Embodiments of the invention relate to a state-monitoring memory element. The state-monitoring memory element may have a reduced ability to retain a logic state than other regular memory elements on an IC. Thus, if the state-monitoring memory elements fails or loses state during testing, it may be a good indicator that the IC's state retention may be in jeopardy, possibly requiring the IC to be reset. The state-monitoring memory element may be implemented by degrading an input voltage supply to the state-monitoring memory element across a diode and/or a transistor. One or more current sources may be used to stress the state-monitoring memory element. A logic analyzer may be used to analyze the integrity of the state-monitoring memory element and trigger appropriate actions in the IC, e.g., reset, halt, remove power, interrupt, responsive to detecting a failure in the state-monitoring memory element. Multiple state-monitoring memory elements may be distributed in different locations on the IC for better coverage.
|
6. A method, comprising:
configuring a state-monitoring memory element to have a reduced ability to retain a logic state compared to a normal memory element, by using a circuit element that is distinct from the state-monitoring memory element to cause the reduced ability detecting a failure by the state-monitoring memory element to retain an initial logic state responsive to an input supply voltage coupled to the state-monitoring memory element dropping below a threshold voltage;
generating an indicator of failure responsive to detecting the failure by the state-monitoring memory element earlier than a failure of the normal memory element; and
generating an interrupt signal in response to detecting the failure in the state-monitoring memory element.
12. A system, comprising:
means for configuring a state-monitoring memory element to have a reduced ability to retain a logic state compared to a normal memory element, such that the state-monitoring memory element is more likely to experience logic state loss before the normal memory element when an input supply voltage associated with the state-monitoring memory element drops below a threshold voltage; and
a failure detection element configured to detect a failure by the state-monitoring memory element to retain the logic state by comparing an initial logic state of the state-monitoring memory element with a current logic state of the state-monitoring memory element, and further configured to generate an indicator of failure responsive to detecting the failure by the state-monitoring memory element.
1. A system, comprising:
at least one state-monitoring memory element having a reduced ability to retain a logic state compared to a normal memory element, the at least one state-monitoring memory element configured to lose the logic state before the normal memory element when a degraded input supply voltage drops below a threshold voltage;
a circuit element, distinct from the at least one state-monitoring memory element, configured to cause the at least one state-monitoring memory element but not the normal memory element to have the reduced ability; and
a failure detection element configured to detect a failure by the at least one state-monitoring memory element to retain the logic state and responsive to the detection to generate an indicator of the failure, and wherein the failure detection element is further configured to issue an interrupt signal to a system processor.
2. The system of
3. The system of
a voltage supply circuit configured to degrade an input voltage and to provide the degraded input voltage to the at least one state-monitoring memory element,
wherein the voltage supply circuit comprises one of a diode, a transistor, or a combination thereof.
4. The system of
5. The system of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
13. The system of
14. The system of
15. The system of
16. The system of
|
This application claims the benefit of U.S. Provisional Application No. 60/912,399, filed Apr. 17, 2007, which is incorporated herein by reference.
The present disclosure relates generally to Integrated Circuits (ICs), and more particularly to a state-monitoring memory element to detect potential failures in ICs.
In many IC applications, some means for monitoring a voltage state of certain elements on the IC are needed. For example, when an input voltage supply to one or more elements on the IC falls below a certain voltage threshold, a “reset” signal might be generated to reset the IC in order to avoid damage to the IC.
A voltage detector circuit implementing a low voltage detection function may be used to monitor the voltage state of the elements on the IC. The voltage detector circuit may include a voltage divider coupled to a field effect transistor (FET). A scaled input voltage taken across the voltage divider may be supplied to the gate input of the FET. If an input voltage supply is high, the FET will be turned on, in which case the voltage detector circuit does not issue a reset signal. On the other hand, if the input voltage supply drops below a certain voltage threshold, the FET will be turned off, and the voltage detector circuit generates a reset signal to reset the IC. The above-described voltage detector circuit incurs high power consumption since the resistive voltage divider constantly drains current from the input voltage supply. In addition, since the voltage detector circuit requires a certain voltage threshold to turn on the FET, the voltage threshold required to trigger the reset signal may not be low enough. As a result, unnecessary reset signal may occur at the output of the voltage detector circuit.
A system comprises at least one state-monitoring memory element having a reduced ability to retain a logic state compared to a normal memory element; and a failure detection element, such as a logic analyzer, to detect a failure in the state-monitoring memory element and to generate an indicator of failure responsive to the detection. The system may comprise a voltage supply circuit to degrade an input voltage and to provide the degraded input voltage to the state-monitoring memory element, wherein the voltage supply circuit comprises one of a diode or a transistor. Alternatively, the system may comprise at least one current source to stress the state-monitoring memory element.
A method includes configuring the state-monitoring memory element to have a reduced ability to retain a logic state compared to a normal memory element; detecting a failure in the state-monitoring memory element; and generating an indicator of failure responsive to detecting the failure in the state-monitoring memory element. The method includes degrading an input voltage across one of a diode or a transistor. At least one current source may be coupled to the state-monitoring memory element to stress the state-monitoring memory element. The method further includes presetting the state-monitoring memory element to a logic state and detecting if the state-monitoring memory element loses the preset logic state after a power transient.
The foregoing and other objects, advantages and features will become more readily apparent by reference to the following detailed description in conjunction with the accompanying drawings.
Referring to
Although
As shown in
Similarly, a diode (not shown) and/or a transistor device (e.g., NMOS transistor 92) may be coupled to the negative power supply of the state-monitoring memory element 30 to degrade the voltage supply to the state-monitoring memory element 30 using the same principle described above. For example, as shown in
One or more current sources, such as 80a, 80b, may be coupled to the state-monitoring memory element 30 to stress the state-monitoring memory element 30 due to the load current that flows through the state-monitoring memory element 30. These current sources may degrade the voltage at output 32 below the degraded VDD 65, and thus compromising the state-retention ability of the state-monitoring memory element 30. It should be noted that the current in the current sources 80a and 80b may be small, e.g. on the order of 10 nA.
The state-monitoring memory element 30 may be initialized by writing it with a logic state, e.g., “1”. After degrading the voltage supply of the state-monitoring memory element 30 to a certain voltage value, the state-monitoring memory element 30 may fail or lose its memory state, in which case the state-monitoring memory element 30 may output a “0 to the logic analyzer 40 (assuming that the state-monitoring memory element has been initialized with a logic state of “1”). It should be noted that the state-monitoring memory element 30 may be initialized to a logic state other than logic state “1”, e.g., logic state “0”, such that failures many be detected on either logic state “1” or “0”. The logic analyzer 40 analyzes the output 32 of the state-monitoring memory element 30 to determine whether the state-monitoring memory element 30 has failed or lost its memory state. If the logic analyzer 40 detects a failure in the state-monitoring memory element 30, the logic analyzer 40 may issue a signal 33 to trigger appropriate actions in the IC 100, such as resetting the IC 100, halting the IC 100, removing power, or generating an interrupt.
The above describes various means that may be used to degrade the state-retention ability of the state-monitoring element 30, such as by coupling a diode, a transistor device, current sources, or a combination thereof, to the state-monitoring memory element 30. The voltage threshold required to trigger a reset signal may be controlled to reduce the occurrence of unnecessary resets in the IC 100. In addition, the circuit 300 consumes less power than the resistive voltage divider mentioned earlier.
A logic analyzer 40 is used in the IC 100 to analyze the integrity of the respective state-monitoring memory elements. In some embodiments, state-monitoring memory element 1, state-monitoring memory element 2, . . . , and state-monitoring memory element n, may each be initialized by writing to it a logic state, e.g., 1. After degrading the input voltages V1, V2, . . . , Vn for the respective state-monitoring memory element to a certain voltage value, one or more of these state-monitoring memory elements may fail or lose its memory state. For example, if the initial logic state in the respective state-monitoring memory elements is “1”, the state-monitoring element may lose the original logic state due to a voltage drop in the respective input voltages, in which case the logic state in the state-monitoring memory element may be “0”. It should be noted that these state-monitoring memory elements may each be initialized to a logic state other than logic state “1”, e.g., logic state “0”, such that failures may be detected on either logic state “1” or “0”. The logic analyzer 40 analyzes the output of the respective state-monitoring memory elements to determine whether one or more of the state-monitoring memory elements have lost the memory state. If the logic analyzer 40 detects that any one of these state-monitoring memory elements fails or loses its memory state, the logic analyzer 40 may issue a signal 42 to trigger appropriate actions in the IC 100, such as resetting the IC, halting the IC, removing power, or generating an interrupt. For example, a reset signal may be sent to a central processor unit (not shown) to possibly reset the IC 100. The array of state-monitoring memory elements may be distributed in different locations in the IC 100 for better coverage.
Embodiments of the invention relate to a state-monitoring memory element for detecting potential IC failures. Embodiments of the invention allow for an accurate detection of potential IC failures, while consuming less power. The state-monitoring memory element may have a reduced ability to retain a logic state than other regular memory elements on an IC. Thus, if the state-monitoring memory elements fails or loses state during testing, it may be a good indicator that the IC's state retention may be in jeopardy, possibly requiring the IC to be reset. The state-monitoring memory element may be implemented as a register, a memory cell, a latch, or an array of registers or memory cells. The state-monitoring memory element may be degraded by dropping an input voltage supply across a diode, a transistor, or a combination of both. At least one current source may be used to stress the state-monitoring memory element. A logic detector may be used to analyze the integrity of the state-monitoring memory element. The logic analyzer may trigger appropriate actions in the IC responsive to detecting a failure of the state-monitoring memory element. Multiple state-monitoring memory elements may be distributed in different locations on the IC for better coverage.
Further modifications and alternative embodiments of this invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of carrying out the invention. Various changes may be made in the shape, size and arrangement and types of components or devices. For example, equivalent elements or materials may be substituted for those illustrated and described herein, and certain features of the invention may be utilized independently of the use of other features, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Alternative embodiments are contemplated and are within the spirit and scope of the following claims.
Williams, Timothy, Sheets, Michael
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5500823, | Apr 14 1993 | Mitel Semiconductor Limited | Memory defect detection arrangement |
5530673, | Apr 08 1993 | Renesas Electronics Corporation | Flash memory control method and information processing system therewith |
5708589, | Apr 08 1996 | Vaughn Manufacturing Corporation | Error recovery system for an energy controller for an electric water heater |
5956279, | Feb 06 1997 | SAMSUNG ELECTRONICS CO , LTD | Static random access memory device with burn-in test circuit |
6101617, | Oct 02 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer failure recovery and alert system |
6215352, | Jan 28 1998 | Renesas Electronics Corporation | Reference voltage generating circuit with MOS transistors having a floating gate |
6256754, | Jul 28 1995 | Round Rock Research, LLC | Memory system having internal state monitoring circuit |
6754101, | May 21 2002 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Refresh techniques for memory data retention |
6853598, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Non-volatile memory with test rows for disturb detection |
6901014, | May 27 2002 | SAMSUNG ELECTRONICS, CO , LTD | Circuits and methods for screening for defective memory cells in semiconductor memory devices |
7193901, | Apr 13 2005 | Intel Corporation | Monitoring the threshold voltage of frequently read cells |
7283410, | Mar 13 2006 | GOOGLE LLC | Real-time adaptive SRAM array for high SEU immunity |
7616509, | Jul 13 2007 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Dynamic voltage adjustment for memory |
20070091698, | |||
20080049507, | |||
EP802631, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 19 2007 | Cypress Semiconductor Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Nov 22 2014 | 4 years fee payment window open |
May 22 2015 | 6 months grace period start (w surcharge) |
Nov 22 2015 | patent expiry (for year 4) |
Nov 22 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 22 2018 | 8 years fee payment window open |
May 22 2019 | 6 months grace period start (w surcharge) |
Nov 22 2019 | patent expiry (for year 8) |
Nov 22 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 22 2022 | 12 years fee payment window open |
May 22 2023 | 6 months grace period start (w surcharge) |
Nov 22 2023 | patent expiry (for year 12) |
Nov 22 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |