A surgical access device for surgical instruments comprises a housing with an instrument port and zero closure valve. A cannula is disposed distally relative the housing. The cannula comprises a distal end, a proximal end, and a flexible tube having a longitudinal axis between the distal and proximal ends. An instrument seal is positioned adjacent the distal end of the cannula. The instrument seal is dimensioned to have an interference fit with a surgical instrument inserted into the cannula. longitudinal movements of a surgical instrument are accommodated by buckling of the flexible tube while the relative longitudinal position of the instrument seal and instrument are substantially unchanged.
|
11. A surgical access device, comprising:
a) an housing with an instrument port;
b) a cannula disposed distally relative the housing, the cannula comprising a distal end, a proximal end, and a flexible braided tube extending between the distal and proximal ends;
c) an instrument seal positioned adjacent the distal end of the cannula;
wherein longitudinal movements of a surgical instrument are accommodated by buckling of the flexible braided tube resulting in one or more lateral bulges spaced from the instrument while the longitudinal position of the instrument seal relative to the instrument is substantially unchanged.
1. A surgical access device for surgical instruments, comprising:
a) a housing with an instrument port and zero closure valve;
b) a cannula disposed distally relative the housing, the cannula comprising a distal end, a proximal end, and a flexible tube having a longitudinal axis between the distal and proximal ends;
c) an instrument seal positioned adjacent the distal end of the cannula, the instrument seal being dimensioned to have an interference fit with a surgical instrument inserted into the cannula;
wherein the longitudinal movements of a surgical instrument are accommodated by buckling of the flexible tube resulting in one or more lateral bulges spaced from the instrument while the longitudinal position of the instrument seal relative to the instrument is substantially unchanged.
3. A surgical access device of
4. A surgical access device of
5. A surgical access device of
6. A surgical access device of
7. A surgical access device of
8. A surgical access device of
9. A surgical access device of
10. A surgical access device of
12. A surgical access device of
|
The present invention relates in general to surgical devices and procedures, and more particularly to access devices.
Surgical procedures are often used to treat and cure a wide range of diseases, conditions, and injuries. Surgery often requires access to internal tissue through open surgical procedures or endoscopic surgical procedures. The term “endoscopic” refers to all types of minimally invasive surgical procedures including laparoscopic and arthroscopic procedures. Endoscopic surgery has numerous advantages compared to traditional open surgical procedures, including reduced trauma, faster recovery, reduced risk of infection, and reduced scarring. Endoscopic surgery is often performed with an insufflatory fluid present within the body cavity, such as carbon dioxide or saline, to provide adequate space to perform the intended surgical procedures. The insufflated cavity is generally under pressure and is sometimes referred to as being in a state of pneumoperitoneum. Surgical access devices are often used to facilitate surgical manipulation of internal tissue while maintaining pneumoperitoneum. For example, trocars are often used to provide a port through which endoscopic surgical instruments are passed. Trocars generally have an instrument seal, which prevents the insufflatory fluid from escaping while an instrument is positioned in the trocar, and a zero closure valve, which prevents the insufflatory fluid from escaping in the absence of an instrument.
While surgical access devices are known, no one has previously made or used a surgical access device in accordance with the present invention.
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the invention will be better understood from the following description taken in conjunction with the accompanying drawings illustrating some non-limiting examples of the invention. Unless otherwise indicated, the figures are not necessarily drawn to scale, but rather to illustrate the principles of the invention.
The cannula (20) is a flexible tube (23) of material. Nonlimiting examples include non-braided continuous sleeve of silicone, polyurethane, natural rubber, synthetic rubber such as polyisoprene, and the like. The embodiment illustrated in
The filaments (18) used to make the braided tube (23) can also be formed from a variety of materials. By way of non-limiting example, the filaments (18) can be formed from polyester, cotton, polyamide, polyalkane, polyurethane, PET, PBT, nylon, PEEK, PE, glass fibre, metal wire, acrylic materials, and the like, or any composition of the mentioned materials. They may be in the form a monofilament or a multifilament and may have a cross section in the shape of any geometrical form, such as a cross section in the form of a rectangle, square or a circle. For instance, in case of a circle they may have a diameter range of about 0.005 to about 0.04 inches. A person skilled in the art will appreciate that the porosity of the braided tube (23) and the size of the windows (i.e., the spaces between the interlaced filaments (18)) formed by the intersecting filaments (18) are a function of the perpendicular distance (d) between the parallel filaments (18), the thickness of the filaments (18), and the intersection angle (A). The arrangement of the filament (18) braiding will change the characteristics of the braided flexible tube (23). For example, the porosity of the braided tube (23) influences its flexibility and its hoop strength. For instance, if all other variables are held constant, the lower the porosity of a braided tube (23) then the higher its hoop strength becomes. Decreasing the initial intersection angle (A), increasing the thickness of the filaments (18) or their numbers, and decreasing the perpendicular distance between the parallel filaments (18) are all ways to reduce the porosity of the braided flexible tube (23). In one embodiment, the intersection angle (A) has an angle range of more than 0 degrees and less than 0 degrees. In another embodiment, the intersection angle range between 10 and 170 degrees.
The particular shape and size of the braided tube (23) can also vary. In an exemplary embodiment, the braided tube (23) is cylindrical and has a diameter that is consistent along its length. However, in other embodiments, a portion of the braided tube (23) can be flared outward, such as a proximal end (22) of the braided tube (23), to facilitate attachment to the housing (10). The particular length and diameter will vary depending on the intended use. For instance, the size of the braided tube (23) can also vary depending on the tissue through which the braided tube (23) will be inserted. In an exemplary embodiment, the length is in the range of about 50 mm to 150 mm, and the diameter is in the range of about 5 mm to 25 mm.
The braided tube (23) can also include features to provided a barrier between the tissue and the braided tube (23) such that the sidewall of the braided tube (23) is substantially fluid impermeable. In one embodiment, the braided tube (23) can include a flexible sheath disposed around an inner or outer sidewall of the braided tube (23) that provides a substantially fluid impermeable barrier to prevent fluid from flowing through the sidewall of the braided tube (23). The flexible sheath can be made from a variety of materials, such as, for example, an elastomeric sheath. In another embodiment, the braided tube (23) can include a coating formed thereon to provide a substantially fluid impermeable barrier. The coating can be formed from a variety of materials, such as a polymer coating that provides a smooth outer and/or inner surface to the braided tube (23). For instance, the braided tube (23) may be dipped into a polymer solution. Polymers that may be used include, by way of non-limiting example, biocompatible polymers such as polyvinyl chloride, polyolefin (e.g., polyethylene, polypropylene, ethylene-vinylacetate copolymer), polyamide, polyester (e.g., polyethylene terephthalate (PET), polybutylene terephthalate), polyurethane, polystyrene resin, fluoro-based resin (e.g., polytetrafluoroethylene, ethylene-tetrafluoroethylene copolymer), polyimide, and the like; and various elastomers such as polyurethane-based elastomer, polyester based elastomer, polyolefin-based elastomer, polyamide-based elastomer, silicone rubber, latex rubber, and the like.
Adjacent the distal end (21) is an instrument seal (26). In this embodiment the instrument seal (26) is provided by a coating of a flexible and resilient polymer on the inner surface of the tube (23). The inside diameter of the distal end (21) is preferably dimensioned to be slightly smaller than the smallest diameter instrument intended to be sealed in cannula (20). Accordingly, an interference fit is provided between the seal (26) and the instrument thus providing a seal preventing the escape of insufflatory fluids. Optionally, resilient bands (24A) may be added to increase hoop stresses thus biasing the seal (26) against the instrument to facilitate a better seal. Preferably, the distal end (21) and the seal (26) are sufficiently flexible and resilient to accommodate a numerous sizes of instruments ranging from about 5 mm and about 12 mm, and more preferably from about 3 mm to about 15 mm.
An interference fit between the instrument seal an the instrument necessarily induces a frictional resistance to relative motion. As an instrument is inserted into the housing (10), through the cannula (20), and out the distal end (21), the tube (23) will remain taut between the seal and the housing (10), as shown in
The shape and location of the bulges (27) can be controlled by optional bands (24B). The shape and location of bulges (27) may be further configured by a longitudinally asymmetrical tube (23), including without limitation varying filament materials or dimensions, varying braid patterns, adding, removing or changing coatings, and the like. For instance,
Having shown and described various embodiments and examples of the present invention, further adaptations of the methods and devices described herein can be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the specific materials, dimensions, and the scale of drawings will be understood to be non-limiting examples. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure, materials, or acts shown and described in the specification and drawings.
Shelton, IV, Frederick E., Widenhouse, Christopher W.
Patent | Priority | Assignee | Title |
11235111, | Apr 28 2008 | Cilag GmbH International | Surgical access device |
11246674, | Oct 19 2016 | Adhesive medical cover with an inflatable dome | |
11369450, | May 20 2016 | Intuitive Surgical Operations, Inc; Intuitive Surgical Operations, Inc. | Instrument drape |
8568362, | Apr 28 2008 | Cilag GmbH International | Surgical access device with sorbents |
8579807, | Apr 28 2008 | Cilag GmbH International | Absorbing fluids in a surgical access device |
8636686, | Apr 28 2008 | Cilag GmbH International | Surgical access device |
8870747, | Apr 28 2008 | Cilag GmbH International | Scraping fluid removal in a surgical access device |
9033929, | Apr 28 2008 | Cilag GmbH International | Fluid removal in a surgical access device |
9358041, | Apr 28 2008 | Cilag GmbH International | Wicking fluid management in a surgical access device |
9622892, | Apr 26 2012 | Cook Medical Technologies LLC | Longitudinally reinforced sheath |
9827383, | Apr 28 2008 | Cilag GmbH International | Surgical access device |
D700326, | Apr 28 2008 | Cilag GmbH International | Trocar housing |
D735852, | Apr 28 2008 | Cilag GmbH International | Fluid remover |
D736926, | Apr 28 2008 | Cilag GmbH International | Trocar housing |
D878606, | Apr 28 2008 | Cilag GmbH International | Fluid remover |
Patent | Priority | Assignee | Title |
5320611, | Feb 04 1993 | Bonutti Skeletal Innovations LLC | Expandable cannula having longitudinal wire and method of use |
5342315, | Apr 12 1993 | EHTICON, INC | Trocar seal/protector assemblies |
5628732, | Jan 19 1996 | Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc | Trocar with improved universal seal |
6808508, | Sep 13 2000 | CARDIAC ASSIST TECHNOLOGIES, INC | Method and system for closed chest blood flow support |
7163525, | Dec 17 2004 | Cilag GmbH International | Duckbill seal protector |
7371227, | Dec 17 2004 | Cilag GmbH International | Trocar seal assembly |
20030216770, | |||
20040199121, | |||
20050059865, | |||
20060247673, | |||
20090082731, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 30 2008 | Ethicon Endo-Surgery, Inc. | (assignment on the face of the patent) | / | |||
Jan 07 2009 | WIDENHOUSE, CHRISTOPHER W | Ethicon Endo-Surgery, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022123 | /0039 | |
Jan 07 2009 | SHELTON, FREDERICK E , IV | Ethicon Endo-Surgery, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022123 | /0039 | |
Nov 06 2015 | ETHICON ENDO-SURGERY INC | Ethicon Endo-Surgery, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037219 | /0081 | |
Dec 30 2016 | Ethicon Endo-Surgery, LLC | Ethicon LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 041825 | /0651 | |
Apr 05 2021 | Ethicon LLC | Cilag GmbH International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056601 | /0339 |
Date | Maintenance Fee Events |
May 27 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 30 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 31 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 13 2014 | 4 years fee payment window open |
Jun 13 2015 | 6 months grace period start (w surcharge) |
Dec 13 2015 | patent expiry (for year 4) |
Dec 13 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 13 2018 | 8 years fee payment window open |
Jun 13 2019 | 6 months grace period start (w surcharge) |
Dec 13 2019 | patent expiry (for year 8) |
Dec 13 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 13 2022 | 12 years fee payment window open |
Jun 13 2023 | 6 months grace period start (w surcharge) |
Dec 13 2023 | patent expiry (for year 12) |
Dec 13 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |