The present invention provides a method of forming a rigid interconnect structure, and the device therefrom, including the steps of providing a lower metal wiring layer having first metal lines positioned within a lower low-k dielectric; depositing an upper low-k dielectric atop the lower metal wiring layer; etching at least one portion of the upper low-k dielectric to provide at least one via to the first metal lines; forming rigid dielectric sidewall spacers in at least one via of the upper low-k dielectric; and forming second metal lines in at least one portion of the upper low-k dielectric. The rigid dielectric sidewall spacers may comprise of SiCH, SiC, SiNH, SiN, or SiO2. Alternatively, the via region of the interconnect structure may be strengthened with a mechanically rigid dielectric comprising SiO2, SiCOH, or doped silicate glass.
|
1. An interconnect structure comprising:
a lower metal wiring level comprising first metal lines positioned within a dielectric stack including a lower low-k dielectric and a first rigid dielectric layer located atop said lower low-k dielectric, wherein each of said first metal lines has an upper surface that is coplanar with an upper surface of the first rigid dielectric layer;
a mechanically rigid dielectric positioned on said lower metal wiring level, said mechanically rigid dielectric comprising a plurality of metal filled vias; and
an upper metal wiring level atop said mechanically rigid dielectric, said upper metal wiring level comprising second metal lines positioned within a dielectric stack including an upper low-k dielectric and a second rigid dielectric layer located atop said upper low-k dielectric, said first and second rigid dielectric layers comprising silicon nitride or silicon carbide, where said plurality of metal vias electrically connect said lower metal wiring level and said upper metal wiring level, wherein said plurality of metal filled vias comprise a set of rigid dielectric sidewall spacers, wherein at least some of the rigid dielectric sidewall spacers have an upper surface that is coplanar with an upper surface of said plurality of metal filled vias, wherein a dielectric material for said rigid dielectric sidewall spacer is selected from the group consisting of SiCH, SiC, SiNH, SiN, and SiO2.
2. The interconnect structure of
3. The interconnect structure of
4. The interconnect structure of
5. The interconnect structure of
6. The interconnect structure of
7. The interconnect structure of
8. The interconnect structure of
9. The interconnect structure of
10. The interconnect structure of
11. The interconnect structure of
12. The interconnect structure of
|
This application is a divisional of U.S. application Ser. No. 11/873,300 filed Oct. 16, 2007, which is a divisional of U.S. application Ser. No. 11/558,959 filed Nov. 13, 2006, now U.S. Pat. No. 7,288,475, which is a divisional of U.S. application Ser. No. 10/707,811, filed Jan. 14, 2004, now U.S. Pat. No. 7,169,698.
The present invention relates generally to the manufacture of semiconductor devices, and more particularly to a method of forming an interconnect via through a low dielectric constant (k) dielectric material.
In the production of microelectronic devices, integrated circuits utilize multilevel wiring structures for interconnecting regions within devices and for interconnecting one or more devices within integrated circuits. Conventionally, forming interconnect structures begins with forming a lower level of wiring followed by the deposition of an interlevel dielectric layer and then a second level of wiring, where the first and second wiring levels may be connected by one or more metal filled vias.
Conventional interconnect structures employ one or more metal layers. Each metal layer is typically made from aluminum alloys or tungsten. Interlevel and intralevel dielectrics (ILDs), such as silicon dioxide (SiO2), are used to electrically isolate active elements and different interconnect signal paths from each other. The electrical connections between different interconnect levels are made through vias that are formed in the ILD layers. Typically, the vias are filled with a metal, such as tungsten.
Recently, there has been great interest to replace SiO2 with low-dielectric constant (“low-k”) materials as the intralevel and/or interlevel dielectrics in interconnect structures. Examples of low-k dielectrics include polymer-based low-k dielectric materials, which may or may not comprise a polymer, or carbon-doped oxide having a low dielectric constant. An example of a low-k b-staged polymer is SiLK™ (trademark of The Dow Chemical Company) having a composition including 95% carbon. An example of a low-dielectric carbon doped oxide is SiCOH. It is desirable to employ low-k materials as insulators in IC interconnect because these low-k materials reduce the interconnect capacitance. Accordingly, these low-k materials increase the signal propagation speed while reducing cross-talk noise and power dissipation in the interconnect.
The main problem with low-k materials is that they lack mechanical rigidity and easily crack when subjected to thermal and mechanical stresses. Conventionally, in via processing the interlevel dielectric layer is etched to provide an opening in which a metal interconnect is later formed to provide a means of communication between metal layers. Despite the ability of low-k materials to reduce the interconnect capacitance, forming via interconnects through low-k interlayer dielectrics having low mechanical strength produces a number of disadvantageous results. For example, if the dielectric is bent or is mechanically stressed, the interconnect metal may break within the via. Additionally, differences between the thermal coefficient of expansion of the metal interconnect and low-k interlevel and/or intralevel dielectrics produce further stresses that contribute to via breakage and chip failure.
Attempts to overcome the above disadvantages have resulted in further difficulties. For example, referring to
Additionally, refractory metals, such as Ta, are difficult to deposit using chemical vapor deposition. Therefore, the refractory metal liner 22 is typically deposited using sputter deposition. Sputter deposition fails to sufficiently deposit metal along the via 24 sidewalls of the low-k ILD dielectric 35. In order to deposit the required thickness of metal along the sidewalls of the via 24, a very thick layer of refractory metal 22 must be sputter deposited atop of the lateral surfaces. By increasing the thickness of the refractory metal liner 22, greater amounts of high resistance refractory metal is introduced into the via opening. Additionally, introducing high resistance refractory metal within the via opening 24 reduces the diameter of the low resistance component of the via interconnect 24 further increasing it's resistance.
In view of the above, a low resistivity via interconnect is needed having thin mechanically rigid dielectric layers.
An objective of the present invention is to provide a method for producing a low resistivity interconnect structure comprising mechanically rigid low-k interlevel and/or intralevel dielectric layers. A further object of the present invention is to provide a rigid interconnect structure comprising low-k dielectric materials with improved thermal-mechanical properties. The term “low-k” is used herein to denote a dielectric material having a dielectric constant preferably less than about 3.5. The term “low-resistivity” is used herein to denote a resistivity of 2.0 μΩ-cm or less.
The present invention advantageously provides a method for providing rigid via interconnects through low-k dielectric layers, in which structural rigidity is provided by a set of thin rigid insulating sidewall spacers that are positioned on the sidewalls of the via opening. In broad terms, the inventive method comprises:
providing a lower metal wiring layer having first metal lines positioned within a lower low-k dielectric;
depositing an upper low-k dielectric atop the lower metal wiring layer;
etching at least one portion of the upper low-k dielectric to provide at least one via to the first metal lines;
forming rigid dielectric sidewall spacers in at least one via of the upper low-k intralevel dielectric; and
forming second metal lines in at least one portion of the upper low-k dielectric.
More specifically, the rigid dielectric sidewall spacers may be formed by first depositing a conformal rigid dielectric liner within the via and atop the upper low-k dielectric using a conformal deposition process. Thereafter, the horizontal surfaces of the conformal rigid dielectric liner are etched with an anisotropic etching process, where the remaining portion of the rigid dielectric liner positioned on the via sidewalls forms the rigid dielectric spacers. The rigid dielectric spacers may be formed from any rigid insulating material including, but not limited to: SiCH, SiC, SiNH, SiN, or SiO2. The rigid dielectric sidewall spacers typically have a thickness ranging from about 10 nm to about 100 nm. The term “rigid” it is meant to denote that the elastic modulus is greater than 10 GPa, and preferably is greater than 50 GPa.
In broad terms, the above method produces an interconnect structure comprising:
a lower metal wiring level comprising first metal lines positioned within a lower low-k dielectric; and
an upper metal wiring level atop the lower metal wiring level, the upper metal wiring level comprising second metal lines positioned within an upper low-k dielectric;
a plurality of vias through a portion of the upper low-k dielectric electrically connecting the lower metal wiring level and the upper metal wiring level, wherein the plurality of vias comprise a set of rigid dielectric sidewall spacers.
More specifically, the rigid dielectric sidewall spacers of the above interconnect structure typically have a thickness ranging from about 10 nm to about 100 nm and may comprise SiCH, SiC, SiCOH, SiNH, SiN, or SiO2.
Another aspect of the present invention is a method of forming an interconnect structure having increased rigidity low-k dielectric layers and improved thermal mechanical strength. Increased rigidity and thermal mechanical strength may be provided by a rigid dielectric layer having a coefficient of thermal expansion (CTE) that substantially matches the via metal. Broadly, the inventive method comprises:
providing a lower metal wiring layer having first metal lines positioned within a lower low-k dielectric;
depositing a mechanically rigid dielectric atop the lower metal wiring layer;
forming at least one via to a portion of the first metal lines through the mechanically rigid dielectric; and
forming an upper metal wiring layer having second metal lines positioned within an upper low-k dielectric, the second metal lines are electrically connected to the first metal lines through the vias, wherein the vias comprises a metal having a coefficient of thermal expansion that substantially matches the mechanically rigid dielectric.
More specifically, the mechanically rigid dielectric may comprise SiO2, SiCOH, or F-doped glass and have a thickness that typically ranges from about 100 nm to about 1,000 nm, preferably being 300 nm. The mechanically rigid dielectric may comprise a coefficient of thermal expansion ranging from about 0.1 ppm/° C. to about 5.0 ppm/° C. The coefficient of thermal expansion of the mechanically rigid dielectric may be substantially matched to the coefficient of thermal expansion of the via metal. By reducing the differential in the coefficient of thermal expansion between the via metal and the mechanical rigid dielectric, the thermal mechanical stresses that may be produced at the interface of the via and the mechanical rigid dielectric are reduced.
In broad terms, the above method produces an interconnect structure comprising:
a lower metal wiring level comprising first metal lines positioned within a lower low-k dielectric;
a mechanically rigid dielectric positioned on the lower metal wiring level, the mechanically rigid dielectric comprising a plurality of metal vias, wherein the plurality of metal vias have a coefficient of thermal expansion that substantially matches the mechanically rigid dielectric; and
an upper metal wiring level atop the mechanically rigid dielectric, the upper metal wiring level comprising second metal lines positioned within an upper low-k dielectric, wherein the plurality of metal vias electrically connect the lower metal wiring level and the upper metal wiring level.
Specifically, the mechanically rigid dielectric may comprises SiO2, SiCOH, or doped silicate glass.
An interconnect structure, and method of forming thereof, will now be discussed in greater detail referring to the drawings accompanying the present invention. It is noted in the accompanying drawings like and corresponding elements are referred to by like reference numbers. Although the drawings show the presence of two wiring layers, the present invention is not limited to low resistance interconnect structures having only two wiring layers. Instead, the present invention works equally well with interconnect structure having a plurality of wiring levels, one over the other, in which a liner material enhances the rigidity of low-k dielectrics.
The present invention provides low resistance via interconnects through rigid low-k interlevel and intralevel dielectric layers. In one embodiment of the present invention, the rigidity of low-k dielectric layers in the interconnect structures is increased by a thin mechanically rigid liner lining the sidewall of a via opening in a low-k dielectric. In prior art methods, a high resistance refractory metal, i.e., TaN, was sputter deposited to protect the low-k dielectric layer via sidewalls during device processing and to strengthen the low-k dielectric regions in which via interconnects are formed. Sputter deposition is problematic, due in part, to the poor sputter rate and non-uniformity of the deposited refractory metal on via sidewalls.
In one embodiment, the present invention strengthens the low-k dielectric interconnect regions by depositing a rigid dielectric liner 11, preferably comprising SiC, by plasma enhanced chemical vapor deposition on the via 24 sidewalls of the low-k dielectric layer 6 and later processing the rigid dielectric liner 11 into rigid dielectric sidewall spacers 12, on which the via interconnect is formed 24, as depicted in
Referring to
Referring to
The lower low-k dielectric 32 may comprise conventional dielectric materials formed using suitable deposition processes including, but not limited to: CVD, PECVD, PVD, high density plasma CVD or spin on glass process. Preferably, the lower low-k dielectric 32 comprises a low-k dielectric having a thickness ranging from about 10 nm to about 1000 nm, preferably being 300 nm. The dielectric constant of the lower low-k dielectric 32 may be less than about 3.5, preferably ranging from about 1.0 to about 3.0.
Low-k dielectrics may include organic dielectrics such as low dielectric constant polymer dielectrics or may include low dielectric constant carbon-doped oxides. One example of a low-k dielectric polymer dielectric is SiLK™ (trademark of The Dow Chemical Company). Specifically, SiLK™ is a class of polymer-based low-k dielectric materials comprising a b-staged polymer having a composition including about 95% carbon. An example of a low dielectric constant carbon doped oxide is SiCOH.
A rigid dielectric layer 33 may be incorporated to strengthen the underlying low-k dielectric layer 32. The rigid dielectric layer 33 may be deposited using conventional deposition techniques and may comprise silicon nitride (Si3N4), silicon carbide (SiC) and silicon dioxide (SiO2), most preferably being silicon carbide (SiC). The rigid dielectric layer 33 may have a thickness ranging from about 5 nm to about 100 nm, preferably being 30 nm.
The lower etch stop layer 34 may be deposited by conventional chemical vapor deposition processes atop the first metal lines 26, rigid dielectric layer 33, and lower low-k dielectric 32. The lower etch stop layer 34 may comprise Si nitrides, oxynitrides, or carbide materials, i.e., silicon nitride (SixNy), silicon oxynitride (SiOxNy), or silicon carbide (SiCxOyNz), having a thickness ranging from about 10 nm to about 100 nm, preferably being about 50 nm.
An upper low-k dielectric layer 6 may be deposited on the lower etch stop layer 34 using conventional processes such as chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), physical vapor deposition (PVD), high density plasma CVD (HDPCVD) or spin-on processes. In one embodiment, the upper low-k dielectric 32 comprises a thickness ranging from about 10 nm to about 1000 nm, preferably being 300 nm. The upper low-k dielectric layer 6 and the lower low-k dielectric 32 may or may not comprise the same material. The upper low-k dielectric layer 6 preferably comprises SiLK™ as described above. Additionally, upper low-k dielectric layer 6 may have a dielectric constant of less than about 3.5, preferably ranging from about 1.0 to about 3.0.
Still referring to
Following the deposition of the upper rigid dielectric layer 36, an upper etch stop layer 7 may be deposited by conventional chemical vapor deposition processes. The upper etch stop layer 7 may comprise nitride or oxynitrides materials, i.e., silicon nitride (Si3N4) or silicon oxynitride (SiOxNy), having a thickness ranging from about 10 nm to about 100 nm, preferably being about 50 nm. The upper etch stop 7 most preferably comprises silicon nitride (Si3N4).
A dielectric cap layer 37 is then deposited atop the upper etch stop layer 7. The dielectric cap layer 37 may be formed using conventional deposition methods, i.e., chemical vapor deposition, or alternatively may be formed using thermal growth processes, i.e., thermal oxidation or nitridation. The dielectric cap layer 37 may be oxide, nitride, or oxynitride materials, preferably being silicon dioxide (SiO2). The dielectric cap layer 37 may have a thickness ranging from about 10 nm to about 200 nm, preferably being 50 nm.
Still referring to
Referring to
Referring to
Referring to
Referring to
Referring now to
Turning now to
Turning to
Turning now to
In an alternate embodiment, the conformal rigid insulating liner 11 may be deposited within the via 24 and atop the horizontal surface of the lower etch stop 34. In this embodiment, the conformal rigid insulating liner 11 is formed before the lower etch stop layer 34 is etched from the top surface of the first metal lines 26. Following the deposition of the conformal rigid insulating layer 11, a selective etch process is then conducted to remove the horizontal surfaces of the conformal rigid insulating layer 11 forming rigid insulating sidewall spacers 12 and to remove the lower etch stop layer 34 exposing the upper surface of the first metal lines 26.
Referring to
In this embodiment, rigidity is provided to the interconnect structure 10 by the rigid insulating sidewall spacers 12. Therefore, it is not necessary that the metal liner 13 provide rigidity to the structure and therefore does not require that a thick metal liner 11 be deposited. The metal liner 13 may increase the adhesion of the first metal wiring layer to subsequently deposited metals. The metal liner 13 may also function as a diffusion barrier between the lower metal wiring 26 and later deposited materials.
Following metal liner 13 formation, a second metal lines 25 and metal vias 16 are formed by depositing a metal. The metal may be copper, aluminum, silver, gold and alloys thereof, preferably being copper. The metal may be deposited by sputter deposition or by electroplating. Preferably, copper is deposited in a two-step process beginning with forming a copper seed layer (not shown) by sputter deposition and then electroplating copper atop the copper seed layer. Following metal deposition, the deposited metal is then planarized back and polished using chemical mechanical polishing techniques or similar planarization methods. The structure is planarized to the upper rigid layer 36, therefore removing the remaining portions of the cap dielectric layer 37 and the upper etch stop layer 7.
In another embodiment of the present invention, a mechanically rigid dielectric layer 35 is positioned between a lower metal wiring level 31 and an upper metal wiring level 45, where electrical communication between the first and second metal wiring levels is provided by interconnect vias extending through the mechanically rigid dielectric layer 35, as depicted in
Referring to
Although the mechanically rigid dielectric layer 35 may provide greater rigidity to the interconnect structure than the first embodiment, depicted in
Referring to
The lower low-k dielectric 32 may be formed using suitable processes such as CVD, PECVD, PVD, high density plasma CVD or spin-on glass process. The lower low-k dielectric 32 comprises a low-k dielectric having a thickness ranging from about 10 nm to about 1000 nm, preferably being 300 nm. Preferably the lower low-k dielectric 32 has a dielectric constant of less than about 3.5, preferably ranging from 1.0 to 3.0.
Low-k dielectrics may include organic dielectrics such as low dielectric constant polymer dielectrics or may include low dielectric constant carbon-doped oxides. One example of a low-k dielectric polymer dielectric is SiLK™ (trademark of The Dow Chemical Company). Specifically, SiLK™ is a class of polymer-based low-k dielectric materials comprising a b-staged polymer having a composition including about 95% carbon. An example of a low dielectric constant carbon doped oxide is SiCOH.
A rigid dielectric layer 33 may be incorporated to strengthen the underlying low-k dielectric layer 32. The rigid dielectric layer 33 may be deposited using conventional deposition techniques and may comprise silicon nitride (Si3N4), silicon carbide (SiC) and silicon dioxide (SiO2), most preferably being silicon carbide (SiC). The rigid dielectric layer may have a thickness ranging from about 10 nm to about 100 nm, preferably being 30 nm.
The first metal lines 26 may be formed within the lower low-k dielectric 32 by conventional methods, including but not limited to: photoresist application, photolithography patterning; pattern development; selectively etching lower rigid dielectric layer 33 and lower low-k dielectric 32; pattern strip; metal sputter deposition; and planarization. First metal lines 26 may comprise conventional wiring metals including, but not limited to: aluminum (Al), copper (Cu), tungsten (W), gold (Au) and silver (Ag) and alloys thereof. The first metal lines preferably comprise copper.
The lower etch stop layer 34 may be deposited by conventional chemical vapor deposition processes atop the first metal lines 26, rigid dielectric layer 33, and lower low-k dielectric 32. The lower etch stop layer 34 may comprise nitride or oxynitrides materials, i.e., silicon nitride (Si3N4) or silicon oxynitride (SiOxNy), having a thickness ranging from about 10 nm to about 100 nm, preferably being about 50 nm. The lower etch stop layer preferably comprises Si3N4.
The mechanically rigid dielectric 35 may be applied atop the lower etch stop layer 34 using conventional chemical vapor deposition processes, where the mechanically rigid dielectric 35 has a thickness ranging from about 100 nm to about 1,000 nm, preferably being 300 nm. Preferably, the mechanically rigid dielectric layer 35 may comprise oxides, such as SiO2; doped silicate glass, such as fluorinated silicate glass; or carbon doped oxides, such as SiCOH. Alternatively, the mechanically rigid dielectric 35 may be other dielectric materials including nitrides, oxynitrides, and other low-k dielectrics. The mechanically rigid dielectric 35 may also have a coefficient of thermal expansion that is matched to the interconnect metal. The coefficient of thermal expansion of the mechanically rigid dielectric 35 may range from about 0.1 ppm/° C. to about 5 ppm/° C., preferably being 1 ppm/° C. The dielectric constant of the mechanically rigid dielectric 35 may range from 2.5 to about 4.2, preferably being 3.2.
An upper low-k dielectric layer 23 can be deposited on the mechanically rigid dielectric 35 using conventional processes such as CVD, PECVD, PVD, high density plasma CVD or spin-on processes. In one embodiment, the lower low-k dielectric 23 comprises a low-k dielectric having a thickness ranging from about 10 nm to about 1000 nm, preferably being 300 nm. The upper low-k dielectric layer 23 and the lower low-k dielectric 32 may or may not comprise the same material. The upper low-k dielectric layer 23 preferably comprises SiLK™ as described above. The upper low-k dielectric layer 23 has a dielectric constant of less than about 3.5, preferably ranging from about 1.0 to about 3.0.
Still referring to
A dielectric cap layer 37 is then deposited atop the upper rigid dielectric layer 36. The dielectric cap layer 37 can be formed using conventional deposition methods, i.e., chemical vapor deposition, or alternatively may be formed using thermal growth processes, i.e., thermal oxidation or nitridation. The dielectric cap layer 37 may be oxide, nitride, or oxynitride materials, preferably being silicon dioxide (SiO2). The dielectric cap layer 37 may have a thickness ranging from about 10 nm to about 200 nm, preferably being 50 nm.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Turning now to
In a next process step, a high conductivity metal is deposited atop the metal liner 12. The high conductivity metal may comprise copper (Cu), silver (Ag), gold (Au), aluminum (Al) and alloys thereof. The high conductivity metal may be deposited by conventional metal deposition processes well known within the skill of the art, including but not limited to: plating, chemical vapor deposition, and sputter deposition. Preferably, copper is deposited in a two-step process beginning with forming a copper seed layer (not shown) by sputter deposition and then electroplating copper atop the copper seed layer. Following metal deposition the deposited metal is then planarized back and polished using chemical mechanical polishing techniques or similar planarization methods. The resultant structure is second metal lines 25, as depicted in
While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.
Stamper, Anthony K., Gambino, Jeffrey P.
Patent | Priority | Assignee | Title |
8420528, | Oct 28 2008 | KOKUSAI ELECTRIC CORPORATION | Manufacturing method of a semiconductor device having wirings |
Patent | Priority | Assignee | Title |
6043146, | Jul 27 1998 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Process for forming a semiconductor device |
6066557, | Dec 09 1998 | Advanced Micro Devices, Inc. | Method for fabricating protected copper metallization |
6100183, | May 29 1998 | United Microelectronics Corp | Method for fabricating a via |
6211069, | May 17 1999 | Taiwan Semiconductor Manufacturing Company | Dual damascene process flow for a deep sub-micron technology |
6265779, | Aug 11 1998 | Taiwan Semiconductor Manufacturing Company, Ltd | Method and material for integration of fuorine-containing low-k dielectrics |
6284657, | Feb 25 2000 | Chartered Semiconductor Manufacturing Ltd. | Non-metallic barrier formation for copper damascene type interconnects |
6287955, | Jun 09 1999 | AlliedSignal Inc. | Integrated circuits with multiple low dielectric-constant inter-metal dielectrics |
6291333, | Apr 07 2000 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Method of fabricating dual damascene structure |
6362093, | Aug 20 1999 | Taiwan Semiconductor Manufacturing Company | Dual damascene method employing sacrificial via fill layer |
6365529, | Jun 21 1999 | Intel Corporation | Method for patterning dual damascene interconnects using a sacrificial light absorbing material |
6380078, | May 11 2000 | Newport Fab, LLC | Method for fabrication of damascene interconnects and related structures |
6380084, | Oct 02 2000 | Chartered Semiconductor Manufacturing LTD | Method to form high performance copper damascene interconnects by de-coupling via and metal line filling |
6410426, | Jul 09 2001 | Texas Instruments Incorporated | Damascene cap layer process for integrated circuit interconnects |
6429115, | Feb 27 2001 | United Microelectronics Corp. | Method of manufacturing multilevel interconnects including performing a surface treatment to form a hydrophilic surface layer |
6440840, | Jan 25 2002 | Taiwan Semiconductor Manufactoring Company | Damascene process to eliminate copper defects during chemical-mechanical polishing (CMP) for making electrical interconnections on integrated circuits |
6444557, | Mar 14 2000 | International Business Machines Corporation | Method of forming a damascene structure using a sacrificial conductive layer |
6492270, | Mar 19 2001 | Taiwan Semiconductor Manufacturing Company | Method for forming copper dual damascene |
6812140, | Mar 26 2002 | Winbond Electronics Corporation | Method for contact profile improvement |
6815329, | Feb 08 2000 | GLOBALFOUNDRIES Inc | Multilayer interconnect structure containing air gaps and method for making |
6893956, | Oct 31 2002 | Advanced Micro Devices, Inc. | Barrier layer for a copper metallization layer including a low-k dielectric |
6987059, | Aug 14 2003 | Bell Semiconductor, LLC | Method and structure for creating ultra low resistance damascene copper wiring |
7052932, | Feb 24 2004 | Chartered Semiconductor Manufacturing Ltd. | Oxygen doped SiC for Cu barrier and etch stop layer in dual damascene fabrication |
7132363, | Mar 27 2001 | Advanced Micro Devices, Inc. | Stabilizing fluorine etching of low-k materials |
7211897, | Oct 30 2002 | Fujitsu Limited | Semiconductor device and method for fabricating the same |
20030060037, | |||
20040058547, | |||
20050101118, | |||
20050118796, | |||
20050153537, | |||
20050181598, | |||
20050196959, | |||
20060151887, | |||
20060197231, | |||
20080026566, | |||
20100197132, | |||
20100219529, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 01 2010 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Jun 29 2015 | International Business Machines Corporation | GLOBALFOUNDRIES U S 2 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036550 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S 2 LLC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S INC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Dec 07 2016 | GLOBALFOUNDRIES Inc | AURIGA INNOVATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041741 | /0358 |
Date | Maintenance Fee Events |
Jun 16 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 16 2015 | M1554: Surcharge for Late Payment, Large Entity. |
Apr 25 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 26 2023 | REM: Maintenance Fee Reminder Mailed. |
Dec 11 2023 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 08 2014 | 4 years fee payment window open |
May 08 2015 | 6 months grace period start (w surcharge) |
Nov 08 2015 | patent expiry (for year 4) |
Nov 08 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 08 2018 | 8 years fee payment window open |
May 08 2019 | 6 months grace period start (w surcharge) |
Nov 08 2019 | patent expiry (for year 8) |
Nov 08 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 08 2022 | 12 years fee payment window open |
May 08 2023 | 6 months grace period start (w surcharge) |
Nov 08 2023 | patent expiry (for year 12) |
Nov 08 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |