The invention relates to a shaped catalyst body for preparing maleic anhydride, which comprises mixed oxides of vanadium and of phosphorus as catalyst components. To develop a generic shaped catalyst body further so that it has improved properties, it is proposed that the basic geometric body enveloping the shaped catalyst body (100; 200) be a prism (180) having a first triangular face and a second triangular face and the shaped catalyst body (100; 200) be provided with three through openings (111, 121, 131; 211, 221, 231) which extend from a first face of the shaped body (100; 200) which contacts the first triangular face of the prism (180) to a second face of the shaped body (100; 200) which contacts the second triangular face of the prism (180).
|
1. A shaped catalyst body for preparing maleic anhydride, comprising mixed oxides of vanadium and of phosphorus as catalyst component, having a fundamental geometric shape of the envelope of the shaped catalyst body (100; 200) of a prism (180) having a first and a second triangular face, the shaped catalyst body (100; 200) being provided with continuous orifices (111, 121, 131; 211, 221, 231) which extend from a first face of the shaped body (100; 200) forming the first triangular face of the prism (180) to a second face of the shaped body (100; 200) which forms the second triangular face of the prism (180).
2. The shaped catalyst body as claimed in
3. The shaped catalyst body as claimed in
4. The shaped catalyst body as claimed in
5. The shaped catalyst body as claimed in
6. The shaped catalyst body as claimed in
7. The shaped catalyst body as claimed in
8. The shaped catalyst body as claimed in
9. The shaped catalyst body as claimed in
10. The shaped catalyst body as claimed in
11. The shaped catalyst body as claimed in
12. The shaped catalyst body as claimed in
13. The shaped catalyst body as claimed in
14. The shaped catalyst body as claimed in
15. The shaped catalyst body as claimed in
16. The shaped catalyst body as claimed in
17. The shaped catalyst body as claimed in
18. The shaped catalyst body as claimed in
19. The shaped catalyst body as claimed in
20. The shaped catalyst body as claimed in
22. The shaped catalyst body as claimed in
23. The shaped catalyst body as claimed in
VPxOyMz in which M is at least one promoter, x is from 0.1 to 3, y is a number according to the valences of V, P and M, and z is from 0 to 1.5.
24. The shaped catalyst body as claimed in
25. The shaped catalyst body as claimed in
26. A method for preparing maleic anhydride from hydrocarbons, comprising subjecting said hydrocarbons to partial oxidation in the presence of a catalyst according to
27. A method as claimed in
|
The present invention relates to a shaped catalyst body for the preparation of maleic anhydride, comprising mixed oxides of vanadium and of phosphorus as catalyst component.
Maleic anhydride is a chemical intermediate of considerable commercial interest. It is used, for example, in the preparation of alkyd resins and polyester resins, alone or else in combination with other acids. In addition, it is a versatile intermediate for chemical synthesis, for example for the synthesis of gamma-butyrolactone, tetrahydrofuran and 1,4-butanediol, which are in turn themselves used as solvents or processed onward to polymers, for example polytetrahydrofuran or polyvinylpyrrolidone.
Maleic anhydride is generally prepared by partial oxidation of hydrocarbons in the gas phase with molecular oxygen with a gas comprising molecular oxygen in the presence of a vanadium-phosphorus oxide catalyst (VPO). Various oxidation catalysts, various shaped catalyst bodies and various process regimes are employed. In general, the oxidation catalysts comprise mixed oxides of vanadium and phosphorus, and such oxidation catalysts comprising vanadium in a valence of from +3.8 to +4.8 have been found to be particularly suitable for the preparation of maleic anhydride from saturated hydrocarbons having at least four carbon atoms in a straight chain. As well as vanadium, phosphorus and oxygen, the VPO catalysts may also comprise promoters, for example metals, which may be present in the oxidation catalyst in the form of their oxides.
The shaped catalyst bodies used to prepare maleic anhydride by heterogeneously catalyzed gas phase oxidation of hydrocarbons, comprising vanadium, phosphorus and oxygen have various geometries.
U.S. Pat. No. 4,283,307 describes a shaped catalyst body which comprises mixed oxides of vanadium and of phosphorus for the partial oxidation of n-butane, said shaped catalyst body having a cylindrical geometry and a continuous bore passing along its longitudinal axis.
EP 1 261 424 B1 relates to a catalyst for the preparation of maleic anhydride by heterogeneously catalyzed gas phase oxidation of a hydrocarbon having at least four carbon atoms. This catalyst comprises a catalytically active material of a vanadium-phosphorus mixed oxide and has an essentially hollow cylindrical structure. The hollow cylinder has such a configuration that the ratio of the height to the diameter of the passage orifice is at most 1.5 and the ratio of the geometric surface area to the geometric volume of the shaped body is at least 2 mm−1.
EP 0 552 287 B1 relates to a shaped catalyst body for preparing maleic anhydride, said shaped body comprising a solid geometric form having at least one void space disposed in the external surface thereof. The shaped body is formed from mixed oxides of vanadium and phosphorus and has a geometric volume of from 30% to 67% of that occupied by the solid shaped body free of void spaces, where the ratio of the geometric surface area of the shaped body to the geometric volume of the shaped body is at least 20 cm−1.
The object of the present invention consists in providing a shaped catalyst body for preparing maleic anhydride (MA) by heterogeneously catalyzed gas phase oxidation of hydrocarbons of the type specified at the outset, which, compared to the prior art, allows the preparation of maleic anhydride with a higher selectivity and with a higher productivity, and where the end product has a lower proportion of acetic acid and acrylic acid than is the case with use of shaped bodies known to date.
This object is achieved with a shaped catalyst body of the type in question in that the fundamental geometric shape of the envelope of the shaped catalyst body is a prism having a first and a second triangular face and in that the shaped catalyst body is provided with three continuous orifices which extend from a first face of the shaped body which forms the first triangular face of the prism to a second face of the shaped body which forms the second triangular face of the prism.
Compared to the shaped catalyst bodies known in the prior art, the inventive shaped catalyst bodies are notable for an increased specific activity per g/catalyst and an increased selectivity, allowing an increased productivity of maleic anhydride and an increased maleic anhydride selectivity to be obtained by suppressing the overoxidation of maleic anhydride.
The term “Productivity” means the mass flow of MA per unit volume/reactor, expressed in the unit
An increased productivity means that, in an existing production plant, more product, for example maleic anhydride (MA) can be synthesized per unit time.
It has also been found that, surprisingly, the product obtained with the inventive shaped catalyst body in maleic anhydride synthesis has an exceptionally low proportion of acrylic acid and acetic acid in the end product compared to existing shaped bodies; more particularly, the entirety of the two aforementioned components is 20-30% lower in accordance with the invention than when conventional shaped bodies are used.
Moreover, for a given maximum pressure loss of a catalyst bed, at least 20% higher space velocities (GHSV=volume flow/catalyst volume) can now be employed, compared to known shaped body geometries, for example spheres, solid cylindrical tablets or extrudates. When, for example, a maximum GHSV of 2500 h−1 is possible with one of the shaped bodies known to date, space velocities of at least 3000 h−1 are achievable using the inventive shaped bodies with the same pressure loss. Owing to the specifically lower pressure increase, it is, on the other hand, also possible to implement a given throughput, for example GHSV of 2500 h−1, with a lower pressure loss than with conventional shaped bodies. As a result, the blower power that has to be expended is lower, leading to a saving of energy costs.
In addition, the inventive shaped catalyst bodies have a high mechanical stability, such that, for example, as the inventive shaped bodies are transported and a tube bundle reactor is filled with the inventive shaped catalyst bodies, there is essentially no damage to the shaped bodies.
In addition, it is advantageous that the inventive shaped catalyst bodies have round boundary lines. The operation of filling a reactor can thus be simpler and more reproducible, with little formation of filling gaps.
Another advantage of the inventive shaped catalyst bodies is that they have comparatively short diffusion paths. The short diffusion paths bring about a high degree of pore utilization, such that a lower catalyst mass can be used to achieve a desired hydrocarbon conversion, and they also bring about a higher MA selectivity, since the total oxidation of MA to CO and CO2 is suppressed.
Prismatic-shaped catalyst bodies generally have a comparatively low stability along their longitudinal edges, such that, for example in the filling operation of a reactor with the appropriate shaped catalyst bodies, there may be flaking in the region of the longitudinal edges. In a preferred embodiment of the inventive shaped catalyst body, the shaped body has an essentially triangular cross section with rounded vertices.
In an alternative embodiment, the shaped catalyst body has an essentially trilobal cross section, each lobe being provided with a continuous orifice.
In accordance with an embodiment of the inventive shaped catalyst body which is simple to implement from a manufacturing point of view and hence inexpensive, the continuous orifices have a circular or oval cross section.
In the preparation of maleic anhydride by heterogeneously catalyzed gas phase oxidation of hydrocarbons, pressure losses occur in the reactor bed, which have an adverse effect on the gas throughput and hence on the product capacity and entail increased blower power. In order to minimize the pressure loss in the reactor and in order to achieve very short diffusion paths within the shaped catalyst body, the continuous orifices of the inventive shaped catalyst body, in a particularly preferred embodiment, have a diameter from 0.5 mm to 3 mm.
In a preferred method of manufacture, in order to positively influence the flow of the gas mixture passing through the catalyst bed in the preparation of maleic anhydride by heterogeneously catalyzed gas phase oxidation, i.e. to shorten the diffusion path with simultaneously sufficient stability, the continuous orifices may have the same diameter. In an alternative embodiment, each of the continuous orifices may have a different diameter.
In an embodiment of the shaped catalyst body which is simple in manufacturing terms and hence is particularly inexpensive, the continuous orifices run essentially parallel to one another.
It is preferred when the ratio of the intermediate spacing between the continuous orifices relative to the diameter of the orifices is from 1.15 to 1.5. This on the one hand provides a sufficient mechanical stability of the inventive shaped catalyst body and, on the other hand, such a configuration allows achievement of comparatively high space velocities of the gas mixture passing through the reactor bed.
A factor which partly determines the filling density of shaped catalyst bodies in a reactor is the geometry of the shaped catalyst bodies. In order to influence the filling density and thus to influence the space velocities of the gas passing through the catalyst bed, in a further preferred embodiment of the inventive shaped catalyst body, two of the three lobes may have the same external diameter. In an alternative embodiment, each of the lobes has a different external diameter.
Moreover, the filling density of a reactor laden with shaped catalyst bodies depends on the size of these shaped bodies. In order to obtain suitable space velocities of the gas mixture comprising hydrocarbon and oxygen in the preparation of maleic anhydride by heterogeneously catalyzed gas phase oxidation, the shaped bodies preferably have a length of from 2 to 20 mm, especially from 3 to 10 mm.
A further preference, in this connection, is that the ratio of the length of the inventive shaped body to the minimum width of the end face of the trilobal shaped body is from 0.5 to 2. The minimum width of the end face is defined by the reference numeral 170 in
In the inventive shaped catalyst body, the ratio of the volume of the shaped body Vshaped body to the volume of the envelope prism Vprism is from 0.71 to 0.9. The volume of the shaped body, and also of the envelope prism, is calculated as the volume of the solid shaped body, i.e. without taking account of the continuous orifices.
The inventive shaped body usually has a geometric surface area of from 0.15 cm2 to 5 cm2, preferably from 0.5 cm2 to 4 cm2, more preferably from 1 cm to 3.5 cm2, especially from 1.5 cm2 to 3 cm2.
In a more preferred embodiment of the inventive shaped catalyst body, the ratio of the geometric surface area of the shaped body to the volume of the shaped body is from 0.5 to 20 mm−1, preferably from 1.4 to 4 mm−1, and the ratio of the geometric surface area of the shaped body to its volume is especially greater than 2.1 mm−1.
In accordance with a preferred embodiment of the inventive shaped catalyst body, the bulk density of the inventive shaped bodies is from 0.4 g/cm3 to 1.4 g/cm3, preferably from 0.5 g/cm3 to 1.1 g/cm3.
The preparation of maleic anhydride by heterogeneously catalyzed gas phase oxidation is generally carried out in “tube bundle reactors” in which shaped catalyst bodies are layered one on top of one another in vertically aligned tubes. Accordingly, a shaped catalyst body has to be able to withstand the weight of the shaped bodies on top of it. In a more preferred embodiment of the inventive shaped body, its mechanical strength is therefore from 4.0 N to 300 N, preferably from 10 N to 100 N, more preferably 15-40 N.
The BET surface area of the inventive shaped catalyst body is from 10 to 300 m2/g, preferably from 15 to 80 m2/g, more preferably 20-50 m2/g. The BET surface area is determined by the single-point method by adsorption of nitrogen to DIN 66132.
It may also be preferred for the integral pore volume (determined to DIN 66133 (Hg porosimetry)) to be >100 mm3/g, preferably >180 mm3/g. In particular, it is advantageous in this context when not more than 10% of the pore volume is formed by pores of radius<10 nm and not more than 10% of the pore volume by pores of radius>500 nm.
The inventive shaped catalyst bodies may comprise the mixed oxides of vanadium and of phosphorus, for example, in pure, undiluted form as unsupported catalysts or diluted with a preferably oxidic support material as supported mixed catalysts.
Suitable support materials for the mixed catalysts are, for example, alumina, silica, aluminum silicates, zirconia, titania or mixtures thereof. The content of the catalyst component in the inventive shaped catalyst body is preferably from 3 to 50% by weight based on the total weight of the shaped catalyst body. In the case of a supported mixed catalyst, the content of the catalyst component in the inventive shaped catalyst body is 3-50% by weight, preferably 5-30% by weight, based on the total weight of the shaped catalyst body.
As well as the mixed oxides of vanadium and of phosphorus, the inventive shaped catalyst body may comprise, as a further catalytic component, a promoter which is selected from metals of the periodic table of the elements. In a preferred embodiment of the inventive shaped catalyst body, the catalyst component corresponds to the general formula
VPxOyMz
in which M is at least one promoter, x is from 0.1 to 3, y is a number according to the valences of V, P and M, and z is from 0 to 1.5.
As stated above, the promoter may be selected from the metals. The promoter is preferably selected from chromium, nickel, magnesium, aluminum, silicon, tungsten, niobium, antimony and/or cesium.
According to the process regime, it may be preferred to use additional promoter elements other than those mentioned above. In a corresponding process regime, it may therefore be preferred when the promoter is further selected from lithium, zinc, iron, or bismuth, tellurium, silver and/or molybdenum.
It is favorable when the proportion of the promoter in the form of an oxide or in the form of a compound which can be converted to an oxide is from 0.005% by weight to 5% by weight, based on the total weight of the shaped body.
Assistants can also be added to the inventive shaped catalyst body, for example tableting assistants or pore formers.
Tableting assistants are generally added when the inventive shaped catalyst body is shaped via tableting. Tableting assistants are generally catalytically inert and improve the tableting properties of the “catalyst precursor powder”, for example by increasing the lubricity and/or free flow. A particularly suitable tableting assistant is, for example, graphite. The tableting assistants added may remain in the activated catalyst and are generally present in the shaped catalyst body in an order of magnitude of from 1 to 5% by weight, based on the total weight of the shaped catalyst body.
In addition, the inventive shaped catalyst body may comprise pore formers. Pore formers are substances which are used for controlled establishment of the pore structure in the mesopore and macropore range. They are generally compounds which contain carbon, hydrogen, oxygen and/or nitrogen, being added to the catalyst precursor powder before shaping and being decomposed or evaporated in the course of the subsequent activation of the shaped catalyst body, for example by calcination, and hence being predominantly discharged from the resultant shaped body, thus generating pores.
The invention further relates to the use of the inventive shaped catalyst body for preparing maleic anhydride from hydrocarbons.
The hydrocarbons used may be nonaromatic hydrocarbons having from 4 to 10 carbon atoms. It is necessary that the hydrocarbon contains no less than 4 carbon atoms in a straight chain or in a ring. The hydrocarbon is particularly suitably n-butane. In addition to n-butane, pentanes, hexanes, heptanes, octanes, nonanes, decanes or mixtures of any of these compounds with or without n-butane are also suitable, provided that they contain at least 4 carbon atoms in a straight chain.
Unsaturated hydrocarbons may likewise be used for conversion to maleic anhydride. Suitable unsaturated hydrocarbons are, for example, butenes (1-butene and 2-butene), 1,3-butadiene, the pentenes, the hexenes, the heptenes, the octenes, the nonenes, the decenes and mixtures of any of these compounds, with the proviso that they contain at least 4 carbon atoms in a straight chain. Equally suitable are substituted and unsubstituted furans, for example tetrahydrofuran, and also aromatic compounds, for example benzene and its derivatives.
The inventive shaped catalyst body can, for example, be produced as described in WO 97/12674, by shaping according to the inventive geometry.
The essential steps of possible production of the inventive shaped catalyst body with formation of a catalyst precursor powder, shaping and subsequent activation are explained briefly below:
The inventive shaped catalyst body can be produced, for example, by first mixing the dried catalyst precursor powder with a binder or with a lubricant. The shaped body is then produced, for example, in a tableting press with a rotary pan on whose circumference are arranged a plurality of orifices with an appropriate cross section, for example a trilobal cross section or a triangular cross section. The mixture is introduced into this orifice (dies) and is held from the bottom by a punch, by which, during the rotation of the rotary pan, for example, three pins which are at the positions of the orifices to be generated are pushed upward. In the course of further rotation of the rotary pan, a punch with an appropriate cross section engages from the top, said punch being provided with orifices into which the pins penetrate when the upper punch is pressed downward. In the course of further rotation of the rotary pan, after the lower punch has been withdrawn and the upper punch has been moved onward, the pressed shaped bodies are ejected from the dies.
The shaped catalyst body thus formed is then activated, for example by calcination.
The description of two preferred embodiments of the inventive shaped catalyst body which follows serves to illustrate the invention in combination with the drawing. The drawing shows:
The three passage orifices 111, 121 and 131 have the same diameter 140 and are aligned parallel to one another, the longitudinal axes of the orifices 111, 121 and 131, in cross section, defining the vertices of an essentially equilateral triangle.
The ratio of the length 160 of the shaped body 100 to the minimum width of the end face 170 of the trilobal shaped body is within an order of magnitude of from 0.5 to 2.
The fundamental geometric shape of the envelope of the trilobal shaped catalyst body 100 is a prism 180.
Estenfelder, Marvin, Streifinger, Leopold, Brandstädter, Willi
Patent | Priority | Assignee | Title |
10252254, | Mar 22 2013 | Clariant International Ltd | Removable protective coating for the receipt of a dust free catalyst |
10525448, | Jul 22 2015 | BASF Corporation | High geometric surface area catalysts for vinyl acetate monomer production |
10864500, | Jul 22 2015 | BASF Corporation | High geometric surface area catalysts for vinyl acetate monomer production |
11400442, | Jan 16 2019 | Clariant International Ltd | Process for producing a VPO catalyst |
11547989, | Feb 12 2018 | Huntsman Petrochemical LLC | Cored round trilobe shaped catalyst for producing maleic anhydride |
8993473, | Oct 20 2008 | Huntsman Petrochemical LLC | Modified trilobe shape for maleic anhydride catalyst |
9409160, | Nov 22 2010 | Clariant International Ltd | Shaped catalyst body for flow-through fixed-bed reactors |
9931618, | Apr 02 2014 | Clariant International Ltd. | Alkali metal-modified vanadium-phosphorus oxide (VPO) catalyst |
Patent | Priority | Assignee | Title |
5137860, | Jun 27 1991 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Process for the transformation of vanadium/phosphorus mixed oxide catalyst precursors into active catalysts for the production of maleic anhydride |
5168090, | Oct 04 1990 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Shaped oxidation catalyst structures for the production of maleic anhydride |
5330958, | Oct 06 1992 | Montecatini Technologie S.p.A. | Catalyst granules, in particular for the oxidative dehydrogenation of methanol in order to yield formaldehyde |
5905054, | Nov 21 1995 | Montecatini Tecnologie S.r.l. | Catalysts for the oxichlorination of ethylene, method for preparing them, and oxichlorination method using the same |
5929256, | Oct 02 1995 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Production of maleic anhydride using molybdenum-modified vanadium-phosphorus oxide catalysts |
5939351, | Mar 14 1995 | Montecatini Technologie S.r.l.; MONTECATINI TECNOLOGIE S R L | Catalysts and catalyst carriers obtained by tableting |
5945368, | Oct 02 1995 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Molybdenum-modified vanadium-phosphorus oxide catalysts for the production of maleic anhydride |
6080573, | Nov 25 1996 | Lever Brothers Company, Division of Conopco, Inc | Enzymatic oxidation process |
6166280, | Mar 08 1996 | Montecatini Technologies S.r.l. | Catalyst for the dehydrogenation of ethylbenzene to styrene |
20020161243, | |||
DE10000584, | |||
EP520972, | |||
EP591572, | |||
EP732146, | |||
EP775522, | |||
EP794004, | |||
EP1136120, | |||
WO2007012620, | |||
WO9712674, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 31 2006 | Sud-Chemie AG | (assignment on the face of the patent) | / | |||
Sep 22 2008 | ESTENFELDER, MARVIN | Sud-Chemie AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021678 | /0637 | |
Sep 28 2008 | STREIFINGER, LEOPOLD | Sud-Chemie AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021678 | /0637 | |
Sep 29 2008 | BRANDSTADTER, WILLI | Sud-Chemie AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021678 | /0637 | |
Jun 18 2012 | Sued-Chemie AG | SUED-CHEMIE IP GMBH & CO KG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028849 | /0765 |
Date | Maintenance Fee Events |
Nov 29 2011 | ASPN: Payor Number Assigned. |
Jun 12 2015 | REM: Maintenance Fee Reminder Mailed. |
Nov 01 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 01 2014 | 4 years fee payment window open |
May 01 2015 | 6 months grace period start (w surcharge) |
Nov 01 2015 | patent expiry (for year 4) |
Nov 01 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 01 2018 | 8 years fee payment window open |
May 01 2019 | 6 months grace period start (w surcharge) |
Nov 01 2019 | patent expiry (for year 8) |
Nov 01 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 01 2022 | 12 years fee payment window open |
May 01 2023 | 6 months grace period start (w surcharge) |
Nov 01 2023 | patent expiry (for year 12) |
Nov 01 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |