A water treatment process whereby heat is used and recaptured to pasteurize water and or sewage effluent. Contaminated waters are partially treatable utilizing bacterial and chemical processes; however some bacteria (e.g. Cryptosporidium and Giardia) are resistant to chemicals. The present process raises the temperature of the water to a desired pasteurization temperature and for a corresponding required length of time to destroy pathogens and viruses. A heat exchanger is employed to use the waste heat from the pasteurization tank to pre-heat the fluid entering the tank. After the initial heating of the tank, the pre-heating reduces the required heat to maintain the temperature of the tank. Make-up heat increases the temperature within a small temperature range. The make-up heat may be waste heat from a separate process.
|
1. A method for fluid treatment comprising the steps of:
a) providing an apparatus comprising:
a fluid path having an upstream end and an opposite downstream end, wherein
a fluid stream flowing along said fluid path flows from said upstream end to said downstream end,
a heat exchanger having counter-flow sections comprising a first section between a cold inlet and a corresponding hot outlet, and a second section between a hot inlet and a corresponding cold outlet wherein said fluid path is in counter flow for exchange of heat between said first and second sections,
a volume tank having a tank inlet upstream of a tank outlet along said fluid path, said volume tank mounted downstream of said hot outlet of said first section, so that said tank inlet is in fluid communication with said hot outlet of said first section and so that heated fluid from said hot outlet enters said volume tank through said tank inlet,
said volume tank containing a series of baffles, wherein adjacent baffles within said series of baffles are offset from one another so that a corresponding section of said fluid path prescribes a tortuous flow path winding through said series of baffles, wherein fluid entering said tank inlet passes continuously through said series of baffles so as to dwell in said tank for a retention time, thereafter exiting said volume tank from said tank outlet,
a heater cooperating with said volume tank so as to heat the fluid in said volume tank to a pasteurization temperature thereby pasteurizing the fluid in said volume tank during said retention time as the fluid passes in a continuous flow along said fluid path through said volume tank,
said tank outlet upstream of and in fluid communication with said hot inlet of said second section,
wherein, in said counter-flow sections of said heat exchanger, said heat exchanger causes a temperature increase in fluid in the fluid path of said first section, and causes a temperature decrease in fluid in the fluid path of said second section, and wherein the temperature differential of said temperature increase of said first section is substantially equal to the temperature differential of said temperature decrease of said second section,
and wherein a temperature differential of the fluid in said volume tank as compared between said tank inlet and said tank outlet is in a range of substantially 1-3 degrees Fahrenheit so that the fluid exiting said tank outlet is hotter in substantially said range than the fluid entering said tank inlet,
b) pumping the fluid along said flow path from said upstream end to said downstream end,
c) pre-heating the fluid in said first section of said heat exchanger
d) heating the fluid in said volume tank only within said range of substantially 1-3 degrees Fahrenheit using waste heat from a separate process,
e) counter-flowing the heated fluid from said tank outlet of said volume tank through said second section of said heat exchanger so as to pre-heat the fluid in step (c) above,
f) dispersing the downstream fluid from said cold outlet of said heat exchanger.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 12/138,558 filed Jun. 13, 2008 now abandoned which claims priority from Canadian Patent Application No. 2,592,767 filed Jun. 28, 2007 entitled Water Treatment and Apparatus.
The present invention relates to pollution reduction, and more particularly, to the treatment of contaminated waste waters and drinking water.
Planet Earth should be our most prized possession, however, each and every day our waters are being polluted with industrial wastes and sewage.
Cities and towns, when economically feasible, do employ primary and secondary waste water treatment methods, however, the effluent from these methods may still contain viruses and pathogens that contaminate surface or subsurface waters.
Specifically:
1. It is estimated that at least 10,000 people per day die from the most basic water-borne diseases.
2. Indian and Northern Affairs Canada have tested and confirmed that in excess of 100 water systems in Northern Canada have potential health and safety concerns.
3. The British Columbia Waste Water Association estimates that 20% of 250,000 on-site sewage and disposal systems in British Columbia are failing.
4. It was discovered in 2003 that sewage contains and spreads the SARS and West Nile Virus.
5. A recent Canadian health report claims “Cancer” will strike 41% of Canadian males and 38% of Canadian females. Studies have shown that chemicals like chlorine which are used to disinfect water interact with organic materials to form carcinogenic chemicals know as Trihalomethanes.
6. The United States Environmental Protection Agency has recently identified more than 200 disinfection by-products from: Chlorine, Ozone, Chlorine Dioxide and Chloramines that may pose health risks.
7. In British Columbia, there are at least 100 “Boil Advisories” any day of the year.
What is therefore desired is a novel fluid pasteurization treatment apparatus and process which uses considerably less energy during the pasteurization process by utilizing what would otherwise be waste heat, among other advantages and innovations to implement the process according to the present invention as better set out below.
According to the present invention, there is provided in one aspect a process for economically pasteurizing sewage effluent, drinking water or any waters that require the absence of living organisms.
In another aspect the invention provides an apparatus whereby the desired contaminated water is pre-filtered and heated to an adequate temperature that will destroy most pathogens and viruses by the use of a counter-flow heat exchanger between a cold in-flow of un-treated fluid and a hot treated fluid leaving the pasteurization chamber.
In another aspect the invention provides an apparatus whereby the pasteurization operating temperature can be maintained once the pasteurization chamber is initially brought to its operating temperature with little or no additional heating required.
In yet another aspect the invention provides an apparatus that can utilize natural gas, propane, electricity, solar power or waste heat from other processes to provide any make-up heat required, for instance an additional 1.1% heat to maintain the required pasteurization temperature.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, wherein:
The invention described herein includes a process and an apparatus to utilize only heat, and to recover and re-use what would conventionally be waste heat in a pasteurization process to pasteurize fluids such as sewage effluent and contaminated waters to a high degree of purity without the use of chemicals, thereby eliminating chemical pollution and carcinogenic by-products.
With reference to
Volume tank 26 has a heat source 32 such as the electric heater seen in
Volume tank 26 is sized to provide a desired retention time of the fluid in the tank in order to achieve pasteurization. One skilled in the art and knowledgeable in the required temperatures and retention times in order to achieve pasteurization of the particular fluid would know that different approaches may be employed to suit different circumstances. However, increasing the desired temperature to achieve pasteurization may also increase the required top-up or make-up heat required to be supplied in the volume tank to achieve that pasteurization. This may then increase the required top-up temperature differential above the desired range of 1-2 degrees Fahrenheit (e.g. to 3 degrees F. or above). This will adversely affect the operating and capital costs of the apparatus and process.
The fluid then flows from the volume tank 26 back through the heat exchanger 16, entering at 22, giving up approximately 98.9% of its enthalpy during the counter-flow to pre-heat the cold liquid stream entering the heat exchanger at 18. The heat source 32 in the volume tank provides the additional 1.1% required top-up heat. It is understood that efficiencies of heat exchangers may vary, thus affecting the amount of additional heat required to be added in the volume tank. However the desired range of temperature differential advantageously remains in the 1-3 degree Fahrenheit range. That is, in the preferred embodiments, the fluid in the volume tank need only be heated a further 1-3 degrees Fahrenheit above the pre-heat temperature provided by the heat exchanger in order to achieve pasteurization in the volume tank.
The liquid then flows through a siphon breaker 34 and then on to an accumulation tank 36 or directly to a sub-surface disposal field or to a receiving body of water or other disposal. Pump 38 may be provided for example to pump the treated fluid onto the disposal field.
As seen in
Normally, the inlet stream to be pasteurized enters tank inlet 28 at the bottom of the tank such as seen in
Automatic air release valve 44 is installed on the volume tank at the highest point of the system. The valve also allows air to be removed from the system during start up. As the tank is flooded with water the air is pushed through the valve. The valve also works as a vacuum break when the tank is emptied to allow the water flow out and air to be pulled into the tank. Lastly, the valve allows any air and non-condensable gases to be blown off during operation. This ensures constant flow and keeps air from getting into the heat exchanger which can cause a decrease in the efficiency of the heat transfer.
As stated above, the heat source for providing top-up or make-up heat to the fluid in the volume tank may come from a variety of sources. For example, make-up heat may be provided by an electrical element as seen in
The heat source may also be provided by a motor generator set as seen in
The heat source may also be solar energy. Solar energy is provided for example by utilizing cylindrical vacuum tubes that will provide energy at atmospheric temperatures as low as −50 degrees F. The cylindrical shaping allows the sun to be perpendicular to the tubes all day. In the illustrated example of
Heat exchangers are commercially available with capacities that range from 5 gallons-per-minute (gpm) (7200 gallons-per-day gpd) to 16,000 gpm (23 million gpd). For volumes larger than 23 million gpd systems according to the present invention are provided in parallel systems. The other system components are sized accordingly.
The above description is intended in an illustrative rather than a restrictive sense, and variations to the specific configurations described may be apparent to skilled persons in adapting the present invention to other specific applications. Such variations are intended to form part of the present invention insofar as they are within the spirit and scope of the claims below.
Patent | Priority | Assignee | Title |
11839839, | Dec 13 2018 | XIA TAI XIN SEMICONDUCTOR (QING DAO) LTD. | Apparatus and system for filtrating liquid |
9664140, | Sep 23 2015 | PASTEURIZATION TECHNOLOGY GROUP INC.; PASTEURIZATION TECHNOLOGY GROUP, INC | Combined heat and power system with electrical and thermal energy storage |
Patent | Priority | Assignee | Title |
5447642, | Dec 12 1994 | Metalworking fluid recycling process with pasteurization by direct steam injection | |
6555055, | Jul 29 1998 | Lynntech, Inc | System for preventing and remediating biofilms in dental equipment |
7402241, | Dec 29 2005 | Aquamagic, Inc. | Water purification device |
7837865, | Dec 02 2004 | PETRA WADSTROM | Container for purifying water by utilization of sunlight |
20090004045, | |||
20100116756, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
May 22 2015 | REM: Maintenance Fee Reminder Mailed. |
Sep 02 2015 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Sep 02 2015 | M2554: Surcharge for late Payment, Small Entity. |
Jun 03 2019 | REM: Maintenance Fee Reminder Mailed. |
Nov 18 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 11 2014 | 4 years fee payment window open |
Apr 11 2015 | 6 months grace period start (w surcharge) |
Oct 11 2015 | patent expiry (for year 4) |
Oct 11 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 11 2018 | 8 years fee payment window open |
Apr 11 2019 | 6 months grace period start (w surcharge) |
Oct 11 2019 | patent expiry (for year 8) |
Oct 11 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 11 2022 | 12 years fee payment window open |
Apr 11 2023 | 6 months grace period start (w surcharge) |
Oct 11 2023 | patent expiry (for year 12) |
Oct 11 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |