The present invention is directed towards a prosthetic anchor (36) including a central layer (1) through which embedded fibers (2), such as artificial tendons, pass in defined pathways (4), a ‘deep’ surface membrane (7) which interfaces with a hard structure, whether that is a prosthesis, a bone, or other hard tissue, and a ‘superficial’ surface membrane (8) which interfaces adjacent tissue and may be configured to adhere or not to adhere to that tissue. The central layer (1) is positioned intermediate the surface membranes (7, 8) which are mechanically and/or adherently attached thereto. Also, non-limiting examples of methods of fabrication and of affixing the anchor (36) to a relatively rigid structure, natural or prosthetic, in a human or animal body with improved stress distribution in the fixed tension member end are taught.
|
12. A prosthetic anchor configured to attach a natural structure or prosthetic device to a tissue of a human or an animal comprising:
a wafer-like central layer having first and second surfaces meeting to form at least one edge;
a first opening and a second opening positioned in between the first and second surfaces and along the at least one edge;
a plurality of fiber bundles that are concentrically aligned, the fiber bundles having two opposing ends and a medial portion between the two opposing ends, the medial portion being curved to form a generally horseshoe-shaped pattern;
the medial portion of each of the plurality of fiber bundles being embedded within the central layer with the first and second surfaces being on either side of, and together sandwiching, the medial portions; and
the two opposing ends of each of the plurality of fiber bundles extending through the first and second openings to exit the central layer from the at least one edge.
15. A prosthetic anchor adapted for attachment to a hard outer surface of a natural or prosthetic structure within a human or animal and configured to minimize material stress concentration and minimizing a height of the anchor beyond the outer surface of the structure, the prosthetic anchor comprising:
first and second opposing surfaces, wherein one of the first and second opposing surfaces is configured to conform to the outer surface of the structure;
a wafer-like central layer occupying a space between the first and second opposing surfaces;
first and second openings located proximate at least one edge of the wafer-like central layer; and
a plurality of fibers having a medial portion, the medial portion being generally horseshoe-shaped, embedded within the wafer-like central layer, conforming to one of the first and second opposing surfaces, and extending between the first and second openings, wherein a cross-section of the plurality of fibers having a width dimension that is greater than a height dimension.
1. A prosthetic anchor adapted for attachment to a natural or prosthetic structure of a human or animal, comprising:
a central layer including a wafer-like structure and a plurality of embedded fiber bundles, each of the plurality of embedded fiber bundles having a medial portion, the medial portions being situated concentrically with respect to one another within the wafer-like structure to substantially define a generally horseshoe-shaped pattern that shares a flattened orientation with the wafer-like structure, the central layer further having:
(i) opposing first and second surfaces on either side of the wafer-like structure, wherein the opposing first and second surfaces together sandwich the wafer-like structure and the medial portions of the plurality of embedded fiber bundles, the opposing first surface being adapted to interface with the natural or prosthetic structure and the opposing second surface being adapted to interface with a tissue; and
(ii) first and second spaced apart openings, each positioned in between the first and second surfaces and positioned proximate at least one edge of the wafer-like structure to allow opposing ends of the plurality of embedded fiber bundles to exit the central layer.
2. The prosthetic anchor of
at least one surface membrane configured for cooperating with one of the opposing first and second surfaces of the central layer, the at least one surface membrane providing the interface with at least one of the natural or prosthetic structure or with the tissue.
3. The prosthetic anchor of
4. The prosthetic anchor of
6. The prosthetic anchor of
7. The prosthetic anchor of
8. The prosthetic anchor of
9. The prosthetic anchor of
10. The prosthetic anchor of
11. The prosthetic anchor of
13. The prosthetic anchor of
a plurality of pathways extending concentrically through the central layer and in between the first and second surfaces, each of the plurality of pathways receiving at least one of the medial portions of the plurality of fiber bundles and being concentric with another one of the plurality of pathways.
14. The prosthetic anchor of
a surface membrane configured to cooperate with at least one of the first and second surfaces and to provide an interface between the central layer and the natural structure or prosthetic device or a proximate tissue of the human or the animal.
16. The prosthetic anchor of
a surface membrane configured to be coupled to the first opposing surface and between the first opposing surface and the natural or prosthetic structure.
17. The prosthetic anchor of
a surface membrane configured to be coupled to at least one of the first and second opposing surfaces.
|
This application claims priority from U.S. Provisional Application Ser. No. 60/642,016 filed Jan. 7, 2005.
The present invention relates generally to fixation of artificial tendons, transmitting force from skeletal muscles, either to energy converters powering cardiac or other devices, or to natural or prosthetic bones, and more particularly, to a prosthetic anchor, to methods of fabrication, and to means of fixing thereof to a relatively rigid structure, natural or prosthetic, in a human or animal body with improved stress distribution in a fixed tension member, e.g. fixed fibers defining a tendon or ligament.
Fixation of prosthetic flexible tension members, such as tendons or ligaments, to relatively rigid structures is a serious problem. A notable example is the use of artificial ligaments, such as the Leeds-Keio anterior cruciate ligament replacement in the knee. In that example, published experience with the usual means of bone fixation—drilling a hole in the tibia, inserting the ligament, and securing with a suture or pin—has included several instances of fragmentation of the polyester fibers of the prosthesis within a few months to a few years. A compression plate fixation has been used whereby tension members are cut and the end grasped between two plates, generally textured and held together by compression screws to grasp the tension member. While this allows greater control of local stress concentration than does a simple bone-hole, in theory it delivers extremely high shear stresses to the tension member locally, which may cause fatigue failure and breakage over the immense number of stress cycles expected to be required.
A knob-loop fixation device has been previously disclosed to address the stress-concentration issue, but requires a substantial thickness that may be disadvantageous. Such thickness could be problematic in some cardiac surgical, plastic and reconstructive surgical, or orthopaedic surgical devices, for example, in regions where skin is quite close to a coupled bone (e.g., the frontal bone in the case of a cosmetic surgical ‘brow lift’ prosthesis and the olecrenon in an orthopaedic surgical elbow prosthesis). Further, for either of these applications, for other plastic and orthopaedic surgical applications, or for some potential configurations of mechanical energy converters for cardiac power applications, the surface to which the coupler is attached may vary in its contour. Therefore a much thinner adapting terminus, which maintains sufficient flexibility to allow a finite number of size/shape models to conform to anatomy of reasonable individual variation, would be of benefit. Further, a structure with a soft flexible interface to fibers (reducing stress concentration) and yet a harder external surface (to interface with other tissues, adhering or not as desired) would also be advantageous.
Natural tendon ends, which are living tissue, have been connected to ‘towel bar’ fixtures on artificial bones, over which they are looped and sewn. Because of the shape of tendons—generally flattened in the plane of attachment, the axis of curvature is generally perpendicular to the surface to which they are to be attached. To avoid intolerable protrusion dimensions into surrounding tissue structures, the radius of curvature is very small. Since the compressive stress on a tension member surface, when that tension member is looped about any rod or pulley, is directly proportional to the tension applied and inversely proportional to both the radius of curvature and the projection of contact surface perpendicular to the transmitted tension, compressive forces intolerable by the tension member may be generated. An artificial force transmitting tension member, however, such as an artificial tendon, can be formed in any cross-sectional configuration. This allows the central stabilizing point to be relatively thin, flat, and oriented in the plane of the surface to which the tension member is to be attached.
In contrast to the ‘towel bar’ concept, the radius of curvature of the present invention may be made substantially larger with only minimal protrusion into surrounding tissue structures. In contrast to the ‘knob loop’ or ‘tangential pulley’ concept, the present invention does not require fibers to be organized into a circular cross-section, with imposition of a minimum thickness for a given number of fibers. The number of fibers still dictates the cross-sectional area of the bundle that passes through the matrix, but it can be very wide and quite thin, or any other combination of dimensions dictated by the device (e.g., a mechanical energy converter) or anatomic structure (e.g., a bone) to be joined.
The present invention provides for a prosthetic anchor including an implantable, flexible, force-transmitting fiber-based tissue coupler or central layer with fibers, and to non-limiting examples of methods of fabrication and of fixing the anchor to a relatively rigid structure, natural or prosthetic, in a human or animal body with improved stress distribution in a fixed tension member, such as fibers defining a tendon or ligament. The invention may be useful in addressing cardiac surgical, plastic and reconstructive surgical, or orthopedic surgical problems.
To this end, the prosthetic anchor defines a thin wafer-like device including a central layer that incorporates, or embeds, multiple bundles of fibers of a tension member, e.g. a natural or artificial tendon, to form a matrix. This central layer may include an elastomeric or other polymer material. The fibers are packed closely and concentric to each other, and generally in a horseshoe pattern, but permit permeation and interstitial distribution of the matrix. Opposing ends of each fiber exit generally on the same aspect or edge of the central layer and may be attached, such as to the muscle of a human or animal, by means commonly known in the art. Harder and thinner surface membranes such as carbon-fiber/epoxy or glass-fiber/epoxy or sheets of a biocompatible metal optionally cover both faces of the central layer, forming a ‘sandwich’ of variable flexibility. Flexibility is dependent on thickness of the overall structure and the materials chosen both for the surface membranes and the central matrix layer. Generally, regions near the center of the concentric path of fibers will not contain fibers and comprise either none of the layers (a central ‘hole’ or opening), or one, two, or all three layers.
The surface membranes may be variously configured as smooth or textured on the surface opposite the matrix layer, so as to purposefully encourage or discourage tissue adherence. The side of the membranes interfacing the matrix layer may or may not be roughened or textured so as to achieve mechanical bonding with the matrix layer. Alternatively, various adhesives may secure the surface membranes to the matrix layer. Since the rigid structure, whether hard tissue or rigid prosthesis, to which the prosthetic anchor is to be connected, will generally be moving relative to surrounding soft tissues, the peripheral margins of the anchor are generally tapered to a thin edge. The anchor is also adapted for mechanical fixation to the natural (e.g., bone) or prosthetic (e.g., metal plate) rigid structure and, more specifically, may be outfitted, for example, with simple holes for screws or anchors, or integrated pegs or hooks.
The features and objectives of the present invention will become more readily apparent from the following Detailed Description taken in conjunction with the accompanying drawings.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description given below, serve to explain the invention.
Part Numbers
The prosthetic anchor (36) of the present invention is configured for anchoring to a hard structure such as a prosthetic device or a bone, for the goals of minimizing material stress concentration inherent to such anchoring and minimizing height of the profile of the structure beyond the surface of that hard structure.
As best shown in
The deep and/or the superficial surface membranes (7, 8) may have one or more projections such as posts or needles, as further described below, that extend through openings in the elastomeric central layer (1) to provide counter force to fibers as fibers are tensed. In addition, it should be understood that the surface membranes (7, 8) are optional insofar as the central layer (1) may be adapted to function alone, or with one surface membrane (7 or 8), thereby defining the prosthetic anchor (36).
With further reference to
Specifically,
The next steps describe three general embodiments of non-limiting example of methods for stabilizing fibers and embedding them within the elastomer of the central wafer-like layer (1).
Accordingly,
Specifically, in step (q),
Dependent upon which method of making as above described has been employed, the appropriate surface membrane(s) (7, 8), such as a carbon-fiber composite or glass-fiber composite, may be applied, e.g. adhesively, to the elastomeric central layer (1) following curing, such as in multiple laminae, to the opposite surface(s) of the central layer (1) to form prosthetic anchor (36). It should be understood that the surface membranes (7, 8) may be optional insofar as the central layer (1) may be provided alone, i.e. without the surface membranes (7, 8), or with only one surface membrane (7 or 8), thereby defining the prosthetic anchor (36). Accordingly, it should be understood that the material of the central layer (1) may be modified to provide the desired flexibility or rigidity and can optionally, or in addition to a suitable polymer, include a carbon-fiber composite or glass-fiber composite with a matrix such as epoxy.
More specifically,
While the present invention has been illustrated by the description of the various embodiments thereof, and while the embodiments have been described in considerable detail, it is not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope or spirit of Applicant's general inventive concept.
Patent | Priority | Assignee | Title |
10251744, | Jan 27 2017 | ONKOS SURGICAL, INC | Soft tissue fixation device |
10265155, | Feb 12 2007 | The Trustees of Columbia University in the City of New York | Biomimmetic nanofiber scaffold for soft tissue and soft tissue-to-bone repair, augmentation and replacement |
10349980, | Aug 27 2009 | The Foundry, LLC | Method and apparatus for altering biomechanics of the shoulder |
10695094, | Aug 27 2009 | The Foundry, LLC | Method and apparatus for altering biomechanics of articular joints |
10898237, | Aug 24 2012 | The Foundry, LLC | Method and apparatus for altering biomechanics of the spine |
10918415, | Aug 01 2007 | ZKR ORTHOPEDICS, INC. | Method and system for patella tendon realignment |
10918416, | Aug 01 2007 | ZKR ORTHOPEDICS, INC. | Method and system for patella tendon realignment |
11241256, | Oct 15 2015 | The Foundry, LLC | Method and apparatus for altering biomechanics of the shoulder |
11517360, | Aug 27 2009 | The Foundry, LLC | Method and apparatus for treating canine cruciate ligament disease |
11730519, | Aug 27 2009 | The Foundry, LLC | Method and apparatus for force redistribution in articular joints |
11896476, | Jan 02 2020 | ZKR ORTHOPEDICS, INC | Patella tendon realignment implant with changeable shape |
8333803, | Nov 21 2008 | STOUT MEDICAL GROUP, L P | Reinforced biologic material |
8556990, | Feb 23 2009 | OSTEOGENICS BIOMEDICAL, INC | Reinforced PTFE medical barriers |
9278004, | Aug 27 2009 | The Foundry, LLC | Method and apparatus for altering biomechanics of the articular joints |
9421306, | Nov 21 2008 | STOUT MEDICAL GROUP, L P | Reinforced biologic material |
9468466, | Aug 24 2012 | The Foundry, LLC | Method and apparatus for altering biomechanics of the spine |
9668868, | Aug 27 2009 | The Foundry, LLC | Apparatus and methods for treatment of patellofemoral conditions |
9795410, | Aug 27 2009 | The Foundry, LLC | Method and apparatus for force redistribution in articular joints |
9808287, | Aug 01 2007 | ZKR ORTHOPEDICS, INC | Method and system for patella tendon realignment |
9861408, | Aug 27 2009 | The Foundry, LLC | Method and apparatus for treating canine cruciate ligament disease |
9931136, | Aug 27 2009 | The Foundry, LLC | Method and apparatus for altering biomechanics of articular joints |
Patent | Priority | Assignee | Title |
3595230, | |||
3725984, | |||
4149277, | Jun 22 1977 | General Atomic Company | Artificial tendon prostheses |
4187558, | Oct 25 1977 | Cutter Laboratories, Inc. | Prosthetic ligament |
4255820, | Jul 24 1979 | Artificial ligaments | |
4345601, | Apr 07 1980 | Continuous suturing device | |
4366459, | Jul 09 1981 | COMMUNICATIONS INSTRUMENTS, INC , A NC CORP | Miniature magnetic latch relay |
4453537, | Aug 04 1981 | Apparatus for powering a body implant device | |
4519392, | Oct 12 1982 | Hemostasing muscle clips for needleless surgery | |
4585458, | Jun 10 1981 | Means and method of implanting bioprosthetics | |
4597766, | Oct 26 1984 | Baxter International Inc | Implantable bioprosthetic tendons and ligaments |
4662886, | Jun 04 1984 | Surgicraft Limited | Surgical element |
4713075, | Jun 10 1981 | Method for the repair of connective tissue | |
4773910, | Aug 17 1987 | JOHNSON & JOHNSON CONSUMER PRODUCTS, INC | Permanent ligament prosthesis |
4790850, | Mar 14 1986 | Richards Medical Company | Phosthetic ligament |
4792336, | Mar 03 1986 | American Cyanamid Company | Flat braided ligament or tendon implant device having texturized yarns |
4846831, | Apr 27 1988 | Manual back-up drive for artificial heart | |
4917700, | Aug 01 1988 | Zimmer, Inc. | Prosthetic ligament |
4946377, | Nov 06 1989 | W L GORE & ASSOCIATES, INC | Tissue repair device |
4964414, | Aug 27 1987 | Research Development Cooperation of Japan; HANDA, YASUNOBU; HOSHIMIYA, NOZOMU; NEC SAN-EI INSTRUMENTS, LTD ; NIPPON SEISEN CO , LTD | Electrode for use in implanting in a living body |
5007920, | Mar 24 1989 | Tendon sectioning support clamp | |
5013304, | Feb 22 1989 | BFD, INC | Intravascular catheter assembly |
5049155, | Sep 10 1982 | W L GORE & ASSOCIATES, INC | Prosthesis for tensile-load-carrying tissue and method of manufacture |
5061283, | Jul 10 1989 | Stryker Technologies Corporation | Method for tendon and ligament repair |
5116372, | May 07 1986 | Artificial ligament in synthetic materials impregnated and coated with elastic resin and its coating procedure | |
5197983, | Apr 19 1988 | W L GORE & ASSOCIATES, INC | Ligament and tendon prosthesis |
5217495, | May 10 1989 | United States Surgical Corporation | Synthetic semiabsorbable composite yarn |
5263984, | Jul 20 1987 | REGEN BIOLOGICS, INC | Prosthetic ligaments |
5366459, | May 14 1987 | Surgical clip and clip application procedures | |
5409499, | Jun 18 1993 | Ethicon, Inc.; Ethicon, Inc | Biocompatible suture knot clip |
5411481, | Apr 08 1992 | Sherwood Services AG | Surgical purse string suturing instrument and method |
5417683, | Jul 13 1994 | Mini-graft hair implanting device for implanting multiple clumps of hair follicles at one time | |
5443504, | Sep 30 1991 | Basic skeletal muscle energy conversion system | |
5456715, | May 21 1993 | Implantable mechanical system for assisting blood circulation | |
5540705, | May 19 1995 | Intuitive Surgical Operations, Inc | Suturing instrument with thread management |
5584840, | Sep 05 1995 | Umbilical cord cutting and clamping device | |
5620452, | Dec 22 1994 | Surgical clip with ductile tissue penetrating members | |
5643308, | Feb 28 1995 | Method and apparatus for forming multiple cavities for placement of hair grafts | |
5667526, | Sep 07 1995 | Tissue retaining clamp | |
5697978, | Dec 30 1994 | Prosthetic element for the treatment of inguinal hernias, in particular by the celioscopic route | |
5722981, | Oct 08 1993 | Tahoe Surgical Instruments | Double needle ligature device |
5766250, | Oct 28 1996 | INNOVASIVE ACQUISITION CORP | Ligament fixator for a ligament anchor system |
5797932, | Apr 25 1996 | PARK, KONG-DEOK | Muscle clamping device |
5846255, | Jan 31 1996 | Casey Medical Products Limited | Surgical clip |
5849019, | Mar 09 1995 | Multifunctional spring clips and cartridges and applications therefor | |
5865836, | Sep 20 1996 | United States Surgical Corporation | Needle-suture combination |
5957977, | Jan 02 1996 | University of Cincinnati; CINCINNATI, UNIVERSITY OF, THE | Activation device for the natural heart including internal and external support structures |
5981827, | Nov 12 1996 | CALIFORNIA LOS ALAMOS NATIOANL LABORATORY, REGENTS OF THE UNIVERSITY OF | Carbon based prosthetic devices |
6159224, | Nov 27 1996 | Multiple needle suturing instrument and method | |
6165186, | Dec 18 1997 | VITALITEC INTERNATIONAL, INC | Vascular clamps and surgical retractors with directional filaments for tissue engagement |
6170415, | Nov 17 1998 | Brother Kogyo Kabushiki Kaisha | Sewing machine with multiple needles |
6214047, | Mar 10 1998 | CINCINNATI, UNIVERSITY OF | Article and method for coupling muscle to a prosthetic device |
6221103, | Jan 02 1996 | The University of Cincinnati; CINCINNATI, UNIVERSITY OF, THE | Device and method for restructuring heart chamber geometry |
6299621, | Jun 18 1999 | VITALITEC INTERNATIONAL, INC | Surgical clamp pads with elastomer impregnated mesh |
6312445, | Jun 21 1999 | VITALITEC INTERNATIONAL, INC | Vascular clamps and surgical retractors with directional filaments for tissue engagement |
6447524, | Oct 19 2000 | Ethicon Endo-Surgery, Inc | Fastener for hernia mesh fixation |
6689153, | Apr 16 1999 | Orthopaedic Biosystems Ltd, Inc. | Methods and apparatus for a coated anchoring device and/or suture |
6733510, | Jan 12 1999 | University of Cincinnati | Article and method for coupling muscle to a prosthetic device |
7601165, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable suture loop |
20030236575, | |||
20070129811, | |||
EP780107, | |||
FR2638349, | |||
WO2006074413, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 09 2006 | University of Cincinnati | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 18 2015 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jul 01 2019 | REM: Maintenance Fee Reminder Mailed. |
Dec 16 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 08 2014 | 4 years fee payment window open |
May 08 2015 | 6 months grace period start (w surcharge) |
Nov 08 2015 | patent expiry (for year 4) |
Nov 08 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 08 2018 | 8 years fee payment window open |
May 08 2019 | 6 months grace period start (w surcharge) |
Nov 08 2019 | patent expiry (for year 8) |
Nov 08 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 08 2022 | 12 years fee payment window open |
May 08 2023 | 6 months grace period start (w surcharge) |
Nov 08 2023 | patent expiry (for year 12) |
Nov 08 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |