In one embodiment, a transistor fabricated on a semiconductor die includes a first section of transistor segments disposed in a first area of the semiconductor die, and a second section of transistor segments disposed in a second area of the semiconductor die adjacent the first area. Each of the transistor segments in the first and second sections includes a pillar of a semiconductor material that extends in a vertical direction. first and second dielectric regions are disposed on opposite sides of the pillar. first and second field plates are respectively disposed in the first and second dielectric regions. Outer field plates of transistor segments adjoining first and second sections are either separated or partially merged.
|
1. A transistor comprising:
a semiconductor die;
a plurality of transistor segments organized into a plurality of sections, each transistor segment having a length and a width, the length being substantially greater than the width, the transistor segments of each section being arranged in a side-by-side relationship along the width, each transistor segment including:
a pillar of a semiconductor material that extends in a vertical direction, the pillar having a source region disposed near a top surface, of the semiconductor die, an extended drain region, and a body region that vertically separates the source and extended drain regions;
first and second dielectric regions disposed on opposite sides of the pillar, respectively, the first dielectric region being laterally surrounded by the pillar, and the second dielectric region laterally surrounding the pillar;
first and second field plates respectively disposed in the first and second dielectric regions, the first and second field plates being fully insulated from the extended drain region, the first field plate being laterally surrounded by the pillar, and the second field plate laterally surrounding the pillar;
the sections being arranged in rows and columns substantially across the semiconductor die, adjacent sections in a row or a column being oriented such that the length of the transistor segments in a first one of the adjacent sections extends in a first direction, and the length of the transistor segments in a second one of the adjacent sections extends in a second direction, the first direction being substantially orthogonal to the second direction.
8. A high-voltage, field-effect transistor (HVFET) comprising:
a plurality of transistor segments organized on a die into a plurality of sections, each transistor segment having a length elongated in a first lateral direction and a width in a second lateral direction, the transistor segments of each section being arranged in a side-by-side relationship along the width, each transistor segment including:
a pillar of a semiconductor material of a first conductivity type, the pillar having a racetrack-shape in the first and second lateral directions, the pillar including a source region disposed near a top surface of the die, and an extended drain region that extends in a vertical direction through the die;
first and second dielectric regions disposed on opposite sides of the pillar, respectively, the first dielectric region being laterally surrounded by the pillar, and the second dielectric region laterally surrounding the pillar;
first and second field plates respectively disposed in the first and second dielectric regions, the first and second field plates being fully insulated from the extended drain region, the first field plate being laterally surrounded by the pillar, and the second field plate laterally surrounding the pillar;
the sections being arranged in rows and columns substantially across the semiconductor die, adjacent sections in a row or a column being oriented such that the length of the transistor segments in a first one of the adjacent sections extends in a first direction, and the length of the transistor segments in a second one of the adjacent sections extends in a second direction, the first direction being substantially orthogonal to the second direction.
4. The transistor of
5. The transistor of
6. The transistor of
7. The transistor of
10. The HVFET of
12. The HVFET of
13. The HVFET of
|
This application is a continuation of application Ser. No. 11/707,418, filed Feb. 16, 2007, now U.S. Pat. No. 7,859,037 entitled, “C
The present disclosure relates to semiconductor device structures and processes for fabricating high-voltage transistors.
High-voltage, field-effect transistors (HVFETs) are well known in the semiconductor arts. Many HVFETs employ a device structure that includes an extended drain region that supports or blocks the applied high-voltage (e.g., several hundred volts) when the device is in the “off” state. In a conventional vertical HVFET structure, a mesa or pillar of semiconductor material forms the extended drain or drift region for current flow in the on-state. A trench gate structure is formed near the top of the substrate, adjacent the sidewall regions of the mesa where a body region is disposed above the extended drain region. Application of an appropriate voltage potential to the gate causes a conductive channel to be formed along the vertical sidewall portion of the body region such that current may flow vertically through the semiconductor material, i.e., from a top surface of the substrate where the source region is disposed, down to the bottom of the substrate where the drain region is located.
In a traditional layout, a vertical HVFET consists of long continuous silicon pillar structure that extends across the semiconductor die, with the pillar structure being repeated in a direction perpendicular to the pillar length. One problem that arises with this layout, however, is that it tends to produce large warping of the silicon wafer during high temperature processing steps. In many processes, the warping is permanent and large enough to prevent the wafer from tool handling during subsequent processing steps.
The present disclosure will be understood more fully from the detailed description that follows and from the accompanying drawings, which however, should not be taken to limit the invention to the specific embodiments shown, but are for explanation and understanding only.
In the following description specific details are set forth, such as material types, dimensions, structural features, processing steps, etc., in order to provide a thorough understanding of the present invention. However, persons having ordinary skill in the relevant arts will appreciate that these specific details may not be needed to practice the present invention. It should also be understood that the elements in the figures are representational, and are not drawn to scale in the interest of clarity.
In one embodiment, the doping concentration of the portion of epitaxial layer which comprises extended drain region 12 is linearly graded to produce an extended drain region that exhibits a substantially uniform electric-field distribution. Linear grading may stop at some point below the top surface of the epitaxial layer 12.
Extended drain region 12, body region 13, source regions 14a & 14b and P-type region 16 collectively comprise a mesa or pillar 17 (both terms are used synonymously in the present application) of silicon material in the example vertical transistor of
In another embodiment, instead of arranging P-type region 16 between N+ source regions 14a & 14b across the lateral width of pillar 17 (as shown in
Dielectric regions 15a & 15b may comprise silicon dioxide, silicon nitride, or other suitable dielectric materials. Dielectric regions 15 may be formed using a variety of well-known methods, including thermal growth and chemical vapor deposition. Disposed within each of the dielectric layers 15, and fully insulated from substrate 11 and pillar 17, is a field plate 19. The conductive material used to from field plates 19 may comprise a heavily doped polysilicon, a metal (or metal alloys), a silicide, or other suitable materials. In the completed device structure, field plates 19a & 19b normally function as capacitive plates that may be used to deplete the extended drain region of charge when the HVFET is in the off state (i.e., when the drain is raised to a high voltage potential). In one embodiment, the lateral thickness of oxide region 15 that separates each field plate 19 from the sidewall of pillar 17 is approximately 4 μm.
The trench gate structure of vertical HVFET transistor 80 comprises gate members 18a & 18b, each respectively disposed in oxide regions 15a & 15b on opposite sides of pillar 17 between field plates 19a & 19b and body region 13. A high-quality, thin (e.g., ˜500 Å) gate oxide layer separates gate members 18 from the sidewalls of pillar 17 adjacent body region 13. Gate members 18 may comprise polysilicon, or some other suitable material. In one embodiment, each gate member 18 has a lateral width of approximately 1.5 μm and a depth of about 3.5 μm.
Practitioners in the art will appreciate that N+ source regions 14 and P-type body region 13 near the top of pillar 17 may each be formed using ordinary deposition, diffusion, and/or implantation processing techniques. After formation of the N+ source region 38, HVFET 10 may be completed by forming source, drain, gate, and field plate electrodes that electrically connect to the respective regions/materials of the device using conventional fabrication methods (not shown in the figures for clarity reasons).
Practitioners in the art will appreciate that in the completed device structure, patterned metal layers are used to interconnect each of the silicon pillars 17 of the individual transistor segments. That is, in a practical embodiment, all of the source regions, gate members, and field plates are respectively wired together to corresponding electrodes on the die. In the embodiment shown, the transistor segments in each section 30 are arranged in a side-by-side relationship in the y-direction substantially across a width of die 21. Similarly, in the x-direction the additive length of the transistor segments of sections 30a & 30b extend substantially over the length of die 21. In the example layout of
The purpose of segmenting the single die HVFET into sections separated by dummy silicon pillar 32 is to introduce lengthwise (x-direction) stress-relief in the elongated racetrack shaped transistor segments. Segmenting or breaking the transistor device structures into two or more sections relieves mechanical stress across the length of the die. This stress is induced by the oxide regions flanking the pillars and normally concentrates at the rounded ends of each racetrack segment. Relieving mechanical stress by segmenting the transistor device structures into two or more sections thus prevents undesirable warping of the silicon pillars and damage (e.g., dislocations) to the silicon caused by stress.
It is appreciated that a tradeoff exists between the stress relief provided by a highly segmented layout and loss of conduction area. More segmentation results in greater stress relief, but at the expense of conduction area. In general, the greater the vertical height of the pillars and the larger the semiconductor die, the greater the number of transistor sections or segments that will be required. In one embodiment, for a 2 mm×2 mm die with 60 μm high pillars, adequate stress relief is provided in a HVFET with an on-resistance of about 1 ohm utilizing a layout comprising four racetrack transistor sections separated by dummy silicon pillars, each having a pitch (y-direction) of about 13 μm and a length (x-direction) of about 450 μm.
In another embodiment, instead of a dummy pillar of silicon to separate pairs of racetrack transistor segments, each pair being located in a different section, a dummy pillar comprising a different material may be utilized. The material used for the dummy pillar should have a thermal coefficient of expansion close to that of silicon, or sufficiently different from that of the dielectric region so as to relieve the lengthwise stress induced by the dielectric regions flanking the silicon pillars.
It is appreciated that the alternate shifting of the segments may be any fraction of the segment length. In other words, shifting of the segments is not limited to 50% or half the length. Various embodiments may comprise segments alternately shifted by any percentage or fraction ranging from greater than 0% to less than 100% of the length of the transistor segments.
In the example of
In the example of
Each of the semiconductor die 21 shown in
It is appreciated that the HVFET of each die 21 may be formed with multiple transistor sections, e.g., greater than 2, each separated by one or more dummy pillars. Furthermore, any of the single die layouts with multiple transistor sections shown in the examples of
In the embodiment shown, die 25 comprises three rows and four columns of transistor sections 36. The checkerboarded layout approach shown in the example of
Although the above embodiments have been described in conjunction with a specific device types, those of ordinary skill in the arts will appreciate that numerous modifications and alterations are well within the scope of the present invention. For instance, although HVFETs have been described, the methods, layouts and structures shown are equally applicable to other structures and device types, including Schottky, diode, IGBT and bipolar structures. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Banerjee, Sujit, Parthasarathy, Vijay, Manley, Martin H.
Patent | Priority | Assignee | Title |
10153687, | Jul 31 2009 | Power Integrations, Inc. | Method and apparatus for implementing a power converter input terminal voltage discharge circuit |
10325988, | Dec 13 2013 | Power Integrations, Inc | Vertical transistor device structure with cylindrically-shaped field plates |
10608525, | Jul 31 2009 | Power Integrations, Inc. | Method and apparatus for implementing a power converter input terminal voltage discharge circuit |
10819102, | Aug 08 2016 | Power Integrations, Inc. | Electronic circuit for fast temperature sensing of a power switching device |
11018250, | May 06 2019 | Infineon Technologies AG | Semiconductor device with multi-branch gate contact structure |
11695069, | May 06 2019 | Infineon Technologies AG | Gate contact structure for semiconductor device |
8207577, | Sep 29 2009 | Power Integrations, Inc.; Power Integrations, Inc | High-voltage transistor structure with reduced gate capacitance |
8410551, | Feb 16 2007 | Power Integrations, Inc. | Checkerboarded high-voltage vertical transistor layout |
8552493, | Feb 16 2007 | Power Integrations, Inc. | Segmented pillar layout for a high-voltage vertical transistor |
8624562, | Jul 31 2009 | Power Integrations, Inc. | Method and apparatus for implementing a power converter input terminal voltage discharge circuit |
8653583, | Feb 16 2007 | Power Integrations, Inc.; Power Integrations, Inc | Sensing FET integrated with a high-voltage transistor |
8816433, | Feb 16 2007 | Power Integrations, Inc. | Checkerboarded high-voltage vertical transistor layout |
9065340, | Jul 31 2009 | Power Integrations, Inc. | Method and apparatus for implementing a power converter input terminal voltage discharge circuit |
9324823, | Aug 15 2014 | Infineon Technologies Austria AG | Semiconductor device having a tapered gate structure and method |
9443972, | Nov 30 2011 | Infineon Technologies Austria AG | Semiconductor device with field electrode |
9478639, | Feb 27 2015 | Infineon Technologies Austria AG | Electrode-aligned selective epitaxy method for vertical power devices |
9543396, | Dec 13 2013 | Power Integrations, Inc. | Vertical transistor device structure with cylindrically-shaped regions |
9601613, | Feb 16 2007 | Power Integrations, Inc. | Gate pullback at ends of high-voltage vertical transistor structure |
9735665, | Jul 31 2009 | Power Integrations, Inc. | Method and apparatus for implementing a power converter input terminal voltage discharge circuit |
9973183, | Sep 28 2015 | Power Integrations, Inc. | Field-effect transistor device with partial finger current sensing FETs |
9983239, | May 13 2016 | Power Integrations, Inc.; Power Integrations, Inc | Integrated linear current sense circuitry for semiconductor transistor devices |
Patent | Priority | Assignee | Title |
4343015, | May 14 1980 | Intersil Corporation | Vertical channel field effect transistor |
4531173, | Nov 02 1983 | MOTOROLA, INC , SCHAUMBURG, ILL A DE CORP | Protective power foldback circuit for a power semiconductor |
4553084, | Apr 02 1984 | Semiconductor Components Industries, LLC | Current sensing circuit |
4618541, | Dec 21 1984 | Advanced Micro Devices, Inc. | Method of forming a silicon nitride film transparent to ultraviolet radiation and resulting article |
4626789, | Aug 19 1983 | Hitachi, Ltd.; Yagi Antenna Co. | Demodulating circuit for data signal |
4626879, | Dec 21 1982 | North American Philips Corporation | Lateral double-diffused MOS transistor devices suitable for source-follower applications |
4665426, | Feb 01 1985 | Advanced Micro Devices, Inc. | EPROM with ultraviolet radiation transparent silicon nitride passivation layer |
4738936, | Jul 01 1983 | Acrian, Inc. | Method of fabrication lateral FET structure having a substrate to source contact |
4754310, | Dec 10 1980 | U.S. Philips Corp. | High voltage semiconductor device |
4764800, | May 07 1986 | Advanced Micro Devices, Inc. | Seal structure for an integrated circuit |
4769685, | Oct 27 1986 | General Motors Corporation | Recessed-gate junction-MOS field effect transistor |
4796070, | Jan 15 1987 | Intersil Corporation | Lateral charge control semiconductor device and method of fabrication |
4811075, | Apr 24 1987 | POWER INTEGRATIONS, INC , MENLO PARK, CA A CORP OF CA | High voltage MOS transistors |
4890144, | Sep 14 1987 | Motorola, Inc. | Integrated circuit trench cell |
4890146, | Dec 16 1987 | Siliconix Incorporated; SILICONIX INCORPORATED, A DE CORP | High voltage level shift semiconductor device |
4922327, | Dec 24 1987 | University of Toronto Innovations Foundation | Semiconductor LDMOS device with upper and lower passages |
4926074, | Oct 30 1987 | North American Philips Corporation | Semiconductor switch with parallel lateral double diffused MOS transistor and lateral insulated gate transistor |
4926243, | Jan 19 1985 | Sharp Kabushiki Kaisha | High voltage MOS field effect semiconductor device |
4929987, | Feb 01 1988 | General Instrument Corporation; GENERAL SEMICONDUCTOR, INC | Method for setting the threshold voltage of a power mosfet |
4939566, | Oct 30 1987 | North American Philips Corporation | Semiconductor switch with parallel DMOS and IGT |
4963951, | Nov 29 1985 | Intersil Corporation | Lateral insulated gate bipolar transistors with improved latch-up immunity |
4967246, | Oct 27 1987 | NEC Electronics Corporation | Structure of insulated gate bipolar transistors |
5008794, | Dec 21 1989 | Power Integrations, Inc. | Regulated flyback converter with spike suppressing coupled inductors |
5010024, | Mar 04 1987 | Advanced Micro Devices, Inc. | Passivation for integrated circuit structures |
5025296, | Feb 29 1988 | Motorola, Inc. | Center tapped FET |
5040045, | May 17 1990 | NXP B V | High voltage MOS transistor having shielded crossover path for a high voltage connection bus |
5068700, | Nov 29 1988 | Kabushiki Kaisha Toshiba | Lateral conductivity modulated MOSFET |
5072266, | Dec 27 1988 | Siliconix Incorporated | Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry |
5072268, | Mar 12 1991 | Power Integrations, Inc. | MOS gated bipolar transistor |
5122848, | Apr 08 1991 | Micron Technology, Inc. | Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance |
5146298, | Aug 16 1991 | COMHEAT MICROWAVE AB, A SWEDISH CO ; Power Integrations, Inc | Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor |
5155574, | Mar 20 1990 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device |
5164891, | Aug 21 1991 | POWER INTEGRATIONS, INC A CA CORP | Low noise voltage regulator and method using a gated single ended oscillator |
5237193, | Jun 24 1988 | Siliconix Incorporated | Lightly doped drain MOSFET with reduced on-resistance |
5258636, | Dec 12 1991 | Power Integrations, Inc. | Narrow radius tips for high voltage semiconductor devices with interdigitated source and drain electrodes |
5270264, | Dec 20 1991 | Intel Corporation | Process for filling submicron spaces with dielectric |
5274259, | Feb 01 1993 | Power Integrations, Inc | High voltage transistor |
5285367, | Feb 07 1992 | Power Integrations, Inc.; Power Integrations, Inc | Linear load circuit to control switching power supplies under minimum load conditions |
5294824, | Jul 31 1992 | Semiconductor Components Industries, LLC | High voltage transistor having reduced on-resistance |
5306656, | Jun 24 1988 | Siliconix Incorporated | Method for reducing on resistance and improving current characteristics of a MOSFET |
5313082, | Feb 16 1993 | Power Integrations, Inc | High voltage MOS transistor with a low on-resistance |
5323044, | Oct 02 1992 | Power Integrations, Inc | Bi-directional MOSFET switch |
5324683, | Jun 02 1993 | Freescale Semiconductor, Inc | Method of forming a semiconductor structure having an air region |
5326711, | Jan 04 1993 | Texas Instruments Incorporated | High performance high voltage vertical transistor and method of fabrication |
5349225, | Apr 12 1993 | Texas Instruments Incorporated | Field effect transistor with a lightly doped drain |
5359221, | Jul 10 1992 | Elpida Memory, Inc | Semiconductor device |
5386136, | May 06 1991 | Siliconix Incorporated; SILICONIX INCORPORATED, A CORPORATION OF CA | Lightly-doped drain MOSFET with improved breakdown characteristics |
5411901, | Feb 01 1993 | Power Integrations, Inc. | Method of making high voltage transistor |
5438215, | Mar 25 1993 | Infineon Technologies AG | Power MOSFET |
5473180, | Jul 12 1993 | U S PHILIPS CORPORATION | Semiconductor device with an MOST provided with an extended drain region for high voltages |
5514608, | May 06 1991 | Siliconix Incorporated | Method of making lightly-doped drain DMOS with improved breakdown characteristics |
5521105, | Aug 12 1994 | United Microelectronics Corporation | Method of forming counter-doped island in power MOSFET |
5550405, | Dec 21 1994 | MONTEREY RESEARCH, LLC | Processing techniques for achieving production-worthy, low dielectric, low interconnect resistance and high performance ICS |
5637898, | Dec 22 1995 | Semiconductor Components Industries, LLC | Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance |
5648283, | Aug 07 1992 | Microsemi Corporation | High density power device fabrication process using undercut oxide sidewalls |
5654206, | May 13 1994 | International Rectifier Corporation | Amorphous silicon layer for top surface of semiconductor device |
5656543, | Feb 03 1995 | National Semiconductor Corporation | Fabrication of integrated circuits with borderless vias |
5659201, | Jun 05 1995 | GLOBALFOUNDRIES Inc | High conductivity interconnection line |
5663599, | Jul 25 1994 | United Microelectronics Corporation | Metal layout pattern for improved passivation layer coverage |
5665994, | Sep 17 1993 | Consorzio per la Ricerca sulla Microelettronica Nel Mezzogiorno | Integrated device with a bipolar transistor and a MOSFET transistor in an emitter switching configuration |
5670828, | Feb 21 1995 | Advanced Micro Devices | Tunneling technology for reducing intra-conductive layer capacitance |
5679608, | Dec 21 1994 | MONTEREY RESEARCH, LLC | Processing techniques for achieving production-worthy, low dielectric, low dielectric, low interconnect resistance and high performance IC |
5716887, | Sep 14 1995 | Fairchild Korea Semiconductor Ltd | Method of manufacturing BiCMOS device |
5760440, | Feb 21 1995 | FUJI ELECTRIC CO , LTD | Back-source MOSFET |
5821144, | Sep 10 1996 | F POSZAT HU, L L C | Lateral DMOS transistor for RF/microwave applications |
5869875, | Jun 10 1997 | HANGER SOLUTIONS, LLC | Lateral diffused MOS transistor with trench source contact |
5917216, | Feb 10 1995 | Siliconix Incorporated | Trenched field effect transistor with PN depletion barrier |
5929481, | Jul 19 1996 | Siliconix Incorporated | High density trench DMOS transistor with trench bottom implant |
5943595, | Feb 26 1997 | Sharp Kabushiki Kaisha | Method for manufacturing a semiconductor device having a triple-well structure |
5969408, | Jan 31 1997 | SGS-Thomson Microelectronics S.r.l. | Process for forming a morphological edge structure to seal integrated electronic devices, and corresponding device |
5973360, | Mar 20 1996 | Infineon Technologies AG | Field effect-controllable semiconductor component |
5998833, | Oct 26 1998 | Semiconductor Components Industries, LLC | Power semiconductor devices having improved high frequency switching and breakdown characteristics |
6010926, | Dec 30 1996 | Hyundai Electronics Industries Co., Ltd. | Method for forming multiple or modulated wells of semiconductor device |
6049108, | Jun 02 1995 | Siliconix Incorporated | Trench-gated MOSFET with bidirectional voltage clamping |
6054752, | Jun 30 1997 | Denso Corporation | Semiconductor device |
6084277, | Feb 18 1999 | Power Integrations, Inc.; Power Integrations, Inc | Lateral power MOSFET with improved gate design |
6127703, | Aug 31 1999 | NXP B V | Lateral thin-film silicon-on-insulator (SOI) PMOS device having a drain extension region |
6133607, | May 22 1997 | Kabushiki Kaisha Toshiba | Semiconductor device |
6168983, | Nov 05 1996 | Power Integrations, Inc | Method of making a high-voltage transistor with multiple lateral conduction layers |
6184555, | Feb 05 1996 | Infineon Technologies AG | Field effect-controlled semiconductor component |
6191447, | May 28 1999 | Semiconductor Components Industries, LLC | Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same |
6194283, | Oct 29 1997 | GLOBALFOUNDRIES Inc | High density trench fill due to new spacer fill method including isotropically etching silicon nitride spacers |
6207994, | Nov 05 1996 | Power Integrations, Inc | High-voltage transistor with multi-layer conduction region |
6294818, | Jan 22 1996 | FUJI ELECTRIC CO , LTD | Parallel-stripe type semiconductor device |
6316807, | Dec 05 1997 | FUJI ELECTRIC CO , LTD | Low on-resistance trench lateral MISFET with better switching characteristics and method for manufacturing same |
6353252, | Jul 29 1999 | Kabushiki Kaisha Toshiba | High breakdown voltage semiconductor device having trenched film connected to electrodes |
6359308, | Jul 22 1999 | NEXPERIA B V | Cellular trench-gate field-effect transistors |
6362064, | Apr 21 1998 | National Semiconductor Corporation | Elimination of walkout in high voltage trench isolated devices |
6365932, | Aug 20 1999 | Denso Corporation | Power MOS transistor |
6388286, | Oct 26 1998 | Semiconductor Components Industries, LLC | Power semiconductor devices having trench-based gate electrodes and field plates |
6404009, | Mar 03 1999 | Sony Corporation | Semiconductor device and method of producing the same |
6424007, | Jan 24 2001 | Power Integrations, Inc. | High-voltage transistor with buried conduction layer |
6462377, | Feb 12 2000 | NXP B V | Insulated gate field effect device |
6465291, | Jan 24 2001 | Power Integrations, Inc. | High-voltage transistor with buried conduction layer |
6468847, | Nov 27 2000 | POWER INTERGRATIONS, INC | Method of fabricating a high-voltage transistor |
6489190, | Nov 27 2000 | Power Integrations, Inc. | Method of fabricating a high-voltage transistor |
6501130, | Jan 24 2001 | Power Integrations, Inc. | High-voltage transistor with buried conduction layer |
6504209, | Jan 24 2001 | Power Integrations, Inc. | High-voltage transistor with buried conduction layer |
6509220, | Nov 27 2000 | Power Integrations, Inc. | Method of fabricating a high-voltage transistor |
6525372, | Nov 16 2000 | Silicon Semiconductor Corporation | Vertical power devices having insulated source electrodes in discontinuous deep trenches |
6552597, | Nov 02 2001 | Power Integrations, Inc. | Integrated circuit with closely coupled high voltage output and offline transistor pair |
6555873, | Sep 07 2001 | Power Integrations, Inc | High-voltage lateral transistor with a multi-layered extended drain structure |
6555883, | Oct 29 2001 | Power Integrations, Inc. | Lateral power MOSFET for high switching speeds |
6563171, | Jan 24 2001 | Power Integrations, Inc. | High-voltage transistor with buried conduction layer |
6570219, | Nov 05 1996 | Power Integrations, Inc. | High-voltage transistor with multi-layer conduction region |
6573558, | Sep 07 2001 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-layered extended drain structure |
6583663, | Apr 22 2002 | Power Integrations, Inc. | Power integrated circuit with distributed gate driver |
6633065, | Nov 05 1996 | Power Integrations, Inc. | High-voltage transistor with multi-layer conduction region |
6635544, | Sep 07 2001 | Power Intergrations, Inc. | Method of fabricating a high-voltage transistor with a multi-layered extended drain structure |
6639277, | Nov 05 1996 | Power Integrations, Inc. | High-voltage transistor with multi-layer conduction region |
6667213, | Sep 07 2001 | Power Integrations, Inc. | Method of fabricating a high-voltage transistor with a multi-layered extended drain structure |
6677641, | Oct 17 2001 | Semiconductor Components Industries, LLC | Semiconductor structure with improved smaller forward voltage loss and higher blocking capability |
6680646, | Apr 22 2002 | Power Integrations, Inc. | Power integrated circuit with distributed gate driver |
6683344, | Sep 07 2001 | Littelfuse, Inc | Rugged and fast power MOSFET and IGBT |
6683346, | Mar 09 2001 | Semiconductor Components Industries, LLC | Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge |
6724041, | Nov 05 1996 | Power Integrations, Inc. | Method of making a high-voltage transistor with buried conduction regions |
6730585, | Jan 24 2001 | Power Integrations, Inc. | Method of fabricating high-voltage transistor with buried conduction layer |
6734714, | Nov 02 2001 | Power Integrations, Inc. | Integrated circuit with closely coupled high voltage output and offline transistor pair |
6750105, | Sep 07 2001 | Power Integrations, Inc. | Method of fabricating a high-voltage transistor with a multi-layered extended drain structure |
6759289, | Nov 27 2000 | Power Integrations, Inc. | Method of fabricating a high-voltage transistor |
6764889, | Oct 26 1998 | Semiconductor Components Industries, LLC | Methods of forming vertical mosfets having trench-based gate electrodes within deeper trench-based source electrodes |
6768171, | Nov 27 2000 | Power Integrations, Inc. | High-voltage transistor with JFET conduction channels |
6768172, | Nov 05 1996 | Power Integrations, Inc. | High-voltage transistor with multi-layer conduction region |
6777749, | Nov 05 1996 | Power Integrations, Inc. | High-voltage transistor with multi-layer conduction region |
6781194, | Apr 11 2001 | Semiconductor Components Industries, LLC | Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein |
6781198, | Sep 07 2001 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-layered extended drain structure |
6787437, | Nov 05 1996 | Power Integrations, Inc. | Method of making a high-voltage transistor with buried conduction regions |
6787847, | Sep 07 2001 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-layered extended drain structure |
6787848, | Jun 29 2001 | Kabushiki Kaisha Toshiba; Kabushiki Kaish Toshiba | Vertical type power mosfet having trenched gate structure |
6798020, | Sep 07 2001 | Power Integrations, Inc. | High-voltage lateral transistor with a multi-layered extended drain structure |
6800903, | Nov 05 1996 | Power Integrations, Inc. | High-voltage transistor with multi-layer conduction region |
6809354, | Jun 14 2002 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Semiconductor device |
6815293, | Sep 07 2001 | Power Intergrations, Inc.; Power Integrations, Inc | High-voltage lateral transistor with a multi-layered extended drain structure |
6818490, | Jan 24 2001 | Power Integrations, Inc. | Method of fabricating complementary high-voltage field-effect transistors |
6825536, | Oct 29 2001 | Power Integrations, Inc. | Lateral power MOSFET for high switching speeds |
6828631, | Nov 05 1996 | Power Integrations, Inc | High-voltage transistor with multi-layer conduction region |
6838346, | Sep 07 2001 | Power Integrations, Inc. | Method of fabricating a high-voltage transistor with a multi-layered extended drain structure |
6865093, | May 27 2003 | Power Integrations, Inc. | Electronic circuit control element with tap element |
6882005, | Sep 07 2001 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-layered extended drain structure |
6987299, | Sep 07 2001 | Power Integrations, Inc. | High-voltage lateral transistor with a multi-layered extended drain structure |
7115958, | Oct 19 2004 | Power Integrations, Inc. | Lateral power MOSFET for high switching speeds |
7135748, | Oct 26 2004 | Power Integrations, Inc. | Integrated circuit with multi-length output transistor segment |
7220629, | Oct 26 2004 | Power Integrations, Inc. | Method of manufacturing an integrated circuit with multilength power transistor elements |
7221011, | Sep 07 2001 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-gradient drain doping profile |
7253042, | Sep 07 2001 | Power Integrations, Inc. | Method of fabricating a high-voltage transistor with an extended drain structure |
7253059, | Oct 26 2004 | Power Integrations, Inc. | Method of forming an integrated circuit with multi-length power transistor segments |
7335944, | Sep 07 2001 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-gradient drain doping profile |
7381618, | Oct 03 2006 | Power Integrations, Inc. | Gate etch process for a high-voltage FET |
7391088, | Oct 26 2004 | Power Integrations, Inc. | Integrated circuit with multi-length output transistor segments |
7459366, | Sep 07 2001 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-gradient drain doping profile |
7468536, | Feb 16 2007 | Power Integrations, Inc.; Power Integrations, Inc | Gate metal routing for transistor with checkerboarded layout |
7494875, | Oct 03 2006 | Power Integrations, Inc. | Gate etch process for a high-voltage FET |
7557406, | Feb 16 2007 | Power Integrations, Inc.; Power Integrations, Inc | Segmented pillar layout for a high-voltage vertical transistor |
7585719, | Oct 26 2004 | Power Integrations, Inc. | Integrated circuit with multi-length output transistor segments |
7595523, | Feb 16 2007 | Power Integrations, Inc; Power Integrations, Inc. | Gate pullback at ends of high-voltage vertical transistor structure |
7732860, | Feb 16 2007 | Power Integrations, Inc. | Gate metal routing for transistor with checkerboarded layout |
7859037, | Feb 16 2007 | Power Integrations, Inc.; Power Integrations, Inc | Checkerboarded high-voltage vertical transistor layout |
7863172, | Jan 06 2005 | Power Integrations, Inc | Gallium nitride semiconductor device |
7871882, | Dec 20 2008 | Power Integrations, Inc. | Method of fabricating a deep trench insulated gate bipolar transistor |
7875962, | Oct 15 2007 | Power Integrations, Inc.; Power Integrations, Inc | Package for a power semiconductor device |
7893754, | Oct 02 2009 | Power Integrations, Inc.; Power Integrations, Inc | Temperature independent reference circuit |
20010015459, | |||
20020056884, | |||
20020175351, | |||
20030209757, | |||
20050167742, | |||
20050167749, | |||
20050218963, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 01 2010 | Power Integrations, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 20 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 13 2019 | REM: Maintenance Fee Reminder Mailed. |
Oct 28 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 20 2014 | 4 years fee payment window open |
Mar 20 2015 | 6 months grace period start (w surcharge) |
Sep 20 2015 | patent expiry (for year 4) |
Sep 20 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 20 2018 | 8 years fee payment window open |
Mar 20 2019 | 6 months grace period start (w surcharge) |
Sep 20 2019 | patent expiry (for year 8) |
Sep 20 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 20 2022 | 12 years fee payment window open |
Mar 20 2023 | 6 months grace period start (w surcharge) |
Sep 20 2023 | patent expiry (for year 12) |
Sep 20 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |