A differential steering control system and method for a machine includes a motor for steering the machine in a leftwards or a rightwards direction, a continuously variable transmission for moving the machine in a forwards or a backwards direction, and a control unit connected to the motor and the continuously variable transmission. The control unit determines the speed of the continuously variable transmission and based upon the determined speed, modifies a speed of the motor in order to achieve/maintain a desired turn radius for the machine.

Patent
   8025114
Priority
Dec 22 2006
Filed
Mar 28 2011
Issued
Sep 27 2011
Expiry
Mar 21 2027
Assg.orig
Entity
Large
0
19
all paid
1. A method of steering a machine having an engine, a continuously variable transmission, a steering differential, and a steering control system including a steering motor adapted to operate said steering differential for steering said machine in a leftward or rightward direction, said steering control system having an actuable steering device, the steering control system further including a control unit in electrical communication with said steering device, said engine, said continuously variable transmission, and said steering motor, and wherein said control unit is configured to monitor and control direction and speed of said machine, said method of steering comprising the following steps:
a) said control unit determines at least one of a speed of said continuously variable transmission and a load on said engine;
b) said control unit determines a desired turn radius of said machine based upon inputs from said steering device; and
c) said control unit modifies speed of said steering motor in response to at least one or both of said determined speed of said continuously variable transmission and said load on said engine to maintain said desired turn radius.
9. A method of steering a machine having an engine, a hydromechanical transmission, a steering differential, and a steering control system, said steering control system having an actuable steering device, and including a steering motor adapted to operate said steering differential for steering said machine in a leftward or rightward direction, the steering control system including a pump for operating the steering motor, and further including a control unit in electrical communication with said steering device, said engine, said hydromechanical transmission, said pump, and said steering motor, and wherein said control unit is configured to monitor and control direction and speed of said machine, said method of steering comprising the following steps:
a) said control unit determines at least one of a speed of said hydromechanical transmission and a load on said engine;
b) said control unit determines a desired turn radius of said machine based upon inputs from said steering device; and
c) said control unit modifies speed of said steering motor in response to at least one or both of said determined speed of said hydromechanical transmission and said load on said engine to maintain said desired turn radius.
16. A method of steering a machine having an engine, a continuously variable transmission having a generator and an electric drivetrain motor, a steering differential, and a steering control system having an electronically actuated steering device and a steering motor adapted to operate said steering differential for steering said machine in a leftward or rightward direction via inputs of said steering device, the steering control system including a control unit in electrical communication with a) said engine, b) said continuously variable transmission, and c) said steering motor, and d) said steering device, wherein said control unit is configured to monitor and control direction and speed of said machine, said method of steering said machine comprising the following steps:
a) said control unit determines at least one of a speed of said drivetrain motor and a load on said engine;
b) said control unit determines a desired turn radius of said machine based upon inputs from said steering device; and
c) said control unit modifies speed of said steering motor in response to at least one or both of said determined speed of said drivetrain motor and said load on said engine to maintain said desired turn radius.
2. The method according to claim 1, wherein said machine further comprises a pair of final drive units coupled respectively to right and left traction devices at each side of said differential, and wherein steering device input is effective to change speed of said steering motor to change differential speeds of said traction devices to control said turn radius of said machine.
3. The method according to claim 2 wherein said steering control system further comprises at least a transmission output speed sensor and a differential speed sensor, wherein said control unit is adapted to modify said turning radius in accordance with information inputs of said sensors.
4. The method according to claim 3 wherein in response to change in output speed of said continuously variable transmission or said engine load or both, said sensors provide information to said control unit, whereupon said control unit is effective to modify the speed of said steering motor in accordance therewith.
5. The method according to claim 4, wherein said steering control system further comprises a pump, and wherein said continuously variable transmission comprises a hydromechanical transmission in fluid communication with said pump.
6. The method according to claim 1, further comprising the steps of said control unit:
d) determining whether said steering motor is operating at maximum speed, and if so,
e) reducing the speed ratio of said continuously variable transmission to decrease said desired turn radius of said machine.
7. The method according to claim 1, further comprising the steps of said control unit:
d) determining a ratio of said continuously variable transmission;
e) determining whether said steering motor is operating at less than maximum speed, and if so,
f) permitting an increase of said ratio of said continuously variable transmission to thereby increase said turn radius of said machine.
8. The method according to claim 1, wherein if said load on said engine exceeds a predetermined value, said control unit reduces the ratio of the continuously variable transmission, and causes said steering motor to correspondingly change speed.
10. The method according to claim 9, wherein said machine further comprises a pair of final drive units coupled respectively to right and left traction devices at each side of said differential, and wherein steering device input is effective to change speed of said steering motor to change differential speeds of said traction devices to control said turn radius of said machine.
11. The method according to claim 10 wherein said steering control system further comprises at least a transmission output speed sensor and a differential speed sensor, wherein said control unit is adapted to modify said turning radius in accordance with information inputs of said sensors.
12. The method according to claim 11 wherein in response to change in output speed of said hydromechanical transmission or said engine load or both, said sensors provide information to said control unit, whereupon said control unit is effective to modify the speed of said steering motor in accordance therewith.
13. The method according to claim 9, further comprising the step of said control unit:
d) determining whether the motor is operating at maximum speed, and if so,
e) reducing the speed ratio of the hydromechanical transmission to decrease said turn radius of said machine.
14. The method according to claim 9, further comprising the step of said control unit:
d) determining ratio of said hydromechanical transmission;
e) determining whether the motor is operating at less than maximum speed, and if so,
f) permitting an increase of said ratio of said hydromechanical transmission to thereby increase said turn radius of said machine.
15. The method according to claim 9, wherein when said load on said engine exceeds a predetermined value, said control unit reduces the ratio of the hydromechanical transmission, and causes said steering motor to change speed correspondingly.
17. The method according to claim 16, wherein said machine further comprises a pair of final drive units coupled respectively to right and left traction devices at each side of said differential, and wherein steering device input is effective to change steering motor speed to change differential speeds of said traction devices to control said turn radius of said machine.
18. The method according to claim 17 wherein said steering control system further comprises at least a transmission output speed sensor and a differential speed sensor, wherein said control unit is adapted to modify said turning radius in accordance with information inputs of said sensors.
19. The method according to claim 18 wherein in response to change in output speed of said continuously variable transmission or said engine load or both, said sensors input information to said control unit, whereupon said control unit is effective to modify the speed of said steering motor in accordance therewith.
20. The method according to claim 16, further comprising the steps of said control unit:
d) determining whether said steering motor is operating at maximum speed, and if so,
e) reducing the speed ratio of said continuously variable transmission to decrease said turn radius of said machine.
21. The method according to claim 16, further comprising the steps of said control unit:
d) determining a ratio of said continuously variable transmission;
e) determining that said steering motor is operating at less than maximum speed, and if so,
f) permitting an increase in said ratio of said continuously variable transmission to thereby increase said turn radius of said machine.
22. The method according to claim 16, wherein if said load on said engine exceeds a predetermined value, said control unit reduces the ratio of the continuously variable transmission, and causes said steering motor to change speed correspondingly.

This is a divisional of currently pending U.S. patent application Ser. No. 11/726,312, filed on Mar. 21, 2007, which is expressly incorporated herein by reference, and which claims the benefit of U.S. provisional patent application No. 60/876,813, filed Dec. 22, 2006.

This invention relates generally to a steering control system, and more particularly, to a differential steering control for a machine having a continuously variable transmission.

Hydro-mechanical steering differential systems are employed in large track-type tractors or machines to provide smooth, equal, and uninterrupted power and torque flow to both the left and the right tracks at all times when the tractor is moving. It is also important to provide power to the tracks whenever the tractor is turning in either the left or right directions. A hydro-mechanical steering differential system is typically powered by a mechanical input and a hydraulic input. The mechanical input is provided from the transmission and the hydraulic input is received from an engine driven variable displacement pump.

In conventional machines, such as a track-laying type of machine, turning control is performed by an operator steering lever or mechanism. However, one problem with the use of such operator steering levers or mechanisms is that it is difficult to have a desired constant turning radius of the machine. For example, it is sometimes difficult to control the machine when attempting to turn with a constant turning radius in a region of low machine speeds or high loads.

U.S. Pat. No. 5,611,405, entitled “Turning Speed Control System for Use in a Track-Laying Vehicle” teaches a turning speed control system. The '405 patent provides a system that reduces vehicle speed in order to achieve a commanded turn radius when the steering motor is rotating at maximum speed.

The '405 patent however, reduces vehicle speed based on turning such that when a turning motor reaches a maximum displacement, and additional turning is demanded but not available, the transmission ratio is reduced. This effect may cause the engine to lug, or increase emissions.

The present disclosure is directed to overcoming one or more of the problems as set forth above.

In one embodiment, a steering control system for a machine is provided. The steering control system includes a continuously variable transmission, a motor connected to the continuously variable transmission, and a control unit connected to the motor and the continuously variable transmission. The control unit modifies a speed of the motor in response to a change in at least one of a speed of the continuously variable transmission and a load on the engine in order to maintain a desired turn radius.

In another embodiment, a differential steering control system is provided. The differential steering control system includes a motor for steering the machine in a leftwards or a rightwards direction, a continuously variable transmission for moving the machine in a forwards or a backwards direction, a steering device for providing an indication of a desired turn radius, and a control unit connected to the motor, the continuously variable transmission, and the steering device. The control unit determines a speed of the continuously variable transmission and the desired turn radius, and based upon a change in the determined speed and the desired turn radius, the control unit controls a speed of the motor in order to achieve and maintain the desired turn radius.

In yet another embodiment, a method for controlling a differential steering device for a machine having a continuously variable transmission is provided. The differential steering device includes a motor for turning the machine in a leftward or rightward direction. The method includes the steps of determining at least one of a speed of the continuously variable transmission and a load on the engine, determining a desired turn radius, and modifying a speed of the motor based upon the at least one of the determined speed and load to maintain the desired turn radius.

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.

The accompanying drawings, which are incorporated and constitute a part of this specification, illustrate exemplary embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,

FIG. 1 illustrates a schematic view of a machine-level steering differential control system according to one embodiment of the present invention;

FIG. 2 illustrates a schematic view of a machine-level steering differential control system according to another embodiment of the present invention; and

FIG. 3 illustrates a schematic view of a steering differential control system according to one embodiment of the present invention.

Reference will now be made in detail to embodiments or features of the invention. Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment. Whenever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

FIG. 1 illustrates a steering control system 10 incorporated within a machine 12 for providing differential steering to a left traction device 14 such as a wheel, tire, or track, and a right traction device 16, such as a wheel, tire, or track, of a drive train 18. The drive train 18 includes an engine 22 and a continuously variable transmission (“CVT”) 24 connected to the engine 22 through a drive shaft 26. The continuously variable transmission 24 may be hydromechanical, electromechanical, or purely electric, including a generator and motor. In the embodiment of FIG. 1, the continuously variable transmission 24 is illustrated as a hydromechanical transmission. Except as otherwise indicated, the CVT 24 will be referred to as a hydromechanical transmission.

The hydromechanical transmission 24 is connected to a steering differential 28 through a shaft 30 to provide a mechanical input thereto. A pump 32 provides hydraulic input to a motor 34 through fluid lines 38 to drive the steering differential 28. The pump 32 may be a reversible, variable displacement type and driven by the engine 22 through a suitable drive connection (not shown in FIG. 1).

Referring to FIGS. 1 and 2 jointly, the steering differential 28 drives the left traction device 14 through a left axle shaft 48, which is coupled to a left final drive 44. The steering differential 28 drives the right traction device 16 through a right axle shaft 50, which is coupled to a right final drive 52. Movement of the machine 12 may be in either the forward or reverse direction and the machine 12 may also be placed in neutral. The machine 12 may be maneuvered to move or turn in either the left or right directions when a relative velocity exists between the left traction device 14 and the right traction device 16.

A control unit 54 monitors and controls the direction and speed of the machine 12 through the hydromechanical transmission 24 and the motor 34. The control unit 54 may be electrically connected to the engine 22, the hydromechanical transmission 24, the pump 32, and the motor 34, as well as additional sensors 56 (see FIG. 3) placed on the left or right traction devices 14, 16, or on the left or right axle 48, 50 to determine speed, direction, errors, temperature, and the like.

FIG. 2 illustrates a CVT 24 embodied as an electric drive train. The electric drive train includes a generator 42, power electronics 43, and an electric motor 46. The electric motor 46 provides propulsion to move the machine 12. In this particular embodiment, the electric motor 46 receives power from the generator 42 or the power electronics 43. The steering motor 34 is also electric.

Referring now to FIG. 3, the control unit 54 includes a microprocessor 58 for executing a specified program, which controls and monitors various functions associated with the machine 12. The microprocessor 58 includes a memory 60, such as ROM (read only memory), for storing a program, and a RAM (random access memory) 63 which serves as a working memory area for use in executing the program stored in the memory 60. Although the microprocessor 58 is shown, it is also possible and contemplated to use other electronic components such as a microcontroller, an ASIC (application specific integrated circuit) chip, or any other integrated circuit device.

The control unit 54 electrically connects to the engine 22, a steering device 64, a direction selector 66, an output speed sensor 68, a differential speed sensor, or sensors, 70, the pump 32, the motor 34, and other speed and temperature type sensors 56. The steering device 64 may be a wheel, joystick, pedals, or the like. The direction selector 66 may be a Forward-Neutral-Reverse (“FNR”) device, or the like, and provides desired directional information to the control unit 54. The output speed sensor 68 provides information indicative of an output speed of the hydromechanical transmission 24, and the differential speed sensor 70.

In operation, the hydromechanical transmission 24 provides propulsive power to the driven elements, 14, 16. The steering device 64 provides a signal to the control unit 54 indicative of an operator's desire to turn to the left or to the right at a desired turn radius. The control unit 54 commands an up-stroking or a de-stroking of the pump 32 to increase or decrease the speed of the motor 34. Alternatively, the control unit 54 may command additional power supply to increase the speed of the motor 34 if it is an electric motor.

The motor 34 either increases or decreases a rotational speed of either of the left or right axle shafts 48, 50 to create a relative speed there between. In effect, the left or right final drives 44, 52 increase or decrease to create a relative speed between the two to effect a turning action.

At high or low machine speeds, the turn radius of the machine 12 is achieved by one or both of a reduction in the speed of the hydromechanical transmission 24 and increasing the speed of the motor 34. At higher machine speeds, the speed of the motor 34 is changed to achieve a commanded turn radius. However, at slower machine speeds, the speeds of the motor 34 and the hydromechanical transmission 24 may be changed to achieve the commanded turn radius. If the speed of the hydromechanical transmission 24 is reduced because of external loads, then control unit 54 may reduce the speed of the motor 34 to maintain the commanded turn radius.

As the machine 12 begins turning, the control unit 54 receives information from the steering device 64, the engine 22, the pump 32, the motor 34, the hydromechanical transmission 24, and other speed sensors. The hydromechanical transmission 24 includes logic controls for controlling the input/output ratio and automatically adjusts according to a desired engine running speed. As a result, when a load causes the engine to lug below the desired engine running speed, the hydromechanical transmission input/output ratio adjusts to modify the input/output ratio such that the engine speed increases to a desirable level. However, as the hydromechanical transmission 24 changes ratio to maintain engine speed, the steering system commands less steering speed to maintain the desired turn radius. Accordingly, the motor 34 decreases speed a corresponding amount to maintain the desired turn radius. If the motor 34 is already operating at a maximum speed, the control unit 54 commands the continuously variable transmission to decrease transmission ratio. In effect, the vehicle 12 slows, which results in a decreased turn radius.

It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed system and method without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only.

Shults, Richard F., Stemler, Eric D., Cowper, Lance M., Dabbs, Harold D.

Patent Priority Assignee Title
Patent Priority Assignee Title
4434680, Sep 02 1980 CATERPILLAR INC , A CORP OF DE Planetary steering differential
4471669, Jan 21 1982 J. I. Case Company Track drive system with dual mode steering
4519275, Feb 17 1982 Kabushiki Kaisha Komatsu Seisakusho Turning control system for a hydro-mechanical transmission
4658927, Nov 19 1984 Mazda Motor Corporation Steering system for vehicle
4702358, Oct 10 1986 Caterpillar Inc. Clutch brake steering control
4767382, Feb 18 1986 Fuji Jukogyo Kabushiki Kaisha Transmission ratio control system for a continuously variable transmission
5101919, Aug 15 1990 AlliedSignal Inc Steering system for tracked vehicles
5307888, Nov 19 1992 Giat Industries Method and apparatus for controlling the steering of a vehicle that is tracked or that has non-steerable wheels
5388658, Dec 02 1991 IMRA America, Inc; IMRA AMERICA, INC A CORP OF CALIFORNIA; IMRA AMERICA, INC A CORP OF MICHIGAN Integrated torque and steering control system
5415596, Jan 10 1994 Caterpillar Inc. Hydro-mechanical steering differential apparatus
5473541, Jul 14 1993 Kabushiki Kaisha Komatsu Seisakusho Steering control system for use in a track-laying vehicle
5477454, Jul 14 1993 Kabushiki Kaisha Komatsu Seisakusho Turning system for use in a track-laying vehicle
5477455, Jul 14 1993 Kabushiki Kaisha Komatsu Seisakusho Turning control system for use in a track-laying vehicle
5535840, Jul 14 1993 Kabushiki Kaisha Komatsu Seisakusho Steering system for use in a track-laying vehicle
5611405, Jul 14 1993 Kabushiki Kaisha Komatsu Seisakusho Turning speed control system for use in a track-laying vehicle
5857532, Nov 27 1996 Caterpillar Inc. Differential steer system for a machine
6345674, Aug 23 2000 Deere & Company Tracked vehicle steering control system with steering pump feedback
6654676, Mar 29 2001 Sony Corporation; Komatsu Ltd Steering system for tracklaying vehicle
RE36151, Jul 14 1993 Kabushiki Kaisha Komatsu Turning control system for use in a track-laying vehicle
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 28 2011Caterpillar Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 25 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 14 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 21 2023M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 27 20144 years fee payment window open
Mar 27 20156 months grace period start (w surcharge)
Sep 27 2015patent expiry (for year 4)
Sep 27 20172 years to revive unintentionally abandoned end. (for year 4)
Sep 27 20188 years fee payment window open
Mar 27 20196 months grace period start (w surcharge)
Sep 27 2019patent expiry (for year 8)
Sep 27 20212 years to revive unintentionally abandoned end. (for year 8)
Sep 27 202212 years fee payment window open
Mar 27 20236 months grace period start (w surcharge)
Sep 27 2023patent expiry (for year 12)
Sep 27 20252 years to revive unintentionally abandoned end. (for year 12)