A v-type engine is disposed in an engine room of a vehicle so that each cylinder bank of the v-type engine extends substantially in a vehicle length direction. exhaust manifolds are attached to both side of the v-type engine in a vehicle width direction, respectively. Catalytic converters are attached to both gathering portions of the exhaust manifolds, respectively, in a manner that an axial line of each of the catalytic converters extends substantially in a vehicle height direction. An auxiliary component is disposed above one of the catalytic converters in the engine room. An oil pan is attached to a lower portion of the v-type engine. The one of the catalytic converters is located lateral to the oil pan. A center line of lower portion of the oil pan is shifted with respect to a center line of the vehicle in the vehicle width direction so that the lower portion of the oil pan is away from the one of the catalytic converters.
|
1. An exhaust device of a v-type engine for a vehicle, the v-type engine disposed in an engine room of the vehicle so that each cylinder bank of the v-type engine extends substantially in a vehicle length direction, the exhaust device comprising:
exhaust manifolds attached to both side of the v-type engine in a vehicle width direction, respectively;
catalytic converters attached to both gathering portions of the exhaust manifolds, respectively, in a manner that an axial line of each of the catalytic converters extends substantially in a vehicle height direction; and
a brake booster disposed above one of the catalytic converters in the engine room;
wherein an oil pan is attached to a lower portion of the v-type engine;
wherein the one of the catalytic converters is located lower than the other of the catalytic converters;
wherein the one of the catalytic converters is located lateral to the oil pan; and
wherein a center line of lower portion of the oil pan is shifted with respect to a center line of the vehicle in the vehicle width direction so that the lower portion of the oil pan is away from the one of the catalytic converters.
2. The exhaust device as set forth in
wherein a mount device which supports the v-type engine on the vehicle is located in front of the one of the catalytic converters in the vehicle length direction;
wherein an inlet portion of the one of the catalytic converters is located in the rear of the mount device in the vehicle length direction so as not to be covered by the mount device as seen from the front of the vehicle;
wherein the one of the catalytic converters is arranged such that the axial line thereof is downwardly inclined toward the rear of the vehicle at a first inclination angle;
wherein the other of the catalytic converters is arranged such that the axial line thereof is downwardly inclined toward the rear of the vehicle at a second inclination angle; and
wherein the first inclination angle is larger than the second inclination angle.
|
The disclosure of Japanese Patent Application No. 2007-105416 filed on Apr. 13, 2007 including specification, drawings and claims is incorporated herein by reference in its entirety.
The present invention relates to an exhaust device of a V-type engine for a vehicle, which is disposed in an engine room of the vehicle.
In a V-type engine for a vehicle, each cylinder bank is arranged in an engine room in the front side of the vehicle. The cylinder bank is directed in a longitudinal direction of the vehicle (a vehicle length direction). An exhaust device of the V-type engine has exhaust manifolds attached to both side portions of the V-type engine in the vehicle width direction, a catalytic converter is attached to a gathering portion of each exhaust manifold in a manner that an axial line of the catalytic converter is extended in a lower direction of the vehicle and one catalytic converter is arranged in a lower portion of an auxiliary machine component in the engine room. In this exhaust device, the catalytic converters are symmetrically arranged in both side portions in the vehicle width direction of the V-type engine in many cases.
In this connection, Patent Document 1 proposes the following constitution. In order to enhance the durability of an air-ratio sensor by decreasing an atmospheric temperature in the periphery of the catalytic converter in the engine room, passage-like duct portions are arranged in both side portions of a heat shielding plate for covering a front face of the catalytic converter.
Patent Document 2 proposes the following constitution. In a transverse V-type engine, a lower end portion of the front side exhaust manifold and a lower end portion of the rear side exhaust manifold are joined to each others so as to compose a single exhaust pipe. In a portion of the exhaust pipe in the front of the engine, a catalytic converter is arranged so that components attached in the periphery of the catalytic converter can be prevented from being thermally deteriorated.
In the above described related-art V-type engine for a vehicle, the following problems may be encountered. When catalytic converters are symmetrically arranged in both side portions in the vehicle width direction of V-type engine, it is difficult for auxiliary machine components to be arranged in portions except for the upper portions of both the catalytic converters. Accordingly, the auxiliary machine components must be necessarily arranged above both the catalytic converters. In this case, the auxiliary machine components are thermally deteriorated by the heat transmitted from the catalytic converters. Therefore, the durability is lowered.
It is therefore an object of the present invention is to provide an exhaust device of a V-type engine for a vehicle, capable of preventing a heat deterioration of the auxiliary machine components and a decline of the durability, which is caused by the heat deterioration, by suppressing a heat transfer from the catalytic converter to the auxiliary machine components.
In order to accomplish the above objects, according to an aspect of the present invention, there is provided an exhaust device of a V-type engine for a vehicle, the V-type engine disposed in an engine room of the vehicle so that each cylinder bank of the V-type engine extends substantially in a vehicle length direction, the exhaust device comprising: exhaust manifolds attached to both side of the V-type engine in a vehicle width direction, respectively; and catalytic converters attached to both gathering portions of the exhaust manifolds, respectively, in a manner that an axial line of each of the catalytic converters extends substantially in a vehicle height direction; wherein an auxiliary component is disposed above one of the catalytic converters in the engine room; wherein an oil pan is attached to a lower portion of the V-type engine, wherein the one of the catalytic converters is located lateral to the oil pan; and wherein a center line of lower portion of the oil pan is shifted with respect to a center line of the vehicle in the vehicle width direction so that the lower portion of the oil pan is away from the one of the catalytic converters.
With the above configuration, the one of catalytic converters which is disposed below the auxiliary component is located lateral to the oil pan which is attached to the lower portion of the V-type engine. Therefore, a space formed between the catalytic converter and the auxiliary component is extended and the heat transfer from the catalytic converter to the auxiliary component is suppressed. Accordingly, the heat deterioration of the auxiliary component and the decline of the durability caused by the heat deterioration of the auxiliary component can be prevented.
Since the one of the catalytic converters is located at a position where a large amount of air current flows when the vehicle is running, the one of the catalytic converters can be effectively cooled by the air current and a rise in the temperature of the one of the catalytic converters can be suppressed. Accordingly, it is possible to reduce a quantity of heat transfer from the one of the catalytic converters to the auxiliary component.
Since the lower portion of the oil pan is well separated from the one of the catalytic converters in the vehicle width direction, the amount of the air current which flows at the side of the lower portion of the oil pan can be increased. With the air current, the one of the catalytic converters can be more effectively cooled and a rise in the temperature can be enough suppressed.
A mount device which supports the V-type engine on the vehicle may be located in front of the one of the catalytic converters in the vehicle length direction; and an inlet portion of the one of the catalytic converters may be located in the rear of the mount device in the vehicle length direction so as not to be covered by the mount device as seen from the front of the vehicle.
In the catalytic converter, the temperature of the inlet portion tends to be high relative to that of the other portion. With the above configuration, the inlet portion of the one of the catalytic converter can be effectively cooled by the air current passing through the mount device. Therefore, a rise in the temperature of the one of the catalytic converters can be suppressed. Therefore, a heat transfer from the one of the catalytic converter to the auxiliary component which is located above the one of the catalytic converters can be suppressed. Accordingly, a heat deterioration of the auxiliary component and a decline of the durability caused by the heat deterioration of the auxiliary component can be more effectively prevented.
The one of the catalytic converters may be disposed obliquely so that the axial line thereof extends obliquely in the vehicle height direction, thereby forming a space below a block heater attached to a cylinder block of the V-type engine. The auxiliary component may include at least one of a brake booster and a block heater.
With the above configuration, since the one of the catalytic converters which is located below the auxiliary component is disposed obliquely, a large space can be formed below the block heater. Accordingly, a heat transfer from the one of the catalytic converters to the block heater can be suppressed and the block heater can be effectively cooled by the air current which flows through the space. Therefore, a rise in the temperature of the block heater can be prevented, which enhances the durability and the operation stability of the block heater.
The above objects and advantages of the present invention will become more apparent by describing in detail preferred exemplary embodiments thereof with reference to the accompanying drawings, wherein:
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
The vehicle 1 shown in
As shown in
As shown in
In this connection, as shown in
As shown in
In the side view, as shown in
Further, as shown in
As shown in
As shown in
In the exhaust device as described above, when exhaust gas, which is generated when the V-type engine 5 is driven, flows into the right and the left catalytic converters 24R, 24L through the right and the left exhaust manifolds 23R, 23L, the exhaust gas is purified. Then the exhaust gas passes in the right and the left exhaust pipes 28R, 28L and flows into the gathering portion 29. After the exhaust gas has gathered in the gathering portion 29, it flows from the exhaust pipe 30 to the catalytic converter 31 and is purified again. Then, the exhaust gas flows from the exhaust pipe 32 to the sub-muffler 33 so as to deaden a noise. After that, the exhaust gas flows into the main muffler 35 through the exhaust pipe 34. In the main muffler 35, a noise of the exhaust gas is deadened again and then the exhaust gas is discharged into the atmosphere from the exhaust pipe 36.
When the vehicle is running, air current flows from the front of the vehicle into the inside of the vehicle through an opening formed on a bumper which is provided in the front of the vehicle. The air current inside the vehicle flows through the recessed tunnel 16 and downside of the floor 20, and then flows outside of the vehicle.
In the exhaust device of the present embodiment, since the right converter 24R, which is located below the auxiliary machine component such as the brake booster 25 and the block heater 26, is located lateral to the oil pan 27 which is attached to a lower portion of the V-type engine 5, a space formed among the catalytic converter 24R, the brake booster 25 and the block heater 26 is expanded and a heat transfer from the catalytic converter 24R to the brake booster 25 and the block heater 26 can be suppressed. Therefore, it is possible to prevent a heat deterioration of the brake booster 25 and the block heater 26. Further, it is possible to prevent a deterioration of the durability caused by the heat deterioration.
Especially, since the right catalytic converter 24R is located at a position where a large amount of the air current flows when the vehicle is running, the entire catalytic converter 24R can be effectively cooled by the air current. Accordingly, a rise in the temperature of the catalytic converter 24R can be suppressed and a heat transfer to the brake booster 25 and the block heater 26 can be reduced.
Since the lower portion 27a of the oil pan 27 is well separated from the right catalytic converter 24R in the vehicle width direction, it is possible to increase the amount of the air current flowing at the side of the oil pan 27. By this air current, the catalytic converter 24R can be more effectively cooled and the temperature rise can be suppressed.
Further, in the present embodiment, the inlet portion 24a of the right catalytic converter 24R is located in the rear of the right mount device 7R so as not to be covered by the right mount device 7R as seen from the front of the vehicle (see
In the present embodiment, the right catalytic converter 24R is arranged in a manner that an axis of the right catalytic converter 24R is extended obliquely downward toward the outside of the vehicle. Therefore, as shown in
In the case explained above, the present invention is applied to the embodiment of the exhaust device of the V-type 6-cylinder engine that is longitudinally disposed in a four-wheel drive vehicle. Of course, the present invention can be applied to an exhaust device of a V-type engine having a plurality of cylinders.
Although the present invention has been shown and described with reference to specific preferred embodiments, various changes and modifications will be apparent to those skilled in the art from the teachings herein. Such changes and modifications as are obvious are deemed to come within the spirit, scope and contemplation of the invention as defined in the appended claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5531291, | Jul 24 1992 | Mazda Motor Corporation | Power plant for automobile |
5713330, | Aug 27 1991 | Mazda Motor Corporation | Internal combustion engine with supercharger |
6374600, | Apr 26 2000 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle engine exhaust system |
6470867, | Aug 25 2000 | Honda Giken Kogyo Kabushiki Kaisha | Multi cylinder internal combustion engine comprising a cylinder head internally defining exhaust passages |
6799540, | Aug 25 2000 | Honda Giken Kogyo Kabushiki Kaisha | Multi cylinder internal combustion engine comprising a cylinder head internally defining exhaust passages |
6901748, | May 14 2003 | Detroit Diesel Corporation | Heater system for diesel engines having a selective catalytic reduction system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 04 2008 | Suzuki Motor Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Dec 13 2014 | 4 years fee payment window open |
Jun 13 2015 | 6 months grace period start (w surcharge) |
Dec 13 2015 | patent expiry (for year 4) |
Dec 13 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 13 2018 | 8 years fee payment window open |
Jun 13 2019 | 6 months grace period start (w surcharge) |
Dec 13 2019 | patent expiry (for year 8) |
Dec 13 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 13 2022 | 12 years fee payment window open |
Jun 13 2023 | 6 months grace period start (w surcharge) |
Dec 13 2023 | patent expiry (for year 12) |
Dec 13 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |