An array antenna module includes multiple antenna assemblies. Each antenna assembly generally includes a first radiating element and a second radiating element spaced apart from the first radiating element and capacitively coupled thereto. A first transmission line is capacitively coupled to the first radiating element, and a second transmission line is electrically coupled to the first radiating element by a connector. The antenna assembly is operable to transmit at least one or more signals to at least one or more wireless application devices and/or to receive at least one or more signals from at least one or more wireless application devices. The first radiating element, second radiating element, first transmission line, and/or second transmission line are coupled to substrates. And at least one or more of the substrates may include epoxy resin bonded glass fabric such as, for example, flame retardant 4.
|
21. An array antenna module having an array of antenna assemblies, each antenna assembly comprising:
a first radiating element;
a second radiating element spaced apart from the first radiating element and capacitively coupled to the first radiating element;
a first transmission line capacitively coupled to the first radiating element;
a second transmission line; and
a connector electrically coupling the second transmission line and the first radiating element.
1. An antenna assembly configured for use with at least one or more wireless application devices, the antenna assembly comprising:
a first radiating element;
a second radiating element spaced apart from the first radiating element and capacitively coupled to the first radiating element;
a first transmission line capacitively coupled to the first radiating element;
a second transmission line; and
a connector electrically coupling the second transmission line and the first radiating element;
whereby the antenna assembly is operable to transmit at least one or more signals to at least one or more wireless application devices and/or to receive at least one or more signals from at least one or more wireless application devices.
29. An array antenna module comprising:
first, second, and third spaced apart substrates, the first, second, and third substrates being positioned in a generally stacked orientation such that the second substrate is disposed generally between the first and third substrates, at least one or more of the first, second, and third substrates including epoxy resin bonded glass fabric;
multiple first and second pairs of radiating elements, a first radiating element of each pair being coupled to the second substrate and a second radiating element of each pair being coupled to the first substrate in a stacked orientation relative to the first radiating element of its pair; and
first and second transmission line networks interconnecting each of the multiple first and second pairs of radiating elements for use in feeding at least one or more signals to the multiple first and second pairs of radiating elements, the first transmission line network being operable for feeding the at least one or more signals to the multiple first and second pairs of radiating elements at a first polarization, and the second transmission line network being operable for feeding the at least one or more signals to the multiple first and second pairs of radiating elements at a second polarization.
48. An array antenna module comprising:
first, second, and third spaced apart printed circuit boards positioned in a generally stacked orientation such that the second printed circuit board is disposed generally between the first and third printed circuit boards, at least one or more of the first, second, and third printed circuit boards including epoxy resin bonded glass fabric;
multiple pairs of driven and parasitic patches, a driven patch of each pair being etched on an upper surface of the second printed circuit board, and a parasitic patch of each pair being etched on an upper surface of the first printed circuit board in a stacked orientation relative to its paired driven patch;
first and second transmission line networks interconnecting each of the multiple pairs of driven and parasitic patches for feeding at least one or more signals to the multiple pairs of driven and parasitic patches for transmission to at least one or more wireless application devices, the first transmission line network being etched on a lower surface of the second printed circuit board and the second transmission line network being etched on a lower surface of the third printed circuit board, the first transmission line network being capacitively coupled to each pair of driven and parasitic patches; and
multiple electrical connectors connecting the second transmission line network to each driven patch of each pair of driven and parasitic patches;
whereby the first transmission line network is operable for feeding the at least one or more signals to the multiple pairs of driven and parasitic patches at a first polarization, and the second transmission line network is operable for feeding the at least one or more signals to the multiple pairs of driven and parasitic patches at a second polarization.
2. The antenna assembly of
3. The antenna assembly of
4. The antenna assembly of
5. The antenna assembly of
7. The antenna assembly of
8. The antenna assembly of
9. The antenna assembly of
10. The antenna assembly of
11. The antenna assembly of
12. The antenna assembly of
13. The antenna assembly of
14. The antenna assembly of
15. The antenna assembly of
19. The array antenna module of
22. The array antenna module of
23. The array antenna module of
24. The array antenna module of
25. The antenna assembly of
26. The array antenna module of
30. The array antenna module of
31. The array antenna module of
32. The array antenna module of
33. The array antenna module of
34. The array antenna module of
35. The array antenna module of
36. The array antenna module of
37. The array antenna module of
38. The array antenna module of
39. The array antenna module of
40. The array antenna module of
41. The array antenna module of
42. The array antenna module of
43. The array antenna module of
44. The array antenna module of
45. The array antenna module of
46. The array antenna module of
49. The array antenna module of
50. The array antenna module of
|
The present disclosure relates generally to antenna modules, and more particularly to dual-polarized antenna modules, for example, for use with wireless application devices, etc.
This section provides background information related to the present disclosure which is not necessarily prior art.
Wireless application devices, such as laptop computers, cellular phones, wireless monitoring devices, etc. are commonly used in wireless operations. And such use is continuously increasing. Consequently, additional frequency bands are required (at lowered costs) to accommodate the increased use, and antenna assemblies capable of handling the additional different frequency bands are desired.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
Example embodiments of the present disclosure are generally directed toward antenna assemblies configured for use with at least one or more wireless application devices. In one example embodiment, an antenna assembly generally includes a first radiating element and a second radiating element spaced apart from the first radiating element and capacitively coupled thereto. A first transmission line is capacitively coupled to the first radiating element, and a second transmission line is electrically coupled to the first radiating element by a connector. The antenna assembly is operable to transmit at least one or more signals to at least one or more wireless application devices and/or to receive at least one or more signals from at least one or more wireless application devices.
Example embodiments of the present disclosure are also generally directed toward array antenna modules. In one example embodiment, an array antenna module generally includes an array of antenna assemblies. Each antenna assembly generally includes a first radiating element, a second radiating element spaced apart from the first radiating element and capacitively coupled to the first radiating element, a first transmission line capacitively coupled to the first radiating element, a second transmission line, and a connector electrically coupling the second transmission line and the first radiating element.
In another example embodiment, an array antenna module generally includes first, second, and third spaced apart substrates. The first, second, and third substrates are positioned in a generally stacked orientation such that the second substrate is disposed generally between the first and third substrates. At least one or more of the first, second, and third substrates includes epoxy resin bonded glass fabric. The example array antenna module also includes multiple first and second pairs of radiating elements. A first radiating element of each pair is coupled to the second substrate and a second radiating element of each pair is coupled to the first substrate in a stacked orientation relative to the first radiating element of its pair. First and second transmission line networks are provided for interconnecting each of the multiple first and second pairs of radiating elements and for use in feeding at least one or more signals to the multiple first and second pairs of radiating elements. The first transmission line network is operable for feeding the at least one or more signals to the multiple first and second pairs of radiating elements at a first polarization, and the second transmission line network is operable for feeding the at least one or more signals to the multiple first and second pairs of radiating elements at a second polarization.
In another example embodiment, an array antenna module generally includes first, second, and third spaced apart printed circuit boards positioned in a generally stacked orientation such that the second printed circuit board is disposed generally between the first and third printed circuit boards. At least one or more of the first, second, and third printed circuit boards includes flame retardant 4. The example array antenna module also generally includes multiple pairs of driven and parasitic patches. A driven patch of each pair is etched on an upper surface of the second printed circuit board, and a parasitic patch of each pair is etched on an upper surface of the first printed circuit board in a stacked orientation relative to its paired driven patch. First and second transmission line networks are provided for interconnecting each of the multiple pairs of driven and parasitic patches and for feeding at least one or more signals to the multiple pairs of driven and parasitic patches for transmission to at least one or more wireless application devices. The first transmission line network is etched on a lower surface of the second printed circuit board and the second transmission line network is etched on a lower surface of the third printed circuit board. Further, the first transmission line network is capacitively coupled to each pair of driven and parasitic patches. Multiple electrical connectors connect the second transmission line network to each driven patch of each pair of driven and parasitic patches. The first transmission line network is operable for feeding the at least one or more signals to the multiple pairs of driven and parasitic patches at a first polarization, and the second transmission line network is operable for feeding the at least one or more signals to the multiple pairs of driven and parasitic patches at a second polarization.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and/or methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
According to various aspects of the present disclosure, array antenna modules (and antenna assemblies suitable for use with array antenna modules) are provided suitable for operation over multiple different frequency bandwidths. For example, the array antenna modules may be suitable for operation over frequency bandwidths including, for example, GSM 850, GSM 900, GSM 1800, GSM 1900, UMTS 2100, Wi-Fi 2400, Wi-Fi 5000, etc. In addition, the array antenna modules may be used, for example, in systems and/or networks and/or devices such as those associated with cellular systems, wireless internet service provider (WISP) networks, broadband wireless access (BWA) systems, wireless local area networks (WLANs), wireless application devices, etc.
Array antenna modules of the present disclosure may also receive and/or transmit one or more signals from and/or to systems, networks, and/or devices. For example, antenna assemblies of the array antenna modules can include dual-polarized antenna assemblies that can enable substantially simultaneous transmission and/or reception of at least two or more independent signals. Moreover, the dual-polarized antenna assemblies can also enable operation of multiple-input multiple-output (MIMO) systems, where multiple signals are transmitted and received at both ends of the link, and signal processing encodes and decodes the actual data.
With reference now to the drawings,
As shown in
The first feed network 108 and the second feed network 110 are each positioned within generally parallel planes. And in the illustrated embodiment each defines a substantially similar network pattern. The network pattern of the second feed network 110 (
In other example embodiments, array antenna modules may include more than or fewer than sixteen antenna assemblies and/or antenna assemblies oriented differently across the array antenna modules than disclosed herein. For example, antenna assemblies may be generally oriented in two-by-two arrays, three-by-three arrays, two-by-eight arrays, four-by-three arrays, other size arrays, etc. within the scope of the present disclosure. In addition, array antenna modules may include feed networks having different network patterns and/or different angular orientations and/or connecting lines with different orientations than disclosed herein within the scope of the present disclosure. For example, at least one or more different corporate feed networks and/or series-fed networks may be used. In one example embodiment, for example, an array antenna module includes first and second feed networks wherein the first and second feed networks are generally similarly aligned but wherein the first feed network includes a first network pattern and the second feed network includes a second, different network pattern.
The illustrated array antenna module 100 also generally includes four spaced apart, stacked layers of substrates 118, 120, 122, and 124. First and second substrates 118 and 120 are located generally toward the upper portion of the array antenna module 100 (
A ground plane 128 is positioned generally parallel to and generally between the second and third substrates 120 and 122 (and generally separates the upper portion of the array antenna module 100 from the lower portion of the array antenna module 100). The ground plane 128 may include, for example, a metallic material (e.g., aluminum-plated steel, tin-plated steel, brass, etc.), etc. within the scope of the present disclosure. In
In the illustrated embodiment, the first substrate 118 includes a singled-sided printed circuit board (PCB) having circuitry (e.g., filters, oscillators, mixers, power amplifiers, etc.) for use in helping control operation of the array antenna module 100 (e.g., on an upper surface of the PCB, etc.). The second substrate 120 includes a double-sided PCB also having circuitry for use in helping control operation of the array antenna module 100 (e.g., on an upper and/or lower surface of the PCB, etc.). And the third substrate 122 includes a single-sided PCB having circuitry for use in helping control operation of the array antenna module 100 (e.g., on a lower surface of the PCB, etc.). The PCBs of the first, second, and/or third substrates 118, 120, and/or 122 may at least partially include epoxy resin bonded glass fabric (e.g., flame retardant 4 (FR4), etc.) in their constructions to help reduce product costs and to help improve operation thereof. In other example embodiments, PCBs may include other materials in their constructions, for example, low cost PCB construction materials, etc. In still other example embodiments, PCBs may include other substrate materials in their constructions, for example, polytetrafluoroethene (PTFE), etc.
The fourth substrate 124 includes a back plate (or support plate, etc.) for use in supporting the array antenna module 100 and/or coupling the array antenna module 100 to a network, system, etc. as desired. The back plate may include, for example, a metallic material, etc. within the scope of the present disclosure. The fourth substrate 124 may further provide a grounding surface behind the second feed network 110.
With reference now to
Feed-point spacers 140 (only one is shown in
The antenna assemblies 104 of the illustrated array antenna module 100 will now be described. Each of the antenna assemblies 104 is substantially similar. Accordingly, the antenna assembly 104 illustrated in
The illustrated antenna assembly 104 generally includes a pair of patches, including a driven patch 144 (broadly, a radiating element) and a parasitic patch 146 (broadly, a radiating element). The driven patch 144 is coupled to (e.g., etched on, etc.) the second substrate 120 (e.g., to a PCB of the second substrate 120 in communication with circuitry of the PCB, etc.). And the parasitic patch 146 is coupled to (e.g., etched on, etc.) the first substrate 118 (e.g., to a PCB of the first substrate 118 in communication with circuitry of the PCB, etc.). Both the driven patch 144 and the parasitic patch 146 are positioned generally above the ground plane 128.
The parasitic patch 146 is spaced apart from (and separated from) the driven patch 144 generally by the air layer 132 between the first and second substrates 118 and 120. In this position, the parasitic patch 146 is capacitively coupled to the driven patch 144. In addition, the parasitic patch 146 is located generally above the driven patch 144 such that the patches 144 and 146 are positioned in a generally stacked orientation. Further, in the illustrated embodiment, the driven patch 144 is generally larger than the parasitic patch 146 such that the parasitic patch 146 is located generally above (e.g., stacked generally above, etc.) the driven patch 144 within a footprint defined by the driven patch 144. And the driven patch 144 and the parasitic patch 146 are both generally planar in shape and are further positioned in a generally parallel relative orientation.
With continued reference to
As shown in
As previously stated, the illustrated array antenna module 100 may receive signals from and/or transmit signals to select systems, networks, devices, etc. as desired. For example, the first and second feed networks 108 and 110 can feed desired signals (e.g., via the first and second ports 112 and 114, etc.) to one or more of the antenna assemblies 104 disposed across the array antenna module 100 for transmission to at least one or more wireless application devices. In so doing, the first feed network 108 operates to capacitively feed the desired signals to the antenna assemblies 104 (e.g., to the driven patches 144 and/or the parasitic patches 146 of the antenna assemblies 104, etc.), and the second feed network 110 directly feeds the desired signals to the antenna assemblies 104 (e.g., to the driven patches 144 of the antenna assemblies 104, etc.) via the pins 156. The driven patch 144 is configured (e.g., sized, shaped, constructed, etc.) to provide, for example, one or more resonances at one or more desired bandwidths of frequencies (e.g., 4.9 GHz to 5.9 GHz, other desired bandwidths of frequencies, etc.). And the parasitic patch 146, which is capacitively coupled to the driven patch 144, is configured to introduce additional resonances at upper frequencies of the selected bandwidths, for example, to help improve the bandwidth at the upper frequencies. The coupling of the parasitic patch and the driven patch allows for additional bandwidth by exploiting the height of the parasitic patch (and the bandwidth that that it provides) in addition to the production of an additional resonance. The parasitic patch can thus help increase the bandwidth of the antenna assembly.
The illustrated array antenna module 100 includes antenna assemblies 104 having slant forty-five degree polarizations. And when used to transmit signals to at least one or more wireless application devices, the first feed network 108 operates to provide (e.g., feed, etc.) a first polarization of the desired signals to the antenna assemblies 104, and the second feed network 110 operates to provide (e.g., feed, etc.) a second polarization of the desired signals to the antenna assemblies 104. For example, the first and second polarizations of the desired signals may be shifted, offset, etc. +/−forty-five degrees (and a total of ninety degrees). The slant forty-five degree operation is based on the mounting of the array antenna module 100 such that one polarization is +45 degrees and the second polarization is −45 degrees, with the array antenna module 100 generally appearing as a diamond. In other example embodiments, array antenna modules may have other polarizations (e.g., other than slant forty-five degree polarizations, etc.) within the scope of the present disclosure.
With reference now to
The illustrated radiation patterns generally indicate that the example array antenna module exhibits, at the least, relatively low side lobe values (e.g., relatively low interference with unintended receivers, etc.), generally good front-to-back ratio, and relatively low cross-polarization (e.g., low interaction with opposite polarizations, etc.). And overall, the example array antenna module exhibits good performance.
In one example embodiment of the present disclosure, an array antenna module is operable over a bandwidth of frequencies between about 4.9 GHz and about 5.9 GHz. The example array antenna module includes sixteen slant forty-five degree antenna assemblies disposed generally over the array antenna module. And the array antenna module includes a length dimension of about 200 millimeters (mm), a width dimension of about 200 mm, and a thickness dimension of about 11 mm. In operation, the example array antenna module exhibits a gain of about 17 decibels isotropic (dBi), a cross-polarization of about 15 dB, a port-to-port isolation of about 20 dB, and a voltage standing wave ratio (VSWR) of about 2.0:1. And azimuth and elevation beam widths of the example array antenna module are each about 15 degrees nominal. Overall, the example array antenna module of this embodiment exhibits good performance.
In other example embodiments, array antenna modules may include at least one or more antenna assemblies having two or more parasitic patches together with a driven patch. The additional parasitic patches may operate to further increase bandwidth of the at least one or more antenna assemblies.
It should be appreciated that example array antenna modules disclosed herein may be suitable for operating at one or more different bandwidths of frequencies, including, for example, 500-700 megahertz (MHz), 2.1-2.7 GHz, 3.3-3.8 GHz, 4.9-5.9 GHz, etc. However, the bandwidths of frequencies included herein should not be considered limiting as example array antenna modules may be suitable for operating at one more other bandwidths of frequencies within the scope of the present disclosure.
It should also be appreciated that array antenna modules disclosed herein include angularly offset feed networks and/or angled connecting lines that may help improve gain in the array antenna module and/or that may help isolate the feed networks and help reduce, inhibit, etc. interference. For example, the feed networks may be angularly offset about ninety-degrees, etc., and connecting lines may be at least partially relatively angled to form, for example, about thirty-five degree angles, etc. (e.g., to help position feed networks within space constrained areas of array antenna modules, etc.). In addition, the array antenna modules include slant forty-five degree antenna assemblies that may help improve gain for the modules. These feed networks (e.g., their orientations, constructions, network patterns, etc.) may allow for materials other than traditional microwave laminates to be used for substrates of the array antenna modules, such as, for example, epoxy resin bonded glass fabric materials (e.g., flame retardant 4 (FR4), etc.), etc.
In addition, array antenna modules of the present disclosure may include PCBs comprising epoxy resin bonded glass fabric materials (e.g., flame retardant 4 (FR4), etc.). Use of these materials may provide enhanced performance as well as reduced cost as compared to using PCBs comprising traditional microwave laminates.
Numerical dimensions, values, and specific materials are provided herein for illustrative purposes only. The particular dimensions, values and specific materials provided herein are not intended to limit the scope of the present disclosure.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.
Patent | Priority | Assignee | Title |
10135133, | May 26 2016 | The Chinese University of Hong Kong | Apparatus and methods for reducing mutual couplings in an antenna array |
10263332, | Sep 18 2017 | Apple Inc. | Antenna arrays with etched substrates |
11611156, | May 26 2022 | ISCO International, LLC | Dual shifter devices and systems for polarization rotation to mitigate interference |
11705629, | Mar 31 2022 | ISCO International, LLC | Method and system for detecting interference and controlling polarization shifting to mitigate the interference |
11705645, | May 26 2022 | ISCO International, LLC | Radio frequency (RF) polarization rotation devices and systems for interference mitigation |
11705940, | Aug 28 2020 | ISCO International, LLC | Method and system for polarization adjusting of orthogonally-polarized element pairs |
11757206, | May 26 2022 | ISCO International, LLC | Multi-band polarization rotation for interference mitigation |
11817627, | Mar 31 2022 | ISCO International, LLC | Polarization shifting devices and systems for interference mitigation |
11837794, | May 26 2022 | ISCO International, LLC | Dual shifter devices and systems for polarization rotation to mitigate interference |
11876296, | Mar 31 2022 | ISCO International, LLC | Polarization shifting devices and systems for interference mitigation |
11881909, | Aug 28 2020 | ISCO International, LLC | Method and system for mitigating interference by rotating antenna structures |
11949168, | Mar 31 2022 | ISCO International, LLC | Method and system for driving polarization shifting to mitigate interference |
11949489, | Oct 17 2022 | ISCO International, LLC | Method and system for improving multiple-input-multiple-output (MIMO) beam isolation via alternating polarization |
11956027, | Aug 28 2020 | ISCO International, LLC | Method and system for mitigating interference by displacing antenna structures |
11956058, | Oct 17 2022 | ISCO International, LLC | Method and system for mobile device signal to interference plus noise ratio (SINR) improvement via polarization adjusting/optimization |
11985692, | Oct 17 2022 | ISCO International, LLC | Method and system for antenna integrated radio (AIR) downlink and uplink beam polarization adaptation |
11990976, | Oct 17 2022 | ISCO International, LLC | Method and system for polarization adaptation to reduce propagation loss for a multiple-input-multiple-output (MIMO) antenna |
12057895, | Aug 28 2020 | ISCO International, LLC | Method and system for mitigating passive intermodulation (PIM) by performing polarization adjusting |
8514134, | Feb 27 2009 | MOBITECH CORP | MIMO antenna having parasitic elements |
9000991, | Nov 27 2012 | TE Connectivity Solutions GmbH | Antenna assemblies including dipole elements and Vivaldi elements |
9755311, | May 29 2012 | SAMSUNG ELECTRONICS CO , LTD | Circularly polarized patch antennas, antenna arrays, and devices including such antennas and arrays |
ER8419, | |||
ER993, |
Patent | Priority | Assignee | Title |
4929959, | Mar 08 1988 | Comsat Corporation | Dual-polarized printed circuit antenna having its elements capacitively coupled to feedlines |
5382959, | Apr 05 1991 | Ball Aerospace & Technologies Corp | Broadband circular polarization antenna |
5995047, | Nov 14 1991 | Dassault Electronique | Microstrip antenna device, in particular for telephone transmissions by satellite |
6067053, | Dec 14 1995 | CommScope Technologies LLC | Dual polarized array antenna |
6885342, | Feb 08 2000 | Q-Free ASA | Antenna for transponder |
6956528, | Apr 30 2001 | KWANGWOON UNIVERSITY RESEARCH INSTITUTE OF INDUSTRY COOPERATION | Broadband dual-polarized microstrip array antenna |
6982672, | Mar 08 2004 | Intel Corporation | Multi-band antenna and system for wireless local area network communications |
7327317, | Jul 16 2003 | Huber + Suhner AG | Dual-polarized microstrip patch antenna |
7423595, | Dec 02 2005 | HMD Global Oy | Dual-polarized microstrip structure |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 14 2009 | Laird Technologies, Inc. | (assignment on the face of the patent) | / | |||
Jan 23 2009 | MORROW, JARRETT D | LAIRD TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022167 | /0540 |
Date | Maintenance Fee Events |
May 21 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 29 2019 | REM: Maintenance Fee Reminder Mailed. |
Jan 13 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 06 2014 | 4 years fee payment window open |
Jun 06 2015 | 6 months grace period start (w surcharge) |
Dec 06 2015 | patent expiry (for year 4) |
Dec 06 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 06 2018 | 8 years fee payment window open |
Jun 06 2019 | 6 months grace period start (w surcharge) |
Dec 06 2019 | patent expiry (for year 8) |
Dec 06 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 06 2022 | 12 years fee payment window open |
Jun 06 2023 | 6 months grace period start (w surcharge) |
Dec 06 2023 | patent expiry (for year 12) |
Dec 06 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |