A combine harvester includes a dust suppressor arrangement including an air duct arrangement which is coupled between an enclosed zone, extending rearwardly from the discharge end of the feederhouse and above a transverse crop conveying arrangement, and a cleaner fan arrangement so that the fan arrangement draws dust-laden air through the duct arrangement from the zone and discharges the dust-laden air into the chaffer and sieve arrangement of the crop cleaning arrangement.
|
11. In a combine including a harvesting platform coupled for delivering harvested crop to an upwardly and rearwardly inclined feederhouse including an endless crop conveyor for moving crop from the platform to a transverse crop conveying rotor located rearwardly of, and adjacent to, a discharge end of said feederhouse, a cleaning arrangement being located beneath a crop processing assembly including said crop conveying rotor, the cleaning arrangement including a transverse cleaning fan arrangement for generating a blast of rearwardly directed air, the improvement comprising: a dust suppressor arrangement including said cleaning fan and further including an enclosed duct arrangement having an inlet end arrangement located in a zone extending between said endless crop conveyor and said crop conveying rotor, and having an outlet end arrangement located so as to be in communication with said cleaning fan arrangement, whereby said cleaning fan arrangement draws dust-laden air from said zone and discharges it within said air blast of rearwardly directed air.
1. An agricultural combine for harvesting, threshing and separating an agricultural crop, the combine comprising: a harvesting platform for gathering the crop; a feederhouse mounted for receiving crop from the platform and including a conveyor mechanism for conveying the crop rearwardly to a crop processing assembly including a transverse crop-conveying rotor located just rearwardly of the feederhouse for continuing rearward conveyance of the crop; a crop cleaning arrangement located beneath said crop processing assembly and including a cleaning fan arrangement for causing a rearwardly oriented blast of air at an outlet side thereof; and a dust suppressor arranged for preventing an accumulation of dust-laden air in an enclosed zone extending between an upper end of said feederhouse and an upper side of said crop conveying rotor, the dust suppressor including said cleaning fan and further including an air duct arrangement extending between said cleaning fan and said zone in such a manner that air discharged from said cleaning fan arrangement includes dust laden air drawn through said duct arrangement from said enclosed zone.
2. The combine, as defined in
3. The combine, as defined in
4. The combine, as defined in
5. The combine, as defined in
6. The combine, as defined in
7. The combine, as defined in
8. The combine, as defined in
9. The combine, as defined in
10. The combine, as defined in
12. The combine, as defined in
13. The combine, as defined in
14. The combine, as defined in
15. The combine, as defined in
16. The combine, as defined in
17. The combine, as defined in
18. The combine, as defined in
19. The combine, as defined in
|
The present invention relates to combine harvesters, and more particularly relates to dust suppressors for the feederhouses of such harvesters.
A problem long recognized to exist with the operation of combine harvesters is that of the airborne dust resulting from gathering the harvested crop and conveying the crop through the feederhouse toward the threshing system provided following the feederhouse. In particular, the flow of material through the feederhouse is met with an opposite airflow, caused by the backpressure of the cleaning fan and/or other processing elements which produces a large plume of dust exiting the feederhouse. This plume of dust obstructs the operator's view of the gathering head, which is desirable in order for the operator to discern any difficulties and make any necessary adjustments.
Over the years, various schemes have been attempted for alleviating the dust/visibility problem. Specifically, U.S. Pat. Nos. 3,094,829; 3,187,491; 3,213,598; 5,322,472 and 6,036,500 each disclose dust collection devices comprising collection chambers mounted at various locations along associated feederhouses, the chambers containing a fan and being in communication with the inside of the feederhouse so that the fan draws dust into the housing and expels it through discharge chutes arranged in various ways for discharging the dust at various locations including on the ground alongside the feederhouse, (first three and last of the cited patents) into the chaffer sieve or straw chopper (the fourth cited patent). Another type of device is disclosed in U.S. Pat. Nos. 3,669,224 and 6,979,261, which each include an air deflector located between the discharge end of the feederhouse, the deflector, in case of the first cited patent, being located so as to prevent an air stream generated by an undershot threshing cylinder from creating turbulence at the discharge end of the feederhouse by deflecting the air back to an underside of the threshing cylinder, with the deflector, in the case of the second-cited patent, being located so as to prevent backflow from a beater and to channel air exiting the feederhouse along a path passing over the deflector and into the processing chamber of an axial threshing rotor.
The prior art devices utilizing fans have the disadvantage that they are auxiliary or add-on devices which are not very cost effective, and the fan arrangements of some of the devices draw air in a direction opposite to that of crop flow and/or are prone to plugging. While the prior art devices utilizing air deflectors are cost effective, they are not entirely satisfactory since they interfere with crop flow and in instances where the crop processor elements are running slow, the air flow created is not sufficient to draw off the dust.
According to the present invention, there is provided a dust suppressor arrangement for a combine harvester, and more specifically, there is provided a dust suppressor arrangement which draws dust-laden air from the vicinity of the discharge end of the feederhouse.
A broad object of the invention is to provide a combine dust suppressor arrangement which is highly functional and cost effective.
A more specific object of the invention is to provide a dust suppressor arrangement which makes use of the combine grain cleaning fan for creating a flow of air for drawing off dust from a location between the discharge end of a feederhouse and the feed section of the grain separator.
The foregoing objects are accomplished by providing ductwork between the cleaning fan and a zone between the feederhouse and the feed section of the separator such that the cleaning fan creates a rearward air flow so as to be in the same direction as the material flow.
These and other objects will be apparent from a reading of the ensuing description together with the accompanying drawings.
Referring now to
A harvesting platform 18 mounted at a forward end of the combine 10 is used for harvesting a crop and directing it to a feederhouse 20, which contains an endless conveyor 22 for conveying the harvested crop from an outlet of the platform 18 to an undershot crop feed beater 24. The beater 24 directs the crop upwardly along a guide plate 26 to an inlet in a lower front region of an axial crop processing assembly 28, noting that the beater 24 and guide plate 26 could be considered part of the crop processing assembly 28.
The crop processing assembly 28 illustrated in
Referring now also to
The crop processing assembly 28 further includes right- and left-hand, substantially cylindrical rotor housings 38R and 38L in which are respectively located right- and left-hand threshing and separating rotors 40R and 40L, the rotors each having a central tubular rotor body 42, with a front part of each rotor body having a forwardly tapered, frusto-conical shape and being fixed to a forwardly projecting stub shaft 44, which is received for rotating within a bearing assembly 46 fixed to the frame cross member 36. Rear stub shafts (not shown) are fixed to a rear region of the rotor bodies and are mounted for rotation within bearings fixed to a rear frame cross member. An upright support plate 48, having a function described below, has a lower central region fixed to a top surface of the short leg of the inverted L-shaped cross frame member 36 at a central region between the rotor housings 38R and 38L. Opposite sides of the support plate 48 are shaped complimentary to, and are respectively fixed to, forward ends of the adjacent curved side portions of the rotor housings 38R and 38L. Vertical side walls (
Fixed to front frusto-conical part of each of the rotor bodies 42 are helical conveying elements 56, which cooperate with spiral vanes 58 fixed to the inside of the front part of each of the rotor housings 38R and 38L in order to feed crop material rearwardly within the housings. Thus, the forward parts of the housings 38R and 38L and of the rotors 40R and 40L define an infeed section 60. Immediately downstream from the infeed section 60 is a threshing section 62, and downstream from the threshing section 62 is a separating section 63.
The crop processing assembly 28 threshes and separates the harvested crop material as it travels through the threshing section 62. Grain and chaff fall through grates 64, embodied in a lower half of each of the rotor housings 38R and 38L, to a cleaning arrangement 66 supported beneath the crop processing assembly 28.
The cleaning arrangement 66 includes a cleaning fan arrangement 68 which creates a blast of rearwardly and upwardly directed air that removes chaff from the grain, with the clean grain being directed to a clean grain elevator (not shown). The clean grain elevator deposits the clean grain in a grain tank 70 located behind the cab 16 and which can be unloaded by an unloading auger 72. Meanwhile, the separated chaff is ejected out the rear of the combine 10. The residual crop material that has been threshed and separated includes neither grain nor chaff and is discharged rearwardly from the crop processing assembly 28 into a discharge beater 74, which, in turn, propels the residual crop material out the rear of the combine 10.
Referring now also to
The present invention is provided for ameliorating the just-mentioned condition. Specifically, referring now also to
An air duct arrangement 100 is provided which extends between opposite end locations of each of the fan housings 52 and upper, opposite side and middle locations of the enclosed zone 54. More specifically, the air duct arrangement 100 is formed in part by the right and left side frame members 32 and 34, respectively, which are each defined by tubes having a rectangular cross section, with front sections 102 and 104, respectively of the frame members 32 and 34 defining fore-and-aft extending portions of right and left air ducts 106R and 106L. The ducts 106R and 106L respectively include right and left upstanding, tubular portions 108 and 110 having upper ends joined to rear ends of the frame sections 102 and 104, and having respective lower ends mounted to upper rear locations at outer ends of each of the fan housings 90 so as to be in communication with the interiors of the housings so that fan blades 112, carried by the drive shaft 92, draw dust-laden air through the ducts 106R and 106L and discharge the air upwardly into the chaffer and sieve arrangement 98. A further air duct 114 is mounted centrally between the ducts 104R and 104L and includes a fore-and-aft extending duct portion 116 having a rear end joined to an inverted Y-shaped duct portion 118.
The fore-and-aft extending duct portion 116 is formed in part by the rotor housings 38R and 38L. Specifically, the duct portion 116 includes a three-sided top 120 having opposite, fore-and-aft extending edges which abut, and are fixed to, facing sides of the housings 38R and 38L, and having a relatively narrow, rectangular bottom 122 extending parallel to a top wall of the top section, with opposite edges of the bottom 122 abutting the rotor housings 38R and 38L at respective locations spaced below the top 120. Thus, the top 120, rotor housing side walls and bottom 122 cooperate to form the duct portion 116. As can best be seen in
The upright, inverted Y-shaped duct portion 118 has upper and lower ends of the stem of the Y respectively joined to a rear end of the fore-and-aft extending duct section 116, and to upper ends of right and left branches 128R and 128L having lower ends respectively coupled to inner ends of the housings 90 of the right and left cleaning fans 88R and 88L so that the blades 112 of the cleaning fans draw dust-laden air in from the enclosed zone 54 and discharges this air upwardly into the chaffer and sieve arrangement 98.
While the combine shown is equipped with a twin threshing and separating rotor and is provided with the cleaning fan arrangement 68 which includes two cleaning fans 88R and 88L, it is to be understood that the present invention would work just as well with a combine having only one threshing and separating rotor and only one cleaning fan, in which case the center air duct 114 would be omitted.
Referring now to
The dust suppressor of the present invention resides in the combination of a tubular air duct arrangement 140 and the cleaning fan arrangement 68. Specifically, the duct arrangement 140 has an inlet end arrangement located in communication with an enclosed zone 142 extending between the rear of the feeder house 20 and above the cylinder 134, and has an outlet arrangement in communication with the blades 112 of the cleaning fan arrangement 68 so that dust-laden air is drawn from the zone 142 and expelled in the air blast that is directed upwardly through the chaffer and sieve arrangement
Thus, it will be appreciated that the cleaning fan arrangement 68 acts not only to generate and direct air blasts across the cleaning arrangement 66 for cleaning chaff from grain, but also acts, together with the air duct arrangement 100 or 140 to cause a positive flow of air in the rearward direction of crop flow through the combine 10 or 130 so as to draw dust-laden air from the enclosed zone 54 or 142 and discharge such air through the cleaning arrangement 66 and, in that way, serve as a feederhouse dust suppressor. Accordingly, no extra fan components and associated fan drive systems are necessary for suppressing dust laden air, which results in a cost savings over prior art systems which use auxiliary fans and drives.
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.
Pearson, Mark L., Mackin, Ryan P
Patent | Priority | Assignee | Title |
10986777, | Apr 25 2018 | BLUE LEAF I P , INC | Vented side member for an agricultural vehicle |
11147214, | Jun 26 2019 | Deere & Company | Combine with a pre-thresher |
11266072, | May 10 2019 | Deere & Company | Separator module for an agricultural machine |
11291160, | May 25 2018 | BLUE LEAF I P , INC | Agricultural harvester and a dust extractor for the agricultural harvester |
11771008, | Mar 19 2019 | Combine crop trash removal system | |
8920226, | May 17 2012 | BLUE LEAF I P , INC , | Intake feeder system for a combine harvester |
9668425, | Dec 04 2014 | AGCO Corporation | Debris screen for combine harvester grain cleaning fan |
9686917, | Dec 05 2014 | AGCO Corporation | Debris screen for combine harvester grain cleaning fan |
9706714, | Jul 10 2014 | CLAAS Selbstfahrende Erntemaschinen GmbH | Inlet head housing for an axial separating device |
Patent | Priority | Assignee | Title |
2832187, | |||
3094829, | |||
3187491, | |||
3213598, | |||
3392832, | |||
3669124, | |||
4501282, | Dec 06 1980 | MASSEY COMBINES CORPORATION, A CORP OF ONTARIO | Combine harvester crop in-feed conveyor |
4753296, | Sep 23 1985 | RIEBEL, DAVID M | Vegetable harvester |
4866919, | Nov 11 1985 | Harvestaire Pty Ltd. | Air assisted harvesting means |
5322472, | Nov 12 1992 | Combine harvester with dust collection | |
5368522, | Apr 14 1993 | CNH America LLC; BLUE LEAF I P , INC | Feeder-rotor assembly for combines |
5595537, | Feb 11 1994 | Claas Ohg Beschrankt Haftende Offene Handelsgesellschaft | Self-propelling harvester thresher |
6036600, | Jun 02 1998 | Combine dust eliminator | |
6193772, | Apr 15 1999 | CLAAS KGaA | Self-propelled harvesting machine having a selectively engageable suction cleaning device of a filter |
6974487, | Jun 05 2002 | CLAAS Selbstfahrende Erntemaschinen GmbH | Cooling air cleaning device for a harvesting machine |
6979261, | Oct 15 2004 | Deere & Company | Dust reducing airflow diverter for combine |
7507270, | Jul 15 2005 | Deere & Company | Agricultural working vehicle with air scoop for air intake system |
20070135935, | |||
20100267432, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 24 2010 | PEARSON, MARK L | Deere & Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024909 | /0133 | |
Aug 24 2010 | MACKIN, RYAN P | Deere & Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024909 | /0133 | |
Aug 27 2010 | Deere & Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 22 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 22 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 22 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 22 2014 | 4 years fee payment window open |
May 22 2015 | 6 months grace period start (w surcharge) |
Nov 22 2015 | patent expiry (for year 4) |
Nov 22 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 22 2018 | 8 years fee payment window open |
May 22 2019 | 6 months grace period start (w surcharge) |
Nov 22 2019 | patent expiry (for year 8) |
Nov 22 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 22 2022 | 12 years fee payment window open |
May 22 2023 | 6 months grace period start (w surcharge) |
Nov 22 2023 | patent expiry (for year 12) |
Nov 22 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |