intermediate
Peptide 3003 YREFFI (SEQ ID NO: 57) none
Peptide 3004 YREFRI (SEQ ID NO: 12) weak
Peptide 3005 YAEFRG (SEQ ID NO: 13) intermediate
Peptide 3006 EAEFRG (SEQ ID NO: 14) strong
Peptide 3007 DYEFRG (SEQ ID NO: 15) strong
Peptide 3008 ELEFRG (SEQ ID NO: 16) weak
Peptide 3009 SFEFRG (SEQ ID NO: 25) weak
Peptide 3010 DISFRG (SEQ ID NO: 58) none
Peptide 3011 DIGWRG (SEQ ID NO: 59) none
4. Inhibition Assay for Additional Mimotopes Screenend According to the Present Invention
Inhibition Assay
The following peptides are used:
Peptide 1737 DAEFRH (SEQ ID NO: 26) (original epitope+C)
Peptide 1234 KKELRI (SEQ ID NO: 52)
Peptide 1235 DRELRI (SEQ ID NO: 17)
Peptide 1236 DKELKI (SEQ ID NO: 18)
Peptide 1237 DRELKI (SEQ ID NO: 19)
Peptide 1238 DKELR (SEQ ID NO: 24)
Peptide 1239 EYEFRG (SEQ ID NO: 21)
Peptide 1241 DWEFRDA (SEQ ID NO: 22)
Peptide 4002 SWEFRT (SEQ ID NO: 23)
Peptide 4003 GREFRN (SEQ ID NO: 20)
Peptide 4004 WHWSWR (SEQ ID NO: 51)
Procedure:
ELISA plates (Nunc Maxisorp) are coated with the original peptide epitope DAEFRH (SEQ ID NO: 26) (C-terminally prolonged with C and coupled to bovine serum albumin BSA) at a concentration of 0.1 μg/ml peptide-BSA (100 μl/well, 12 h, 4° C.). After blocking with PBS/BSA 1% (200 μl/well, 12 h, 4° C.), the plates are washed 3× times with PBS/Tween. Then, biotinylated monoclonal antibody (1:2000, 50 μl/well) and peptides (50 μl/well) at different concentrations are added for 20 min. at 37° C. The plates are washed 3× times with PBS/Tween and are incubated with horseradish peroxidase (HRP)-labeled streptavidin (100 μl/well, 30 min, RT). The plates are washed 5× times with PBS/Tween and are incubated with ABTS+H2O2 (0.1% w/v, 10 to 45 min) and the reaction is stopped with citric acid followed by photometric evaluation (wavelength 405 nm).
As expected and seen in
As expected and seen in
Table 2 briefly summarizes the inhibitory capacity of mimotopes included in and obtained from libraries (as described):
Table 2: Inhibitory capacity of mimotopes:
Peptide 1234 KKELRI (SEQ ID NO: 52) none
Peptide 1235 DRELRI (SEQ ID NO: 17) strong
Peptide 1236 DKELKI (SEQ ID NO: 18) weak
Peptide 1237 DRELKI (SEQ ID NO: 19) weak
Peptide 1238 DKELR (SEQ ID NO: 24) strong
Peptide 1239 EYEFRG (SEQ ID NO: 21) intermediate
Peptide 1241 DWEFRDA (SEQ ID NO: 22) strong
Peptide 4002 SWEFRT (SEQ ID NO: 23) strong
Peptide 4003 GREFRN (SEQ ID NO: 20) weak
Peptide 4004 WHWSWR (SEQ ID NO: 51) none
The results presented in
5. Independent New Round for Screening
Libraries:
The mimotope has a preferred length of 5 to 15 amino acids. Two different libraries are used in ELISA assays to define mimotope sequences.
Library 1: This 6mer library contains peptides with the following sequences (amino acid positions 1 to 6):
Library 2: This 7mer library contains peptides with the following sequences (amino acid positions 1 to 7):
The following peptides are used:
Peptide 1737 DAEFRH
(SEQ ID NO: 26)
original epitope
Peptide 4011 DAEFRWP
(SEQ ID NO: 27)
7mer
s
Peptide 4012 DNEFRSP
(SEQ ID NO: 28)
7mer
s
Peptide 4013 GSEFRDY
(SEQ ID NO: 29)
7mer
m
Peptide 4014 GAEFRFT
(SEQ ID NO: 30)
7mer
m
Peptide 4015 SAEFRTQ
(SEQ ID NO: 31)
7mer
s
Peptide 4016 SAEFRAT
(SEQ ID NO: 32)
7mer
s
Peptide 4017 SWEFRNP
(SEQ ID NO: 33)
7mer
s
Peptide 4018 SWEFRLY
(SEQ ID NO: 34)
7mer
s
Peptide 4019 SWFRNP
(SEQ ID NO: 60)
6mer
—
Peptide 4020 SWELRQA
(SEQ ID NO: 35)
7mer
s
Peptide 4021 SVEFRYH
(SEQ ID NO: 36)
7mer
s
Peptide 4022 SYEFRHH
(SEQ ID NO: 37)
7mer
s
Peptide 4023 SQEFRTP
(SEQ ID NO: 38)
7mer
s
Peptide 4024 SSEFRVS
(SEQ ID NO: 39)
7mer
s
Peptide 4025 DWEFRD
(SEQ ID NO: 40)
6mer
s
Peptide 4031 DAELRY
(SEQ ID NO: 41)
6mer
s
Peptide 4032 DWELRQ
(SEQ ID NO: 42)
6mer
s
Peptide 4033 SLEFRF
(SEQ ID NO: 43)
6mer
s
Peptide 4034 GPEFRW
(SEQ ID NO: 44)
6mer
s
Peptide 4035 GKEFRT
(SEQ ID NO: 45)
6mer
s
Peptide 4036 AYEFRH
(SEQ ID NO: 46)
6mer
m
Peptide 4037 VPTSALA
(SEQ ID NO: 53)
7mer
—
Peptide 4038 ATYAYWN
(SEQ ID NO: 54)
7mer
—
Furthermore, the following 5mer peptides (with non natural amino
acids) are used for inhibition assays:
Peptide 4061 DKE(tBuGly)R
(SEQ ID NO: 61)
5mer
—
Peptide 4062 DKE(Nle)R
(SEQ ID NO: 47)
5mer
m
Peptide 4063 DKE(Nva)R
(SEQ ID NO: 48)
5mer
m
Peptide 4064 DKEC(Cha)R
(SEQ ID NO: 49)
5mer
m
(s: strong inhibition, m: moderate inhibition; —: no inhibition)
Procedure:
ELISA plates (Nunc Maxisorp) are coated with the original peptide epitope DAEFRH (SEQ ID NO: 26) (C-terminally prolonged with C and coupled to bovine serum albumin BSA) at a concentration of 0.1 μg/ml peptide-BSA (100 μl/well, 12 h, 4° C.). After blocking with PBS/BSA 1% (200 μl/well, 12 h, 4° C.), the plates are washed 3× times with PBS/Tween. Then, biotinylated monoclonal antibody (1:2000, 50 μl/well) and peptides (50 μl/well) at different concentrations are added for 20 min. at 37° C. The plates are washed 3× times with PBS/Tween and are incubated with horseradish peroxidase (HRP)-labeled streptavidin (100 μl/well, 30 min, RT). The plates are washed 5× times with PBS/Tween and are incubated with ABTS+H2O2 (0.1% w/v, 10 to 45 min) and the reaction is stopped with citric acid followed by photometric evaluation (wavelength 405 nm).
As expected and seen in
As expected and presented in
As expected and seen in
6. Inhibition Assay with Defined 5mer Peptides: Non-Natural Amino Acids
It has been shown previously that the 5mer peptide 1238 DKELR (SEQ ID NO: 24) may be used as epitope in a mimotope-based Alzheimer vaccine (see PCT/EP04/00162). In the following, amino acids of the original 5mer epitope are replaced by non-natural amino acids: L is replaced by the non-natural amino acids tBuGly, Nle, Nva, or Cha.
As expected and presented in
Schmidt, Walter, Mattner, Frank
Patent | Priority | Assignee | Title |
10195257, | Jul 28 2013 | Qantu Therapeutics, Inc.; QANTU THERAPEUTICS, INC | Vaccine formulations comprising quillaja desacylsaponins and beta amyloid peptides or tau protein to induce a Th2 immune response |
Patent | Priority | Assignee | Title |
4857634, | Apr 03 1985 | National Research Development Corporation | Peptides useful in vaccination against enteroviruses |
5019510, | Oct 28 1987 | Institut Pasteur | Isolation, molecular cloning and sequencing of an HIV-1 isolate from a Gabonese donor |
6703015, | Sep 03 1999 | RAMOT AT TEL-AVIV UNIVERSITY LTD | Filamentous bacteriophage displaying an β-amyloid epitope |
JP2003509020, | |||
JP200416282, | |||
JP2006500553, | |||
WO118169, | |||
WO2004013172, | |||
WO2004062556, | |||
WO118169, | |||
WO149721, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 06 2005 | Affiris Forschungs-und Entwicklungs GmbH | (assignment on the face of the patent) | / | |||
Feb 02 2007 | MATTNER, FRANK | Affiris Forschungs-und Entwicklungs GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018974 | /0542 | |
Feb 02 2007 | SCHMIDT, WALTER | Affiris Forschungs-und Entwicklungs GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018974 | /0542 |
Date | Maintenance Fee Events |
May 01 2015 | REM: Maintenance Fee Reminder Mailed. |
Sep 20 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 20 2014 | 4 years fee payment window open |
Mar 20 2015 | 6 months grace period start (w surcharge) |
Sep 20 2015 | patent expiry (for year 4) |
Sep 20 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 20 2018 | 8 years fee payment window open |
Mar 20 2019 | 6 months grace period start (w surcharge) |
Sep 20 2019 | patent expiry (for year 8) |
Sep 20 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 20 2022 | 12 years fee payment window open |
Mar 20 2023 | 6 months grace period start (w surcharge) |
Sep 20 2023 | patent expiry (for year 12) |
Sep 20 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |