An ingestible therapy activator system and method are provided. In one aspect, the ingestible therapy activator includes an ingestible device having an effector module to send an effector instruction and a responder module associated with a therapeutic device. The responder module may receive and process the effector instruction, resulting in a response by the therapeutic device. Examples of responses by therapeutic device include activating a therapy, deactivating a therapy, modulating a therapy, and discontinuing a therapy.

Patent
   8036748
Priority
Nov 13 2008
Filed
Nov 13 2009
Issued
Oct 11 2011
Expiry
Nov 13 2029
Assg.orig
Entity
Small
105
707
all paid
1. A system for providing instructions to a therapeutic device, the system comprising:
an ingestible unit comprising:
a housing; and
an effector module secured within the housing for providing an effector instruction,
wherein the housing dissolves upon contact with the surrounding fluid of a desired target site to release the effector module and the effector module comprises a support structure including two dissimilar materials deposited thereon wherein the dissimilar materials represent a voltage potential difference and provide power for the ingestible unit upon contact with the fluid;
a responder module in communication with the therapeutic device for receiving and processing the effector instruction, wherein the effector instruction alters at least an operation of the therapeutic device; and
a hermetically sealed conductance control module electrically coupled to each of the dissimilar materials for controlling the conductance between the dissimilar materials to generate a unique current signature that presents the effector instruction, wherein the current signature is produced through controlled ionic emission.
2. The system of claim 1, wherein the ingestible unit further comprises an oral medication.
3. The system of claim 1, wherein the ingestible unit further comprises a second effector module secured within the housing to provide a second effector instruction.
4. The system of claim 1, wherein the effector instruction further comprises data.
5. The system of claim 1, wherein the responder module further comprises a transmitter to transmit at least one of data and signals.
6. The system of claim 1, further comprising the therapeutic device.
7. The system of claim 6, wherein the therapeutic device is a cardiac device.
8. The system of claim 7, wherein the cardiac device is a lead device.
9. The system of claim 6, wherein the therapeutic device is a selected from a group consisting essentially of an electrode device, a migraine device, a urinary device, and a gastrointestinal device.
10. The system of claim 1, wherein the responder module comprises at least one of a hardware component and a software component.

This application claims the benefit of U.S. Provisional Application Ser. No. 61/114,442 filed on Nov. 13, 2008, the entire disclosure of which is incorporated herein by reference.

The present invention relates generally to medical therapy systems, devices, and methods. More specifically, the invention relates to systems, devices, and methods for activation and/or modulation of various medical therapies using an ingestible electronic device.

Multiple therapies exist for various health-related conditions, events, and defects. Such therapies may be implemented as implanted devices, e.g., cardiac rhythm management devices, neural stimulation/neuromodulation devices, intrathecal drug delivery pumps, and functional neuromodulation prostheses such as cochlear implants, retinal implants, and artificial joints, limbs and organs. Once implanted, however, such devices may not provide the functionality to facilitate controlled activation or modification.

In one example, a neural stimulation device may deliver pain-control therapies to the spinal column, yet the neural stimulation device may not be activated on demand. Stated differently, the neural stimulation device is always activated after implantation. As a result, the patient may be subjected to neural stimulation, as well as its associated unwanted side effects, at times when such therapy is not needed.

In another example, a neural modulation device such as a spinal cord stimulator may provide therapeutic benefit for pain, yet the rate of stimulation may not be adjustable to align stimulation to the patient's lifestyle, e.g., a higher intensity during high activity periods and a lower intensity during low activity periods. As a result, the patient may need to restrict activities which do not conform to the stimulation intensity to receive optimal therapy results or suffer diminished therapy results when engaged in non-conforming activities.

Therefore, it would be desirable to have systems, devices, and methods for controlling therapies, for optimizing therapy results, and for enhancing patient treatment without having limitations placed on the patient.

The present disclosure includes a system for providing instructions to a therapeutic device. The therapeutic device can be any type of device, such as a cardiac therapeutic device, a neural stimulation device, an intrathecal drug delivery pump, a gastrointestinal device; and a neural stimulation prosthesis. The system includes an ingestible unit and a responder module. The ingestible unit includes an output or effector module that provides an effector instruction to the responder module. The responder module receives and processes the effector instruction and communicates the effector instruction to the therapeutic device to alter the operation of the therapeutic device.

FIG. 1 illustrates an ingestible activator environment including an ingestible therapy activator.

FIG. 2 illustrates the ingestible therapy activator of FIG. 1 in greater detail.

FIG. 3 illustrates an ingestible device of the therapy activator of FIG. 2 in greater detail.

FIG. 4 illustrates an effector module of the ingestible device of FIG. 3 in greater detail.

FIG. 5 illustrates an effector instruction of the ingestible therapy activator of FIG. 2 in greater detail.

FIG. 6 illustrates a responder module of the ingestible therapy activator of FIG. 2 in greater detail.

FIG. 7 illustrates a therapeutic device of the ingestible activator environment of FIG. 1.

FIG. 8 illustrates ingestion and activation of a therapeutic device via an ingestible therapy activator.

FIG. 9 is a block diagram representation of an event indicator system with dissimilar metals positioned on the same end and separated by a non-conducting material.

Generally, the invention may provide for controlled activation and/or modulation of an implanted medical device or related therapy. More particularly, the invention includes use of an ingestible device to effect activation and/or modulation of devices/therapies related to implantable medical devices. Typically, the patient controls ingestion of the ingestible device. Ingestion of the ingestible device results in activation and/or modulation of the patient's medical device and/or therapy. Alternatively, ingestion of the ingestible device may inactivate or discontinue a device/therapy. Thus, as a novel and beneficial result of the invention, the patient and/or other party may control at will various outcomes associated with various implanted medical devices and related therapies based on the provision of ingestible devices and a healthcare provider or other party may control a supply, e.g., by prescription, of the ingestible devices.

Use of an ingestible device to activate and/or modulate therapy may have broad potential application for any implanted device or therapy, to include cardiac rhythm management; neural stimulation and/or neuromodulation (sometimes collectively referred to herein as “neural stimulation”); intrathecal drug delivery pumps and therapies; and functional neuromodulation prostheses such as cochlear implants, retinal implants, and artificial joints, limbs and organs.

Activation of therapy includes, for example, activation of a device to induce and event or condition. For example, activation of a gastric banding device having neural stimulation electrodes may induce increased satiety and/or induce an improvement in the rate of stomach motility. Further, the ingestible device may activate the band portion of the gastric banding device, e.g., constricting the band. If the ingestible device is taken prior to ingestion of a meal, the patient may control appetite, satiety, caloric intake, and ultimately influence weight management results, etc.

Certain aspects may be directed to in-body therapies and may include, for example, implantable medical devices. The term “implantable medical device”, as used herein, refers to a device configured to be positioned at least partially on a living body, at least partially in a living body, or a combination thereof.

For example, the implantable medical device may include a lead having various electrode configurations communicably associated with controller circuitry, a power source, etc. More particularly and illustratively, the implantable medical device may comprise one or more leads with multiple in-line segmented electrode satellites, wherein each electrode is independently controllable and power/data wire(s) for multiplexing the multiple segmented electrode satellites. Various configurations of devices which may be used in conjunction with this invention may be described/disclosed in the PCT application no. PCT/US2003/039524 published as WO 2004/052182; PCT application No. PCT/US2005/031559 published as WO 2006/029090; PCT application No. PCT/US2005/046811 published as WO 2006/069322; PCT application No. PCT/US2005/046815 published as WO 2006/069323; PCT application No. PCT US2006/048944 published as WO 2007/075974; U.S. application Ser. No. 11/939,524 published as US 2008-0114230 A1.

Various configurations of devices which may be used in conjunction with this invention may be described/disclosed in PCT application Ser. Nos. PCT/US2008/052845 published as WO/2008/095183 and PCT/US2006/016370 published as WO/2006/116718. Each of the aforementioned applications is herein incorporated by reference in its entirety. The aforementioned configurations are for illustrative purposes only and that various other components and configurations are possible.

FIG. 1 illustrates an ingestible therapy activator environment 100 including an ingestible therapy activator 102. In various aspects, the ingestible therapy activator environment may be a living being, such as a mammalian being, including a human being. In various aspects, the ingestible therapy activator 102 may communicably interoperate with one or more therapeutic devices 108, e.g., in-body devices such as implanted devices or other devices. The communicable interaction may result in activation and/or modulation of the therapeutic device, 108, e.g., immediate activation of the therapeutic device 108, delayed activation of the therapeutic device 108, immediate modulation of the therapeutic device 108, delayed modulation of an activity associated with the therapeutic device 108, etc. In this manner, a patient may control a therapeutic outcome via ingestion of the ingestible therapy activator 102.

FIG. 2 illustrates the ingestible therapy activator 102 of FIG. 1 in greater detail. In various aspects, the ingestible therapy activator 102 includes an ingestible device 200 having an effector module 202, an effector instruction 204, and, optionally, a responder module 206. Upon ingestion of the ingestible device 200, the effector module 202 may send, e.g., transmit, the effector instruction 204. The effector instruction 204 may be received, e.g., via the responder module 206, and may cause activation and/or modulation of a therapeutic device 108 and/or a therapy associated with the therapeutic device 108. Further, multiple ingestible devices 200 may be ingested simultaneously or in close temporal proximity, and each of the multiple ingested ingestible devices 200 may interact with one or more therapeutic devices 108.

The ingestible device 200 includes any device, component, hardware, and/or software, and combinations thereof, capable of ingestion by a living being and further capable of mechanical, electronic, and/or in communicable interoperation with the effector module 202, described hereinafter.

To illustrate, the ingestible device 200 may include, comprise, be integrated into, etc., a placebo structure. The placebo structure may comprise, for example, a capsule, a pill, etc. To further illustrate, the ingestible device 200 may include, comprise, be integrated into, etc. an ingestible medication. The ingestible medication may comprise, for example, a capsule, a pill, liquid, etc., and may be prescribed, over-the-counter, etc.

Various ingestible devices 200 may comprise, include, be integrated with, etc., devices such as those described in the PCT/US2008/052845 published as WO/2008/095183 and PCT/US2006/016370 published as WO/2006/116718, the entire disclosure of which is incorporated herein by reference. Additionally, all references cited herein are hereby incorporated by reference in their entirety.

A pharma-informatics system described in PCT/US2006/016370, filed Apr. 28, 2006, which includes compositions, includes systems and methods that allow for the detection of the actual physical delivery of a pharmaceutical agent to a body.

An Ionic Emission Module or Ingestible Event Marker (IEM) system described in PCT/US2008/52845, filed Feb. 1, 2008, and U.S. patent application Ser. No. 12/564,017, filed Sep. 21, 2009 (both of which are incorporated herein by reference) include an IEM and a personal signal receiver. Aspects of the IEM include an identifier, which may or may not be present in a physiologically acceptable carrier. The identifier is characterized by being activated upon contact with a target internal physiological site of a body, such as digestive tract internal target site. The personal signal receiver is configured to be associated with a physiological location, e.g., inside of or on the body, and to receive a signal of the IEM. During use, the IEM broadcasts a signal which is received by the personal signal receiver.

The IEM also includes two dissimilar materials deposited on two sides of the IEM to form electrochemical potentials and act as the cathode and the anode to form a power source. The dissimilar materials may be separated by a non-conducting material or skirt that amplifies the signal through increasing the current path. More specifically, the dissimilar materials can be made of any two materials appropriate for the environment in which the IEM will be operating. For example, when used with the ingestible device the dissimilar materials may be any pair of materials with different electrochemical potentials that are ingestible. An illustrative example includes the instance when the IEM is in contact with an ionic solution such as stomach acids, as shown in FIG. 8 below. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCl or CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable. Additionally, a control module (not shown) is electrically coupled to each of the two dissimilar materials in order to receive power and become activated as well control the conductance and hence the current path between the two dissimilar material. The control module alters conductance between the dissimilar materials in a unique manner. By altering the conductance path between the dissimilar materials, the control module is capable of controlling the magnitude of the current through the conducting fluid/liquid that surrounds the IEM or ingestible device 200. This produces a unique current signature that carries or encodes the effector instruction and can be detected and measured by a receiver, such as the responder module 206, which can be positioned internal or external to the body.

A controlled activation ingestible identifier described in PCT/US07/82563, filed Oct. 17, 2007, includes ingestible compositions such as pharma-informatics enabled compositions. The controlled activation ingestible identifiers include a controlled activation element that provides for activation of the identifier in response to the presence of a predetermined stimulus at a target site of interest.

FIG. 3 illustrates the ingestible device 200 of the therapy activator of FIG. 2 in greater detail. More particularly, the ingestible device 200 may be associated with various vehicles 300, e.g., placebo, medication, capsules, etc., as heretofore discussed. In various aspects, multiple ingestible devices 200 may be associated with a single vehicle 300, e.g., two ingestible devices 200 may be included in a single capsule; three or more ingestible devices 200 may be affixed on/manufactured within a pill, etc. In addition to the effector module 202, the ingestible device may comprise, be wholly or partially integrated with, integral to, etc., various other components 302. Examples of various other components 302 include modules for detection of physiological parameters of the subject. The effector module 202 comprises any device, component, hardware, and/or software, and combinations thereof, capable of receiving, processing, storing, generating, and/or communicating the effector instruction 204 of FIG. 2. In various aspects, for example, the effector module 202 may comprise an integrated circuit (IC), microcircuit, microchip, silicon chip, miniaturized electronic circuit, etc., having the processing capability to receive, generate, store, etc., and a means to forward, e.g., via a transmitter, etc., the effector instruction 204.

FIG. 4 illustrates the effector module 202 of the ingestible device of FIG. 3 in greater detail. The effector module 202 may comprise a microchip 400, a power source 402, and a transmitter 404. The microchip 400 may be included and/or be associated with various components, e.g., software, storage devices, memory, processing instructions, etc., necessary to receive, generate, perform signal processing, and/or store the effector instruction 204.

The power source 402 may be variously configured, e.g., wet battery, etc. In one aspect, the power source 402 may be an incomplete power source, which may be activated upon contact with a targeted physiological site. Thus, the power source 402 gets activated, thereby powering the microchip 400. Stated differently, the power source 402 may exploit electrochemical reaction in an ionic solution such as gastric fluid, blood, or other bodily fluids and some tissues.

Depending on the configuration of the ingestible device 200, the target physiological site or location may vary, where representative target physiological sites of interest include, but are not limited to: a location in the gastrointestinal tract, such as the mouth, esophagus, stomach, small intestine, large intestine, etc. In certain aspects, the identifier is configured to be activated upon contact with fluid at the target site, e.g., stomach fluid, regardless of the particular composition of the target site. In some aspects, the identifier is configured to be activated by interrogation, following contact of the composition with a target physiological site. In some aspects, the identifier is configured to be activated at a target site, wherein the target site is reached after a specified period of time.

The microchip 400, in turn, forwards a signal incorporating the effector instruction 204 via the transmitter 404 to a destination, e.g., directly to the therapeutic device 108, to the therapeutic device 108 via the responder module 206, etc.

In various aspects, various modes of communication, channels of communication, and combinations thereof may be used. In one example, the effector instruction 204 may be communicated via a radio-frequency (RF) signal. In another example, the effector instruction 204 may be communicated via conduction, e.g., using in-body electrical signals as a communication vehicle. In still another example, the effector instruction 204 may be communicated via conduction to a receiver affixed externally to the patient, e.g., the responder module, which in turn, communicates the effector instruction to one or more therapeutic devices 108, e.g., implanted therapeutic devices via various modes of communication. Thus, as can be seen, various combinations of intra-body and extra-body channels and various modes of communication may be used.

The effector instruction 204 comprises any means capable of carrying the functionality as heretofore described, e.g., instigating an activation and/or modulation resulting in activation/modulation of a therapeutic device and/or therapy associated with the therapeutic device.

FIG. 5 illustrates an effector instruction of the ingestible therapy activator of FIG. 2 in greater detail. In various aspects, the effector instruction 204 comprises any one or a combination of software instruction(s) 500, a signal 502, data 504, etc. Further, any or all of the foregoing may be variously embodied and may be communicated via various modes and channels, as heretofore discussed.

FIG. 6 illustrates the responder module 206, which comprises any device, component, hardware, and/or software, and combinations thereof, capable of receiving, processing, storing, generating, and/or communicating the effector instruction 204. In various aspects the responder module 206 may be directly associated with a therapeutic device 108, e.g., in mechanical communication with the therapeutic device 108. Examples of such a responder module 204 include an instruction receipt and/or processing unit physically configured as a component of a cardiac device, a gastro-intestinal device, a lead device, an electrode device, etc.

In various aspects, the responder module 206 may be indirectly associated with the therapeutic device 108, e.g., may be in electrical communication with the therapeutic device 108 but not in mechanical communication therewith. Examples of such a responder module 204 include an instruction receipt and/or processing unit physically configured with/as a receiver, e.g., a wearable receiver such as a patch receiver, discussed in PCT/US2008/52845, supra.

FIG. 6 illustrates a responder module of the ingestible therapy activator of FIG. 2 in greater detail. In various aspects, the responder module 206 may comprise a receiver 600 to receive the effector instruction 204, a microchip 400 to process and/or store, etc., the effector instruction 204, and, optionally, a transmitter 404 to forward the effector instruction onward.

The receiver 600, for example, may be dedicated, i.e., receive only the effector instruction or may be universal, i.e., may receive signals, data, etc., in addition to the effector instruction. In the case of the universal receiver, such reception of multiple types of communications may provide for comprehensive device functionality, e.g., a cardiac pacing device which receives a pacing signal and the effector instruction.

Referring now to FIG. 4, the microchip 400, for example, may perform various processing activities with respect to the effector instruction. One example includes aggregating multiple effector instructions from one or more ingestible devices. Another example includes aggregating data from other sources, e.g., other devices, with the effector instruction. Another example includes modifying the effector instruction based on other data. To illustrate, the responder module 206 may receive and store data related to cardiac pacing from a cardiac device. For example, an effector instruction to slow the rate of the cardiac pacing from 70 beats per minute to 60 beats per minute. When the effector instruction is received, the microchip may analyze the data and, based on the result of the analysis, modify the effector instruction to slow the rate to 65 beats per minute. (After analysis of the data, this rate may be found preferable to the 65 beats per minute, as initially contemplated.) In this manner, the responder module 206 and the effector module 202 may co-operatively affect optimal therapies.

The transmitter 404, for example, may transmit the effector instruction(s) 204, data, or a combination thereof, to a destination device, e.g., the therapeutic device 108. The communication modes and channels may be of various types and combinations thereof, as heretofore discussed.

The therapeutic device 108 may be any device capable of providing or facilitating at least one medical therapy to a living being. Particularly, the therapeutic device 108 includes implantable devices.

FIG. 7 illustrates a therapeutic device of the ingestible activator environment of FIG. 1. The therapeutic device includes for example, cardiac devices, lead devices, electrode devices, migraine devices, urinary devices, gastrointestinal devices, etc.

The therapeutic devices may be activated and/or modulated in various ways, e.g., mechanical actuation, electrical activation, combinations thereof, etc. In one example of mechanical actuation, the effector instruction received by a gastro-intestinal device such as a gastric banding device (GBD) causes the GBD to signal controller circuitry associated with a clamping device of the GBD. The controller circuitry, in turn, generates the controls necessary to inflate the clamping device, thus constricting the esophagus which results in greater satiety, reduced ability to ingest food, improved gastric motility, etc.

In one example of an electrical activation, the effector instruction received by an electrode device such as a neural stimulation device (NSD) causes the NSD to signal controller circuitry associated therewith. The controller circuitry, in turn, generates the instructions necessary to provide electrical stimulation via the electrodes, thus masking pain, stimulating a cardiac contraction, etc.

FIG. 8 illustrates ingestion and activation of a therapeutic device via an ingestible therapy activator. As illustrated, ingestion of an ingestible therapy activator 200 by a human 800 results in activation of the ingestible therapy activator 200 by stomach fluids. Once activated, the ingestible therapy activator 200 transmits the effector instruction 204 to controller circuitry 808 associated with a cardiac pacing device 804. Upon receipt and processing of the effector instruction 204 by the controller circuitry 808, instructions are sent to the cardiac pacing device 804 that result in a change in the rate of pacing of the heart via the cardiac pacing device 804. In this manner, the patient can control, and ultimately optimize, certain features, aspects, and parameters of the patient's cardiac therapy.

Referring now to FIG. 9, event indicator system 40 includes a framework 42. The framework 42 is similar to the framework 32 of FIG. 3. In this embodiment of the system 40, a digestible or dissolvable material 44 is deposited on a portion of one side of the framework 42. At a different portion of the same side of the framework 42, another digestible material 46 is deposited, such that materials 44 and 46 are dissimilar. More specifically, material 44 and 46 are selected such that they form a voltage potential difference when in contact with a conducting liquid, such as body fluids. Thus, when the system 40 is in contact with and/or partially in contact with the conducting liquid, then a current path, is formed through the conducting liquid between material 44 and 46. A control device 48 is secured to the framework 42 and electrically coupled to the materials 44 and 46. The control device 48 includes electronic circuitry that is capable of controlling part of the conductance path between the materials 44 and 46. The materials 44 and 46 are separated by a non-conducting skirt 49. Various examples of the skirt 49 are disclosed in U.S. Provisional Application No. 61/173,511 filed on Apr. 28, 2009 and entitled “HIGHLY RELIABLE INGESTIBLE EVENT MARKERS AND METHODS OF USING SAME” and U.S. Provisional Application No. 61/173,564 filed on Apr. 28, 2009 and entitled “INGESTIBLE EVENT MARKERS HAVING SIGNAL AMPLIFIERS THAT COMPRISE AN ACTIVE AGENT”; as well as U.S. application Ser. No. 12/238,345 filed Sep. 25, 2008 and entitled “IN-BODY DEVICE WITH VIRTUAL DIPOLE SIGNAL AMPLIFICATION”; the entire disclosure of each is incorporated herein by reference.

Continuing with further illustrations of the foregoing, effectuation of a neural stimulation device directed to migraine management, e.g., electrical stimulation of neural regions associated with migraine pain, may result in pain avoidance or abatement. If the ingestible device is taken at the onset of migraine aura, i.e., a sensory disturbance that often precedes a migraine headache, the patient may completely avoid the migraine headache and the severe pain associated therewith.

Effectuation of a urinary therapeutic device having electrodes to stimulate avoidance activity, which may assist in regulation of incontinence urges and issues.

Effectuation of an electrode device associated with penile erection may result in successful treatment of various impotence-related disorders, including erectile dysfunction.

Effectuation of various cardiac devices to activate/modulate cardiac therapies may result in any one or more of improved cardiac therapy, optimized cardiac therapy, diminished habituation, eliminated habituation, and avoidance of habituation.

Effectuation of an NSD associated with spinal cord stimulation prior to various physical activities may result in any one or more of improved pain-control therapy, optimized pain-control therapy, diminished habituation, eliminated habituation, and avoidance of habituation.

As a skilled artisan will note, various aspects facilitate at least some measure of control by the patient of the therapy.

The foregoing illustrate a few simple examples of the beneficial results associated the invention. The applications of the invention, as well as the resultant beneficial results, are too numerous to exhaustively list herein.

Various aspects include steps for ingesting an ingestible device having an effector module; sending an effector instruction via the effector module; and receiving and processing, via a responder module associated with a therapeutic device, the effector instruction, resulting in a response by the therapeutic device.

Various aspects include an ingestible therapy activator comprising an ingestible device having an effector module and an effector instruction.

Various aspects include a kit comprising an ingestible therapy activator and a therapeutic device. Further, kits may also include a responder module associated with at least one of the ingestible therapy activator and the therapeutic device.

One or more aspects of the subject invention may be in the form of computer readable media having programming stored thereon for implementing the various methods, or various steps thereof. The computer readable media may be, for example, in the form of a computer disk or CD, a floppy disc, a magnetic “hard card”, a server, or any other computer readable media capable of containing data or the like, stored electronically, magnetically, optically or by other means. Accordingly, stored programming embodying steps for carrying-out the subject methods may be transferred or communicated to a processor, e.g., by using a computer network, server, or other interface connection, e.g., the Internet, or other relay means.

It is to be understood that this invention is not limited to particular aspects described, and, as such, may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.

Certain ranges are presented herein with numerical values being preceded by the term “about.” The term “about” is used herein to provide literal support for the exact number that it precedes, as well as a number that is near to or approximately the number that the term precedes. In determining whether a number is near to or approximately a specifically recited number, the near or approximating unrecited number may be a number which, in the context in which it is presented, provides the substantial equivalent of the specifically recited number.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.

All publications and patents cited in this specification are herein incorporated by reference in their entirety as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.

It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.

As will be apparent to those of skill in the art upon reading this disclosure, each of the individual aspects described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and aspects of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary aspects shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Jensen, Marc, Colliou, Olivier, Zdeblick, Mark, Strand, Angela

Patent Priority Assignee Title
10004895, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Deep brain stimulation lead
10065031, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Deep brain stimulation lead
10084880, Nov 04 2013 OTSUKA PHARMACEUTICAL CO , LTD Social media networking based on physiologic information
10097388, Sep 20 2013 OTSUKA PHARMACEUTICAL CO , LTD Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
10166392, Jul 30 2008 Ecole Polytechnique Federale de Lausanne Apparatus and method for optimized stimulation of a neurological target
10175376, Mar 15 2013 OTSUKA PHARMACEUTICAL CO , LTD Metal detector apparatus, system, and method
10187121, Jul 22 2016 OTSUKA PHARMACEUTICAL CO , LTD Electromagnetic sensing and detection of ingestible event markers
10201707, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Treatment of autoimmune diseases with deep brain stimulation
10207093, Apr 07 2010 OTSUKA PHARMACEUTICAL CO , LTD Miniature ingestible device
10223905, Jul 21 2011 OTSUKA PHARMACEUTICAL CO , LTD Mobile device and system for detection and communication of information received from an ingestible device
10238604, Oct 25 2006 OTSUKA PHARMACEUTICAL CO , LTD Controlled activation ingestible identifier
10251553, May 21 2012 International Business Machines Corporation Dispensing drugs from a companion diagnostic linked smart pill
10264972, May 21 2012 International Business Machines Corporation Dispensing drugs from a companion diagnostic linked smart pill
10305544, Nov 04 2009 OTSUKA PHARMACEUTICAL CO , LTD System for supply chain management
10376218, Feb 01 2010 OTSUKA PHARMACEUTICAL CO , LTD Data gathering system
10398161, Jan 21 2014 OTSUKA PHARMACEUTICAL CO , LTD Masticable ingestible product and communication system therefor
10406350, Nov 12 2008 Ecole Polytechnique Federale de Lausanne Microfabricated neurostimulation device
10421658, Aug 30 2013 OTSUKA PHARMACEUTICAL CO , LTD Container with electronically controlled interlock
10441194, Dec 29 2006 OTSUKA PHARMACEUTICAL CO , LTD Ingestible event marker systems
10441779, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Deep brain stimulation lead
10498572, Sep 20 2013 OTSUKA PHARMACEUTICAL CO , LTD Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
10517506, May 24 2007 OTSUKA PHARMACEUTICAL CO , LTD Low profile antenna for in body device
10517507, Jul 11 2011 OTSUKA PHARMACEUTICAL CO , LTD Communication system with enhanced partial power source and method of manufacturing same
10529044, May 19 2010 OTSUKA PHARMACEUTICAL CO , LTD Tracking and delivery confirmation of pharmaceutical products
10542909, Apr 28 2005 OTSUKA PHARMACEUTICAL CO , LTD Communication system with partial power source
10588544, Apr 28 2009 OTSUKA PHARMACEUTICAL CO , LTD Highly reliable ingestible event markers and methods for using the same
10610128, Apr 28 2005 OTSUKA PHARMACEUTICAL CO , LTD Pharma-informatics system
10682071, Mar 15 2013 OTSUKA PHARMACEUTICAL CO , LTD State characterization based on multi-variate data fusion techniques
10797758, Jul 22 2016 OTSUKA PHARMACEUTICAL CO , LTD Electromagnetic sensing and detection of ingestible event markers
10952627, Jul 30 2008 Ecole Polytechnique Federale de Lausanne Apparatus and method for optimized stimulation of a neurological target
10966620, May 16 2014 ALEVA NEUROTHERAPEUTICS Device for interacting with neurological tissue and methods of making and using the same
11051543, Jul 21 2015 OTSUKA PHARMACEUTICAL CO , LTD Alginate on adhesive bilayer laminate film
11102038, Sep 20 2013 OTSUKA PHARMACEUTICAL CO , LTD Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
11123548, Nov 12 2008 Ecole Polytechnique Federale de Lausanne Microfabricated neurostimulation device
11149123, Jan 29 2013 OTSUKA PHARMACEUTICAL CO , LTD Highly-swellable polymeric films and compositions comprising the same
11158149, Mar 15 2013 OTSUKA PHARMACEUTICAL CO , LTD Personal authentication apparatus system and method
11167126, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Deep brain stimulation lead
11173290, Apr 07 2010 OTSUKA PHARMACEUTICAL CO , LTD Miniature ingestible device
11217342, Jul 08 2008 OTSUKA PHARMACEUTICAL CO , LTD Ingestible event marker data framework
11229378, Jul 11 2011 OTSUKA PHARMACEUTICAL CO , LTD Communication system with enhanced partial power source and method of manufacturing same
11266830, Mar 02 2018 ALEVA NEUROTHERAPEUTICS Neurostimulation device
11311718, May 16 2014 Aleva Neurotherapeutics SA Device for interacting with neurological tissue and methods of making and using the same
11357730, Oct 25 2006 OTSUKA PHARMACEUTICAL CO , LTD Controlled activation ingestible identifier
11476952, Apr 28 2005 OTSUKA PHARMACEUTICAL CO , LTD Pharma-informatics system
11478401, Sep 21 2016 VIBRANT LTD Methods and systems for adaptive treatment of disorders in the gastrointestinal tract
11504024, Aug 30 2021 VIBRANT LTD Gastrointestinal treatment system including a vibrating capsule, and method of use thereof
11504511, Nov 22 2010 OTSUKA PHARMACEUTICAL CO , LTD Ingestible device with pharmaceutical product
11510590, May 07 2018 Vibrant Ltd. Methods and systems for treating gastrointestinal disorders
11529071, Oct 26 2016 OTSUKA PHARMACEUTICAL CO , LTD Methods for manufacturing capsules with ingestible event markers
11638678, Apr 09 2018 Vibrant Ltd.; VIBRANT LTD Vibrating capsule system and treatment method
11730953, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Deep brain stimulation lead
11737896, Jul 31 2012 Purdue Research Foundation Wirelessly-powered implantable EMG recording system
11738192, Mar 02 2018 ALEVA NEUROTHERAPEUTICS Neurostimulation device
11741771, Mar 15 2013 Otsuka Pharmaceutical Co., Ltd. Personal authentication apparatus system and method
11744481, Jun 04 2013 OTSUKA PHARMACEUTICAL CO , LTD System, apparatus and methods for data collection and assessing outcomes
11766560, Apr 01 2010 Ecole Polytechnique Federale de Lausanne Device for interacting with neurological tissue and methods of making and using the same
11793419, Oct 26 2016 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
11928614, May 02 2006 OTSUKA PHARMACEUTICAL CO , LTD Patient customized therapeutic regimens
11950615, Jan 21 2014 Otsuka Pharmaceutical Co., Ltd. Masticable ingestible product and communication system therefor
12083303, Jan 21 2019 VIBRANT LTD Device and method for delivering a flowable ingestible medicament into the gastrointestinal tract of a user
12090112, Sep 21 2016 Vibrant Ltd. Methods and systems for adaptive treatment of disorders in the gastrointestinal tract
12115330, Jan 03 2019 VIBRANT LTD Device and method for delivering an ingestible medicament into the gastrointestinal tract of a user
8761717, Aug 07 2012 Safety feature to disable an electronic device when a wireless implantable medical device (IMD) is proximate
8954030, Aug 07 2012 Safety feature to disable an electronic device when a wireless implantable medical device (IMD) is proximate
9060708, Mar 05 2008 OTSUKA PHARMACEUTICAL CO , LTD Multi-mode communication ingestible event markers and systems, and methods of using the same
9072906, Jul 30 2008 Ecole Polytechnique Federale de Lausanne Apparatus and method for optimized stimulation of a neurological target
9107806, Nov 22 2010 OTSUKA PHARMACEUTICAL CO , LTD Ingestible device with pharmaceutical product
9119554, Apr 28 2005 OTSUKA PHARMACEUTICAL CO , LTD Pharma-informatics system
9119918, Mar 25 2009 OTSUKA PHARMACEUTICAL CO , LTD Probablistic pharmacokinetic and pharmacodynamic modeling
9161707, Jul 11 2011 OTSUKA PHARMACEUTICAL CO , LTD Communication system incorporated in an ingestible product
9192767, Dec 01 2009 Ecole Polytechnique Federale de Lausanne Microfabricated surface neurostimulation device and methods of making and using the same
9198608, Nov 23 2011 OTSUKA PHARMACEUTICAL CO , LTD Communication system incorporated in a container
9258035, Mar 05 2008 OTSUKA PHARMACEUTICAL CO , LTD Multi-mode communication ingestible event markers and systems, and methods of using the same
9268909, Oct 18 2012 OTSUKA PHARMACEUTICAL CO , LTD Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
9270025, Mar 09 2007 OTSUKA PHARMACEUTICAL CO , LTD In-body device having deployable antenna
9270503, Sep 20 2013 OTSUKA PHARMACEUTICAL CO , LTD Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
9271897, Jul 23 2012 OTSUKA PHARMACEUTICAL CO , LTD Techniques for manufacturing ingestible event markers comprising an ingestible component
9320455, Apr 28 2009 OTSUKA PHARMACEUTICAL CO , LTD Highly reliable ingestible event markers and methods for using the same
9403011, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Leadless neurostimulator
9415010, Aug 13 2008 OTSUKA PHARMACEUTICAL CO , LTD Ingestible circuitry
9433371, Sep 25 2007 OTSUKA PHARMACEUTICAL CO , LTD In-body device with virtual dipole signal amplification
9439566, Mar 15 2013 OTSUKA PHARMACEUTICAL CO , LTD Re-wearable wireless device
9439582, Jul 11 2011 OTSUKA PHARMACEUTICAL CO , LTD Communication system with remote activation
9439599, Mar 11 2011 OTSUKA PHARMACEUTICAL CO , LTD Wearable personal body associated device with various physical configurations
9440082, Nov 12 2008 Ecole Polytechnique Federale de Lausanne Microfabricated neurostimulation device
9444503, Nov 20 2006 OTSUKA PHARMACEUTICAL CO , LTD Active signal processing personal health signal receivers
9474894, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Deep brain stimulation lead
9549708, Apr 01 2010 Ecole Polytechnique Federale de Lausanne Device for interacting with neurological tissue and methods of making and using the same
9572985, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Method of manufacturing a thin film leadless neurostimulator
9577864, Sep 24 2013 OTSUKA PHARMACEUTICAL CO , LTD Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
9597010, Jul 11 2011 OTSUKA PHARMACEUTICAL CO , LTD Communication system using an implantable device
9597487, Apr 07 2010 OTSUKA PHARMACEUTICAL CO , LTD Miniature ingestible device
9603550, Mar 15 2013 OTSUKA PHARMACEUTICAL CO , LTD State characterization based on multi-variate data fusion techniques
9604055, Dec 01 2009 Ecole Polytechnique Federale de Lausanne Microfabricated surface neurostimulation device and methods of making and using the same
9649066, Sep 21 2009 OTSUKA PHARMACEUTICAL CO , LTD Communication system with partial power source
9659423, Mar 15 2013 OTSUKA PHARMACEUTICAL CO , LTD Personal authentication apparatus system and method
9681842, Apr 28 2005 OTSUKA PHARMACEUTICAL CO , LTD Pharma-informatics system
9756874, Jan 21 2014 OTSUKA PHARMACEUTICAL CO , LTD Masticable ingestible product and communication system therefor
9787511, Sep 20 2013 OTSUKA PHARMACEUTICAL CO , LTD Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
9796576, Aug 30 2013 OTSUKA PHARMACEUTICAL CO , LTD Container with electronically controlled interlock
9883819, Jan 06 2009 OTSUKA PHARMACEUTICAL CO , LTD Ingestion-related biofeedback and personalized medical therapy method and system
9889304, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Leadless neurostimulator
9925376, Aug 27 2014 ALEVA NEUROTHERAPEUTICS Treatment of autoimmune diseases with deep brain stimulation
9941931, Nov 04 2009 OTSUKA PHARMACEUTICAL CO , LTD System for supply chain management
9962107, Jul 11 2011 OTSUKA PHARMACEUTICAL CO , LTD Communication system with enhanced partial power source and method of manufacturing same
Patent Priority Assignee Title
3607788,
3642008,
3679480,
3719183,
3828766,
3989050, Sep 29 1970 Process for utilizing certain gel compositions for electrical stimulation
4077397, Oct 07 1974 Baxter Travenol Laboratories, Inc. Diagnostic electrode assembly
4077398, Oct 07 1974 Baxter Travenol Laboratories, Inc. Diagnostic electrode assembly
4082087, Feb 07 1977 NEUROMEDICS, INC , A CORP OF TX Body contact electrode structure for deriving electrical signals due to physiological activity
4090752, Oct 07 1974 Baxter Travenol Laboratories, Inc. Diagnostic electrode assembly
4106348, Feb 20 1974 U.S. Philips Corporation Device for examination by means of ultrasonic vibrations
4129125, Dec 27 1976 FERTILACHRON CORPORATION Patient monitoring system
4166453, Jan 21 1977 Cardio Technology Limited Body electrodes
4239046, Sep 21 1978 LECTEC CORPORATION, A CORP OF MN Medical electrode
4269189, Jul 09 1979 Consolidated Medical Equipment Inc. Skin conducting electrode assembly
4331654, Jun 13 1980 ELI LILLY AND COMPANY, A CORP OF INDIANA Magnetically-localizable, biodegradable lipid microspheres
4345588, Aug 01 1977 Northwestern University Method of delivering a therapeutic agent to a target capillary bed
4418697, Aug 17 1981 Electrode attachment method
4425117, Jul 14 1979 HUGEMANN, BERHHARD; SCHUSTER, OTTO Device for the release of substances at defined locations in the alimentary tract
4494950, Jan 19 1982 The Johns Hopkins University Plural module medication delivery system
4559950, Nov 25 1983 Graphic Controls Corporation Disposable biomedical and diagnostic electrode
4635641, Oct 16 1985 Murray Electronics Associates Limited Multi-element electrode
4654165, Apr 16 1985 Micro Tracers, Inc. Microingredient containing tracer
4669479, Aug 21 1985 TECHNOLOGY 21, INC , Dry electrode system for detection of biopotentials
4725997, Aug 22 1986 Aprex Corporation Contingent dosing device
4763659, Aug 21 1985 TECHNOLOGY 21, INC , Dry electrode system for detection of biopotentials
4784162, Sep 23 1986 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
4793825, Sep 11 1984 The Secretary of State for Defence in Her Britannic Majesty's Government Active silicon implant devices
4844076, Aug 26 1988 The Johns Hopkins University Ingestible size continuously transmitting temperature monitoring pill
4896261, Nov 24 1986 Motorola Inc. System for scheduling serial message transmission on a bus which is adoptable for rescheduling prioritized messages using a doubly-linked list
4975230, Jun 17 1988 MASCO VT, INC Method of making an open pore structure
4987897, Sep 18 1989 Medtronic, Inc. Body bus medical device communication system
5016634, Apr 18 1989 Pacesetter AB Implantable medical device with means for telemetric transmission of data
5079006, Jul 15 1987 Aprex Corporation Pharmaceutical compositions containing a magnetically detectable material
5167626, Oct 02 1990 CASPER, ROBERT A Medical capsule device actuated by radio-frequency (RF) signal
5176626, Jan 15 1992 Cook Medical Technologies LLC Indwelling stent
5261402, Jul 20 1992 Graphic Controls Corporation Snapless, tabless, disposable medical electrode with low profile
5263481, May 21 1992 Electrode system with disposable gel
5281287, Jul 21 1989 IOMED, LLC; ENCORE MEDICAL ASSET CORORATION Method of making a hydratable bioelectrode
5283136, Jun 03 1992 Ramot University Authority for Applied Research and Industrial Development LTD Rechargeable batteries
5318557, Jul 13 1992 Elan Corporation, PLC Medication administering device
5394882, Jul 21 1993 RIC Investments, LLC Physiological monitoring system
5458141, Aug 04 1993 MORTARA INSTRUMENT, INC Abrasive skin electrode
5485841, Feb 14 1995 McGill University Ultrasonic lung tissue assessment
5596302, Jan 17 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Ring oscillator using even numbers of differential stages with current mirrors
5634468, Apr 03 1992 VECTRACOR, INC Sensor patch and system for physiological monitoring
5645063, Jun 05 1995 QUINTON INC Skin electrode having multiple conductive center members
5740811, Nov 28 1995 Pacesetter AB Device and method for generating a synthesized ECG
5792048, Sep 03 1996 Indentification pill with integrated microchip: smartpill, smartpill with integrated microchip and microprocessor for medical analyses and a smartpill, smartbox, smartplague, smartbadge or smartplate for luggage control on commercial airliners
5802467, Sep 28 1995 Innovative Intelcom Industries Wireless and wired communications, command, control and sensing system for sound and/or data transmission and reception
5833716, Oct 25 1994 BIONESS NEUROMODULATION LTD Electrode structure and system
5845265, Apr 26 1995 EBAY, INC Consignment nodes
5862803, Sep 04 1993 Body Science LLC Wireless medical diagnosis and monitoring equipment
5868136, Feb 20 1996 Axelgaard Manufacturing Co. Ltd. Medical electrode
5925030, Aug 15 1994 Elan Pharma International Limited Orally administrable delivery device
5957854, Sep 04 1993 Body Science LLC Wireless medical diagnosis and monitoring equipment
5974124, Jan 21 1997 MED GRAPH, INC Method and system aiding medical diagnosis and treatment
5999846, Nov 08 1995 Oxford Biosignals Limited Physiological monitoring
6038464, Feb 09 1998 Axelgaard Manufacturing Co., Ltd. Medical electrode
6042710, Dec 17 1997 Caliper Life Sciences, Inc Methods and compositions for performing molecular separations
6047203, Mar 17 1997 adidas AG Physiologic signs feedback system
6081734, Aug 16 1996 Roche Diagnostics GmbH Monitoring system for the regular intake of a medicament
6095985, Feb 24 1995 Brigham and Women's Hospital Health monitoring system
6122351, Jan 21 1997 MED GRAPH, INC Method and system aiding medical diagnosis and treatment
6141592, Mar 06 1998 Intermedics Inc Data transmission using a varying electric field
6200265, Apr 16 1999 Medtronic, Inc.; Medtronic, Inc Peripheral memory patch and access method for use with an implantable medical device
6206702, Aug 24 1999 Methods and devices for treating unilateral neglect
6217744, Dec 18 1998 Devices for testing fluid
6231593, Mar 21 1994 DUSA PHARMACEUTICALS, INC. Patch, controller, and method for the photodynamic therapy of a dermal lesion
6245057, Apr 23 1997 Micronas GmbH Device for treating malignant, tumorous tissue areas
6285897, Apr 07 1999 Given Imaging LTD Remote physiological monitoring system
6287252, Jun 30 1999 Cardiac Pacemakers, Inc Patient monitor
6289238, Sep 04 1993 Body Science LLC Wireless medical diagnosis and monitoring equipment
6315719, Jun 26 1999 ZUERICH MEDTECH AG System for long-term remote medical monitoring
6358202, Jan 25 1999 Oracle America, Inc Network for implanted computer devices
6364834, Nov 13 1996 INDUSIND BANK LIMITED Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
6366206, Jun 02 1999 Ball Semiconductor, Inc.; BALL SEMICONDUCTOR, INC Method and apparatus for attaching tags to medical and non-medical devices
6371927, Aug 22 1997 THE BANK OF NEW YORK MELLON TRUST COMPANY, N A Ingestible animal temperature sensor
6374670, Mar 13 1995 EMERALD MEDICAL PRODUCTS Non-invasive gut motility monitor
6380858, Dec 29 1999 Becton, Dickinson and Company Systems and methods for monitoring patient compliance with medication regimens
6394997, Jun 12 1996 Medical devices using electrosensitive gels
6426863, Nov 25 1999 LITHIUM POWER TECHNOLOGIES, INC Electrochemical capacitor
6432292, May 16 2000 ZINCNYX ENERGY SOLUTIONS INC Method of electrodepositing metal on electrically conducting particles
6440069, Feb 24 1995 Pacesetter, Inc Health monitoring system
6441747, Apr 18 2000 Lifesync Corporation Wireless system protocol for telemetry monitoring
6477424, Jun 19 1998 Medtronic, Inc Medical management system integrated programming apparatus for communication with an implantable medical device
6496705, Apr 18 2000 Lifesync Corporation Programmable wireless electrode system for medical monitoring
6526315, Mar 17 2000 Tanita Corporation Portable bioelectrical impedance measuring instrument
6544174, May 19 2000 WELCH ALLYN PROTOCOL, INC Patient monitoring system
6564079, Jul 27 2000 NERVONIX, INC Electrode array and skin attachment system for noninvasive nerve location and imaging device
6577893, Sep 04 1993 Body Science LLC Wireless medical diagnosis and monitoring equipment
6579231, Mar 27 1998 Apple Inc Personal medical monitoring unit and system
6609018, Jul 27 2000 NERVONIX, INC Electrode array and sensor attachment system for noninvasive nerve location and imaging device
6612984, Dec 03 1999 System and method for collecting and transmitting medical data
6632175, Nov 08 2000 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Swallowable data recorder capsule medical device
6632216, Dec 21 1999 PHAETON RESEARCH LTD Ingestible device
6643541, Dec 07 2001 Google Technology Holdings LLC Wireless electromyography sensor and system
6654638, Apr 06 2000 Cardiac Pacemakers, Inc Ultrasonically activated electrodes
6663846, Dec 21 1998 University of Maryland, Baltimore Devices and methods for monitoring drug therapy compliance
6673474, Aug 09 2000 Showa Denko K K Medium substrate, production method thereof and magnetic disk device
6680923, May 23 2000 CALYPSO IP, LLC Communication system and method
6689117, Dec 18 2000 Cardiac Pacemakers, Inc Drug delivery system for implantable medical device
6694161, Apr 20 2001 MONSANTO TECHNOLOGY LLC Apparatus and method for monitoring rumen pH
6704602, Jul 02 1998 Medtronic, Inc. Implanted medical device/external medical instrument communication utilizing surface electrodes
6720923, Sep 14 2000 TRAXSIS, INC Antenna design utilizing a cavity architecture for global positioning system (GPS) applications
6738671, Oct 26 2000 Medtronic, Inc Externally worn transceiver for use with an implantable medical device
6740033, Jun 18 1999 Agilent Technologies, Inc Multi-parameter capability transmitter for wireless telemetry systems
6745082, Oct 22 2001 Current-controlling electrode with adjustable contact area
6755783, Apr 16 1999 Cardiocom Apparatus and method for two-way communication in a device for monitoring and communicating wellness parameters of ambulatory patients
6757523, Mar 31 2000 GOOGLE LLC Configuration of transmit/receive switching in a transceiver
6800060, Nov 08 2000 Hewlett-Packard Development Company, L.P. Swallowable data recorder capsule medical device
6801137, Apr 23 2001 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Bidirectional communication between a sensor unit and a monitor unit in patient monitoring
6822554, Jan 11 2002 AARDEX Group Systems and methods for medication monitoring
6836862, Apr 24 2000 Hewlett Packard Enterprise Development LP Method of indicating wireless connection integrity
6839659, Jun 16 2000 Isis Innovation Limited System and method for acquiring data
6840904, Oct 11 2001 IDEAL LIFE INC Medical monitoring device and system
6842636, Sep 27 2002 Axelgaard Manufacturing Co., Ltd. Medical electrode
6845272, May 25 1999 MEDICOTEST A S Skin electrode
6864780, Sep 08 2000 PANASONIC ELECTRIC WORKS CO , LTD Data transmission system using a human body as a signal transmission path
6879810, Dec 20 2000 Nokia Siemens Networks Oy Control of short range RF communication
6909878, Aug 20 2002 IXI MOBILE ISRAEL LTD Method, system and computer readable medium for providing an output signal having a theme to a device in a short distance wireless network
6922592, Apr 04 2000 Medtronic, Inc Implantable medical device controlled by a non-invasive physiological data measurement device
6928370, Jul 05 2000 Rolls-Royce plc Health monitoring
6929636, Nov 08 2000 HEWLETT-PACKARD DEVELOPMENT COMPANY L P Internal drug dispenser capsule medical device
6937150, Jul 31 2001 PHYSIO-CONTROL, INC Method and system for locating a portable medical device
6942616, Dec 03 1999 System and method for collecting and transmitting medical data
6951536, Jul 30 2001 Olympus Corporation Capsule-type medical device and medical system
6957107, Mar 13 2002 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Method and apparatus for monitoring and communicating with an implanted medical device
6968153, Mar 13 2002 Nokia Corporation Apparatus, method and system for a Bluetooth repeater
6987965, Apr 18 2000 Lifesync Corporation Programmable wireless electrode system for medical monitoring
6990082, Nov 08 1999 Intel Corporation Wireless apparatus having a transceiver equipped to support multiple wireless communication protocols
7002476, Jan 30 2003 LOF LLC Medication compliance system
7004395, May 25 1990 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Multi-level hierarchical radio-frequency communication system
7009634, Mar 08 2000 Given Imaging LTD Device for in-vivo imaging
7009946, Jun 22 2000 Intel Corporation Method and apparatus for multi-access wireless communication
7013162, Sep 21 1999 IPR LICENSING, INC Dual mode unit for short range, high rate and long range, lower rate data communications
7016648, Dec 18 2001 FCO V CLO TRANSFEROR LLC Method, system and computer readable medium for downloading a software component to a device in a short distance wireless network
7020508, Aug 22 2002 JB IP ACQUISITION LLC Apparatus for detecting human physiological and contextual information
7024248, Oct 16 2000 Remon Medical Technologies LTD Systems and methods for communicating with implantable devices
7031745, May 12 2003 Hong Kong Technologies Group Limited Cellular phone combined physiological condition examination and processing device
7031857, May 31 2001 OXFORD UNIVERSITY INNOVATION LIMITED Patient condition display
7039453, Feb 08 2000 MICROGIZZMOS, LLC Miniature ingestible capsule
7046649, Jan 20 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Interoperability for bluetooth/IEEE 802.11
7118531, Sep 24 2002 JOHNS HOKINS UNIVERSITY, THE Ingestible medical payload carrying capsule with wireless communication
7127300, Dec 23 2002 Cardiac Pacemakers, Inc. Method and apparatus for enabling data communication between an implantable medical device and a patient management system
7146228, Jul 19 2000 MEDICOTEST A S Skin electrode with a by-pass element
7146449, Dec 22 2004 Toshiba Global Commerce Solutions Holdings Corporation Bluetooth association with simple power connection
7149581, Jan 31 2003 Medtronic, Inc.; Medtronic, Inc Patient monitoring device with multi-antenna receiver
7154071, Dec 07 2004 Dräger Safety AG & co. KGaA Device for transmitting an electric signal detected by contact with the skin surface
7155232, Mar 05 2003 INTEGRAL WIRELESS TECHNOLOGIES LLC Transmit request signaling between transceivers
7160258, Jun 26 2001 ENTRACK, INC Capsule and method for treating or diagnosing the intestinal tract
7164942, Nov 09 1998 TRANSPHARMA MEDICAL LTD Handheld apparatus and method for transdermal drug delivery and analyte extraction
7171166, Apr 18 2000 Lifesync Corporation Programmable wireless electrode system for medical monitoring
7171177, Sep 07 2004 Electronics and Telecommunications Research Institute Communication apparatus and method using human body as medium
7171259, Apr 17 2003 Polar Electro Oy Method and device for measuring heart rate, and method for manufacturing the device
7187960, Apr 22 2002 BRAIN TUNNELGENIX Apparatus and method for measuring biologic parameters
7188767, Mar 18 2002 Precision Dynamics Corporation Physical condition or environmental threat detection appliance system
7194038, Oct 29 1998 Memory Technologies LLC Method for data communication between a wireless device and an electric device, and a data communication device
7206630, Jun 29 2004 Orbital Research Inc Electrode patch and wireless physiological measurement system and method
7209790, Sep 30 2002 Medtronic, Inc Multi-mode programmer for medical device communication
7215660, Feb 14 2003 Sony Interactive Entertainment LLC Single transceiver architecture for a wireless network
7215991, Sep 04 1993 Body Science LLC Wireless medical diagnosis and monitoring equipment
7218967, Sep 26 2003 Medtronic, Inc System and method for real-time remote monitoring of implantable medical devices
7231451, May 08 2000 CSR TECHNOLOGY INC Transmit-only and receive-only Bluetooth apparatus and method
7243118, Jul 30 2003 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method and apparatus for efficient derivation of modulo arithmetic for frequency selection
7246521, Sep 22 2003 Diagnostic system for monitoring structural health conditions
7249212, Dec 22 2004 Toshiba Global Commerce Solutions Holdings Corporation Bluetooth association based on docking connection
7252792, Sep 27 2002 Axelgaard Manufacturing Company, Ltd. Medical electrode
7253716, Aug 17 2004 Tagent Corporation Trackable pills with electronic ID tags
7261690, Jun 16 2000 JB IP ACQUISITION LLC Apparatus for monitoring health, wellness and fitness
7270633, Apr 22 2005 Cardiac Pacemakers, Inc. Ambulatory repeater for use in automated patient care and method thereof
7273454, Feb 24 1995 Brigham and Women's Hospital Health monitoring system
7289855, Jun 09 2004 Medtronic, Inc Implantable medical device package antenna
7291497, Sep 11 2003 Labrador Diagnostics LLC Medical device for analyte monitoring and drug delivery
7292139, Dec 17 2002 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
7294105, Sep 03 2002 CALLAHAN CELLULAR L L C System and method for a wireless medical communication system
7313163, Jun 17 2003 Google Technology Holdings LLC Fast synchronization for half duplex digital communications
7317378, Aug 17 2004 Tagent Corporation Product identification tag device and reader
7318808, Dec 14 2001 OXFORD UNIVERSITY INNOVATION LIMITED Combining measurements from breathing rate sensors
7336929, Jul 05 2004 Sony Corporation Short range wireless communication system, portable terminal apparatus, and wireless communication apparatus
7342895, Jan 30 2004 Mark, Serpa Method and system for peer-to-peer wireless communication over unlicensed communication spectrum
7346380, Jun 16 2006 Axelgaard Manufacturing Co., Ltd. Medical electrode
7349722, May 26 1999 Visteon Global Technologies, Inc Wireless communications system and method
7352998, Sep 12 2003 Nokia Technologies Oy Method and system for establishing a wireless communications link
7353258, Apr 11 2005 IMAGEWARE SYSTEMS, INC Interactive messaging system
7357891, Oct 12 2001 AQUESTIVE THERAPEUTICS, INC Process for making an ingestible film
7359674, May 10 2005 Nokia Technologies Oy Content distribution & communication system for enhancing service distribution in short range radio environment
7366558, Jun 30 2005 General Electric Company Electrode for obtaining a biopotential signal
7373196, Jun 22 2004 Electronics and Telecommunications Research Institute Physiological signal detection module, multi-channel connector module and physiological signal detection apparatus using the same
7375739, May 17 2005 Vardex Laser Corporation Image management system operable to manage the formation of dynamically variable images in objects in single shot events
7376435, Apr 01 2002 Apple Inc Transferring multiple data units over a wireless communication link
7382263, May 20 2005 The Dow Chemical Company; Dow Global Technologies LLC Oral drug compliance monitoring using radio frequency identification tags
7387607, Jun 06 2005 TAHOE RESEARCH, LTD Wireless medical sensor system
7388903, Sep 18 2002 Citrix Systems, Inc Adaptive transmission rate and fragmentation threshold mechanism for local area networks
7389088, Jun 02 2003 Samsung Electronics Co., Ltd. Method of controlling signal power level and a Bluetooth device for performing the same
7392015, Feb 14 2003 CALLAHAN CELLULAR L L C Calibration methods and structures in wireless communications systems
7395106, May 21 2004 Electronics and Telecommunications Research Institute Wearable physiological signal detection module and measurement apparatus having the same
7396330, Jan 07 2003 SOTERA WIRELESS, INC Wireless, internet-based medical-diagnostic system
7404968, Aug 18 1999 MICRODOSE THERAPEUTX, INC Metering and packaging of controlled release medication
7413544, Dec 03 1999 System and method for collecting and transmitting medical data
7414534, Nov 09 2004 Pacesetter, Inc Method and apparatus for monitoring ingestion of medications using an implantable medical device
7415242, Nov 10 2003 Sprint Spectrum LLC Method and system for proximity detection for an in-building wireless repeater
7424268, Apr 22 2002 Cisco Technology, Inc System and method for management of a shared frequency band
7424319, Dec 19 2002 KONINKLIJKE PHILIPS ELECTRONICS, N V Electrode assembly and a system with impedance control
7427266, Dec 15 2003 Hewlett-Packard Development Company, L.P. Method and apparatus for verification of ingestion
7471665, Feb 14 2003 Sony Interactive Entertainment LLC Single transceiver architecture for a wireless network
7499674, Sep 12 2003 Nokia Corporation Method and system for repeat request in hybrid ultra wideband-bluetooth radio
7510121, May 25 1990 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Multi-level hierarchical radio-frequency communication system
7512448, Jan 10 2003 Sonova AG Electrode placement for wireless intrabody communication between components of a hearing system
7515043, Mar 21 2003 Welch Allyn, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
7523756, Dec 25 2003 Olympus Corporation System for detecting position of capsule endoscope in subject
7525426, Sep 09 2002 Persephone, Inc. Method and apparatus for location and tracking persons
7539533, May 16 2006 KONINKLIJKE PHILIPS N V Mesh network monitoring appliance
7542878, Mar 03 1999 LIFEWATCH TECHNOLOGIES LTD Personal health monitor and a method for health monitoring
7551590, May 07 2001 FCO V CLO TRANSFEROR LLC Wireless device having a single processor in a short-range radio network
7554452, Jul 18 2003 Ingestible tracking and locating device
7575005, May 18 2004 Natus Medical Incorporated Mask assembly with integrated sensors
7616111, Jun 20 2005 CARESTREAM HEALTH, INC System to monitor the ingestion of medicines
7617001, Oct 16 2000 Remon Medical Technologies, Ltd Systems and method for communicating with implantable devices
7640802, Apr 11 2003 Rolls-Royce plc Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components
7647112, Feb 11 2004 Ethicon, Inc System and method for selectively stimulating different body parts
7647185, Jun 16 2000 OXFORD UNIVERSITY INNOVATION LIMITED Combining measurements from different sensors
7653031, Mar 05 2003 INTEGRAL WIRELESS TECHNOLOGIES LLC Advance notification of transmit opportunities on a shared-communications channel
7672714, Nov 28 2005 Terry B. J., Kuo; Cheryl C. H., Yang; Enjoy Research Inc. Miniature wireless apparatus for collecting physiological signals
7673679, Sep 19 2005 Schlumberger Technology Corporation Protective barriers for small devices
7678043, Dec 29 2005 Given Imaging LTD Device, system and method for in-vivo sensing of a body lumen
7697994, Jun 18 2004 Medtronic, Inc Remote scheduling for management of an implantable medical device
7720036, Oct 26 2005 Apple Inc Communication within a wireless network using multiple frequency bands
7729776, Dec 19 2001 3M Innovative Properties Company Implantable medical device with two or more telemetry systems
7733224, Jun 30 2006 BT WEARABLES LLC Mesh network personal emergency response appliance
7736318, Apr 16 1999 Cardiocom, LLC Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
7756587, Oct 16 2000 Cardiac Pacemakers, Inc. Systems and methods for communicating with implantable devices
7809399, Feb 10 2006 SYNTEK INTERNATIONAL HOLDING LTD Method and device for providing multiple communication protocols with a single transceiver
7844341, Jan 15 2008 Cardiac Pacemakers, Inc. Implantable medical device with antenna
20010027331,
20010044588,
20010051766,
20020002326,
20020026111,
20020040278,
20020077620,
20020132226,
20030017826,
20030023150,
20030028226,
20030065536,
20030076179,
20030083559,
20030126593,
20030130714,
20030135128,
20030135392,
20030152622,
20030158466,
20030158756,
20030162556,
20030167000,
20030171791,
20030171898,
20030181788,
20030185286,
20030187337,
20030187338,
20030195403,
20030213495,
20030214579,
20030216622,
20030216625,
20030216666,
20030216729,
20040008123,
20040018476,
20040034295,
20040049245,
20040073095,
20040073454,
20040077995,
20040082982,
20040087839,
20040092801,
20040106859,
20040115517,
20040121015,
20040148140,
20040153007,
20040167226,
20040167801,
20040193020,
20040193029,
20040193446,
20040199222,
20040215084,
20040218683,
20040220643,
20040224644,
20040225199,
20040253304,
20040260154,
20050017841,
20050020887,
20050021370,
20050024198,
20050027205,
20050038321,
20050043634,
20050062644,
20050065407,
20050070778,
20050092108,
20050096514,
20050096562,
20050101843,
20050101872,
20050115561,
20050116820,
20050117389,
20050121322,
20050131281,
20050143623,
20050148883,
20050154428,
20050165323,
20050177069,
20050182389,
20050187789,
20050192489,
20050197680,
20050228268,
20050234307,
20050240305,
20050245794,
20050259768,
20050261559,
20050267556,
20050267756,
20050277912,
20050277999,
20050285746,
20050288594,
20060001496,
20060036134,
20060061472,
20060065713,
20060074283,
20060078765,
20060095091,
20060095093,
20060100533,
20060109058,
20060110962,
20060122667,
20060136266,
20060142648,
20060145876,
20060148254,
20060149339,
20060155174,
20060155183,
20060161225,
20060179949,
20060183993,
20060184092,
20060204738,
20060210626,
20060216603,
20060218011,
20060235489,
20060247505,
20060253005,
20060270346,
20060280227,
20060280277,
20060282001,
20060289640,
20060293607,
20070002038,
20070006636,
20070008113,
20070016089,
20070027386,
20070027388,
20070038054,
20070049339,
20070055098,
20070060797,
20070073353,
20070096765,
20070106346,
20070123772,
20070129622,
20070130287,
20070135803,
20070142721,
20070156016,
20070162089,
20070162090,
20070167495,
20070167848,
20070173701,
20070179347,
20070185393,
20070191002,
20070196456,
20070207793,
20070208233,
20070213659,
20070237719,
20070244370,
20070255198,
20070255330,
20070270672,
20070279217,
20070282174,
20070282177,
20070299480,
20080014866,
20080020037,
20080021519,
20080021521,
20080027679,
20080033273,
20080046038,
20080051667,
20080058614,
20080062856,
20080065168,
20080074307,
20080077015,
20080077188,
20080091089,
20080091114,
20080097549,
20080097917,
20080103440,
20080114224,
20080119705,
20080119716,
20080137566,
20080140403,
20080146871,
20080146889,
20080146892,
20080154104,
20080166992,
20080183245,
20080188837,
20080194912,
20080208009,
20080214901,
20080214985,
20080243020,
20080249360,
20080262320,
20080262336,
20080269664,
20080275312,
20080284599,
20080288027,
20080294020,
20080300572,
20080303638,
20080306357,
20080306360,
20080311852,
20080312522,
20080316020,
20090009332,
20090024045,
20090030297,
20090034209,
20090043171,
20090048498,
20090062634,
20090062670,
20090069642,
20090069655,
20090069656,
20090069657,
20090069658,
20090076343,
20090082645,
20090088618,
20090099435,
20090110148,
20090112626,
20090124871,
20090131774,
20090135886,
20090157113,
20090157358,
20090161602,
20090163789,
20090171180,
20090173628,
20090177055,
20090177056,
20090177057,
20090177058,
20090177059,
20090177060,
20090177061,
20090177062,
20090177063,
20090177064,
20090177065,
20090177066,
20090182206,
20090182212,
20090182213,
20090182214,
20090182215,
20090182388,
20090187088,
20090187089,
20090187090,
20090187091,
20090187092,
20090187093,
20090187094,
20090187095,
20090187381,
20090192351,
20090192368,
20090192369,
20090192370,
20090192371,
20090192372,
20090192373,
20090192374,
20090192375,
20090192376,
20090192377,
20090192378,
20090192379,
20090198115,
20090198116,
20090198175,
20090203964,
20090203971,
20090203972,
20090203978,
20090204265,
20090210164,
20090216101,
20090216102,
20090227204,
20090227876,
20090227940,
20090227941,
20090228214,
20090231125,
20090234200,
20090243833,
20090253960,
20090256702,
20090264714,
20090264964,
20090265186,
20090273467,
20090281539,
20090295548,
20090296677,
20090303920,
20090312619,
20090318761,
20090318779,
20090318783,
20090318793,
20100010330,
20100049006,
20100049012,
20100049069,
20100056878,
20100056891,
20100056939,
20100057041,
20100062709,
20100063438,
20100063841,
20100069002,
20100081894,
20100099967,
20100099968,
20100099969,
20100100077,
20100100078,
20100106001,
20100118853,
20100139672,
20100168659,
20100179398,
20100185055,
20100191073,
20100210299,
20100222652,
20100228113,
20100234706,
20100234715,
20100234914,
20100245091,
20100249881,
20100256461,
20100259543,
20100268048,
20100268049,
20100268050,
20100274111,
20100280345,
20100280346,
20100298730,
20100312580,
EP1246356,
EP1789128,
EP2143369,
WO2007036741,
WO2007036746,
WO2008120156,
WO2009001108,
WO2010019778,
WO2010057049,
WO8802237,
WO33246,
WO100085,
WO147466,
WO174011,
WO180731,
WO2058330,
WO2062276,
WO2087681,
WO245489,
WO3050643,
WO2004014225,
WO2004039256,
WO2004066834,
WO2004068881,
WO2004109316,
WO2005011237,
WO2005020023,
WO2005024687,
WO2005047837,
WO2005051166,
WO2005110238,
WO2006027586,
WO2006055892,
WO2006055956,
WO2006075016,
WO2006100620,
WO2006104843,
WO2006116718,
WO2006127355,
WO2007001724,
WO2007001742,
WO2007013952,
WO2007014084,
WO2007014527,
WO2007021496,
WO2007027660,
WO2007028035,
WO2007036687,
WO2007036741,
WO2007036746,
WO2007040878,
WO2007071180,
WO2007096810,
WO2007101141,
WO2007120946,
WO2007127316,
WO2007127879,
WO2007128165,
WO2007130491,
WO2007143535,
WO2007149546,
WO2008008281,
WO2008030482,
WO2008052136,
WO2008063626,
WO2008066617,
WO2008076464,
WO2008089232,
WO2008091683,
WO2008095183,
WO2008097652,
WO2008101107,
WO2008112577,
WO2008112578,
WO2008133394,
WO2008134185,
WO2008150633,
WO2009001108,
WO2009006615,
WO2009029453,
WO2009036334,
WO2009051829,
WO2009051830,
WO2009063377,
WO2009081348,
WO2009111664,
WO2009146082,
WO2010009100,
WO2010011833,
WO2010107563,
WO2010135516,
WO8802237,
WO9308734,
WO9319667,
WO9843537,
WO9959465,
////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 13 2009Proteus Biomedical, Inc.(assignment on the face of the patent)
Nov 17 2009ZDEBLICK, MARKPROTEUS BIOMEDICAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0236800160 pdf
Nov 17 2009JENSEN, MARCPROTEUS BIOMEDICAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0236800160 pdf
Nov 17 2009COLLIOU, OLIVIERPROTEUS BIOMEDICAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0236800160 pdf
Nov 30 2009STRAND, ANGELAPROTEUS BIOMEDICAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0236800160 pdf
Jul 05 2012PROTEUS BIOMEDICAL, INC PROTEUS DIGITAL HEALTH, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0292280436 pdf
Dec 10 2020PROTEUS DIGITAL HEALTH INC ,OTSUKA AMERICA PHARMACEUTICAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0689800001 pdf
Dec 21 2020OTSUKA AMERICA PHARMACEUTICAL, INC OTSUKA PHARMACEUTICAL CO , LTDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0689800277 pdf
Date Maintenance Fee Events
Jul 03 2012ASPN: Payor Number Assigned.
Mar 30 2015M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Apr 09 2019M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Apr 12 2023M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.
Apr 12 2023M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity.


Date Maintenance Schedule
Oct 11 20144 years fee payment window open
Apr 11 20156 months grace period start (w surcharge)
Oct 11 2015patent expiry (for year 4)
Oct 11 20172 years to revive unintentionally abandoned end. (for year 4)
Oct 11 20188 years fee payment window open
Apr 11 20196 months grace period start (w surcharge)
Oct 11 2019patent expiry (for year 8)
Oct 11 20212 years to revive unintentionally abandoned end. (for year 8)
Oct 11 202212 years fee payment window open
Apr 11 20236 months grace period start (w surcharge)
Oct 11 2023patent expiry (for year 12)
Oct 11 20252 years to revive unintentionally abandoned end. (for year 12)