Minimal Invasive Spine Surgery (MISS) as a surgical approach is increasingly utilized because of the advantages it offers over conventional spine surgery. The smaller incision results in decreased tissue damage, less blood loss, decreased hospital stay & faster postoperative recovery. The drawbacks of MISS are the long learning curve of working through a smaller incision, longer length of surgery, & potential higher complication rate due to compromised visual field. These limitations can be overcome by more effectively using imaging and navigational devices. The pedicle device simplifies the hardest part of MISS instrumented fusion of conventional pedicle screw insertion by introducing a percutaneous temporary device to locate and create the channel for later conventional pedicle screw implantation using available imaging techniques. This results in faster conventional pedicle screw insertion with precision, thereby decreasing implantation error and minimizing soft tissue injury and blood loss, as well as neurological, vascular, and dural injuries and complications.
|
1. A pedicle dart system comprising:
a guide pin having a first pointed end and a second end opposite the first end;
a pedicle dart fastener having a manual actuation knob at a first end and a set of external threads at a second end, the pedicle dart fastener having a first guide pin through bore sized to freely enable the guide pin to axially pass therethrough;
an indexed sleeve having a handle end and a first indexed end, and having a central bore through which the pedicle dart fastener may freely pass limited only by the manual actuation knob of the pedicle dart fastener;
a pedicle dart having a first tip end and a second indexed end for engaging the first indexed end of the indexed sleeve, the pedicle dart having a set of internal threads engageable and disengagable with the set of external threads at the second end of the pedicle dart fastener to draw the pedicle dart toward the indexed sleeve; the pedicle dart also having a second guide pin through bore sized to freely enable the guide pin to axially pass therethrough, the engagement of the first indexed end of the indexed sleeve and the second indexed end of the pedicle dart for enabling rotational force and displacement of the indexed sleeve to be transmitted to the pedicle dart.
9. A pedicle dart system comprising:
a guide pin having a first pointed end and a second end opposite the first end;
a pedicle dart fastener having a manual actuation knob at a first end and a set of external threads at a second end, the pedicle dart fastener having a first guide pin through bore sized to freely enable the guide pin to axially pass therethrough;
an indexed sleeve having a handle end and a first indexed end, and having a central bore through which the pedicle dart fastener may freely pass limited only by the manual actuation knob of the pedicle dart fastener;
a pedicle dart having a first tip end and a second indexed end for engaging the first indexed end of the indexed sleeve, the pedicle dart having a set of internal threads engageable and disengagable with the set of external threads at the second end of the pedicle dart fastener to draw the pedicle dart toward the indexed sleeve; the pedicle dart also having a second guide pin through bore sized to freely enable the guide pin to axially pass therethrough, the engagement of the first indexed end of the indexed sleeve and the second indexed end of the pedicle dart for enabling rotational force and displacement of the indexed sleeve to be transmitted to the pedicle dart;
wherein said pedicle dart has plurality of conically tapering exterior ribs adjacent the first tip end.
10. A pedicle dart system comprising:
a guide pin having a first pointed end and a second end opposite the first end;
a pedicle dart fastener having a manual actuation knob at a first end and a set of external threads at a second end, the pedicle dart fastener having a first guide pin through bore sized to freely enable the guide pin to axially pass therethrough;
an indexed sleeve having a handle end and a first indexed end, and having a central bore through which the pedicle dart fastener may freely pass limited only by the manual actuation knob of the pedicle dart fastener;
a pedicle dart having a first tip end and a second indexed end for engaging the first indexed end of the indexed sleeve, the pedicle dart having a set of internal threads engageable and disengagable with the set of external threads at the second end of the pedicle dart fastener to draw the pedicle dart toward the indexed sleeve; the pedicle dart also having a second guide pin through bore sized to freely enable the guide pin to axially pass therethrough, the engagement of the first indexed end of the indexed sleeve and the second indexed end of the pedicle dart for enabling rotational force and displacement of the indexed sleeve to be transmitted to the pedicle dart;
wherein the indexing of the first indexed end of the indexed sleeve is at least a first index sleeve finger and wherein the indexing of the second indexed end of the pedicle dart is at least a first pedicle dart member finger, the interaction between the first index sleeve finger and first pedicle dart member finger transmitting rotational indexing from the indexed sleeve to the pedicle dart.
2. The pedicle dart system as recited in
3. The pedicle dart system as recited in
4. The pedicle dart system as recited in
5. The pedicle dart system as recited in
6. The pedicle dart system as recited in
7. The pedicle dart system as recited in
8. The pedicle dart system as recited in
11. The pedicle dart system as recited in
|
The present invention relates to improvements in the field of spine and more particularly to a system for location, placement, and insertion of pedicle darts which is applicable to both MIS and open surgical technique which allows for more exacting and rapid placement and angular insertion of fixation members into the spinal pedicle, to facilitate one of the most difficult phases of spine surgery. Greater access, angularity and location is allowed independent of manipulation of the pedicle darts into bony tissue, resulting in a reduced time necessary to complete one of the more difficult phases of the operative procedure. The result is increased safety of placement and insertion, as well as less time spent on the operating table.
Lumbar Diskectomy and other spinal techniques require external stabilization of lumbar vertebrae to either side of the vertebra being treated. Traditional pedicle screw insertion has required the identification of the correct insertion point for pedicle screw placement. This process is difficult, even where there is direction visualization of the area of the pedicle where insertion will occur. Because placement, angularity, and turning insertion is a complex process, the insertion process often leads to inaccurate placement of the screw. Such inaccurate placement can have serious neurological, vascular, and dural leak complications.
Further, inaccurate placement of the pedicle screw may result in damage such that screw insertion either cannot be achieved, or if it can be achieved it may require additional surgical procedures for correction and may not enable the holding strength necessary.
Conventional techniques for insertion of the pedicle screw may involve extensive paraspinous muscle dissection, impairment of surrounding tissue and other compromising tissue removal is commonly necessary to properly insert a pedicle screw. This most often results in significant blood loss during this exposure phase of the operation, which is only one part of a multiple step operative procedure. Any problems at any stage of an operation can risk the patient's health and compound any unexpected routine problems which occur.
The surgical practitioner is faced with the choice between high exposure and a good view, versus a more limited exposure with a much poorer view and a heightened risk of a wrong insertion of the pedicle screw. Further, when a high exposure is attempted, excess bleeding is often encountered directly due to the higher exposure which can even further obscure visualization and may require blood transfusion with its associated complications.
Any extra time on the operating table, whether caused by excess bleeding or not places the patient in greater danger. But excess bleeding combined with longer operating time due to poor visibility, and corrective measures required to find the appropriate placement of the pedicle screw can be disastrous. All of the above effects contribute to surgeon fatigue, which can result in increased operative complications.
What is needed is a system which will enable correct placement of a pedicle device, accurately and consistently and which will not require extensive paraspinous muscle dissection in order to obtain the required visual area for proper placement. The needed device will ideally enable a gradual graded introduction into the pedicle and give an earlier indication of problems so that any error can be quickly corrected at a time before the introduction goes any further.
Currently available surgical retractor systems fail to fulfill all of the above requirements. Consequently there is a severe need for structures and procedures to meet such requirement.
The system and method of the invention, enables a staged location and entry into the pedicle for providing insertive, progressively larger threaded fixation and superior surgical control a distance from the spine. The pedicle dart system can be used in conjunction with or without a Jamshedi trocar and sleeve, in order to give additional advantage for early focussing of the early guided location and initial placement of the pedicle dart system.
The pedicle dart system is simple and has a small number of components. These components include a guide pin, a pedicle dart fastener (preferably having some control structure for easy manual rotation) having a central opening to accommodate the guide pin, an indexed sleeve (preferably with handle) having a central opening to accommodate the threaded pedicle dart fastener to hold the dart to the sleeve. The threaded pedicle dart fastener should have a manual control surface which facilitates it axial rotation with respect to the indexed sleeve. The indexed sleeve preferably has a handle to enable rotational turning of the pedicle dart into the pedicle for ease and control.
The pedicle dart system enables use of the threaded pedicle dart fastener to both engage and disengage from an implaced pedicle dart. The indexed sleeve can impart rotational force of the sleeve directly into the pedicle dart due to the indexed connection between the pedicle dart and indexed sleeve. The threaded pedicle dart fastener is used to engaged and pull the pedicle dart to an indexed position with respect to the indexed sleeve.
The preferred method of indexing involves a pair of oppositely located fingers at the end of the indexed sleeve which are narrower than indexed slots located rearward of each of the pedicle darts. By making the fingers of the indexed sleeve narrower than the indexed slots rearward of each of the pedicle darts, the registry of the fingers of the indexed sleeve into the pedicle dart slots will occur much more rapidly. This enables easy location and re-attachment of the pedicle screw no matter whether the pedicle dart is attached away from the patient by hand or whether an implaced pedicle dart is re-attached for engagement with the pedicle dart system to remove it.
Further, the pedicle dart system also contemplates the use of the darts as starter devices to facilitate the placement of larger and higher profile conventional pedicle screws where necessary. In this limited view of the system, it can be viewed as a pedicle screw bore starter while eliminating the need to perform undue paraspinous muscle disturbance.
Moreover, as designed, one of the important aspects of the pedicle dart system involves the location of smaller fixation structures (pedicle darts) which have a lesser upward projection from the lumbar vertebra during the operation. This enables a major advance over the conventional art in which the need to place pedicle screw fixation devices before the surgical procedure often get in the way of (a) the ability to manipulate manual instrumentation to accomplish the procedure, (b) other structures used with the procedure, and (c) general visual obstruction of the surgical area.
The pedicle darts can be made in a variety of sizes, all of which can exhibit a much lower profile adjacent the surgical area. Conventional pedicle screws project high on the patient, perhaps to overcome the difficulty which would accompany conventional methods of accessing the conventional pedicle screws. The pedicle dart system provides instrumentation to reach in and re-engage otherwise hidden pedicle fixation devices. The pedicle dart system of the invention can also enable located re-attachment of larger pedicle darts or pedicle dart extensions to form the fixation needed. Conventional pedicle screws are typically single length devices having a proud, high profile because the use of conventional pedicle screws has no variability. Surgical practitioners have to fight so hard to get them in, they are reluctant to change them out and generally require a high profile. The pedicle dart system enables a level of flexibility not seen in conjunction with other fixation devices.
Further, it is not required that the darts must be able to be inserted using a thread. They can be inserted by pushing or turning, such as acting to bore into the bone using a non threaded action. Such shapes may be advantageous in removing bone in a way that will not bind or tend to put significant lateral pressure on bone tissue in the pedicle.
The use of the pedicle dart system provides a high number of significant advantages over the use of conventional pedicle screws.
The invention, its configuration, construction, and operation will be best further described in the following detailed description, taken in conjunction with the accompanying drawings in which:
A detailed description of the preferred embodiment will be best begun by examining a perspective view of the lower lumbar vertebrae L3, L4, L5 and sacrum S shown in perspective in
As previously discussed, dissection of the muscles surrounding the spiny process 21 of each of the vertebrae will damage the patient, permanently weaken the back and can delay or completely prohibit patient recovery. It is noted that the conventional pedicle screws 11, 13, 15 and 17 have a high profile, so high as to cause a similarly high engagement of an interconnect member 23 between conventional pedicle screws 11 and 15 and an interconnect member 25 between conventional pedicle screws 13 and 17. The use of two such interconnect members 23 and 25 act to bilaterally stabilize the adjacent vertebrae (in this case L3 and L4) in a position as they were located prior to the surgical procedure. In the case of disc removal and implant placement it is advantageous to have the two vertebra stabilized in a natural position so that implant selection and placement into a proper space can be facilitated.
However, the use of the conventional pedicle screws 11, 13, 15 and 17 of
When it is considered that the large amounts of tissue must be removed or compromised to give the surgical practitioner the ability to locate the exact point of insertion and then to rotatably insert the conventional pedicle screws 11, 13, 15 and 17 at the correct angle, it can readily be seen that conventional pedicle screw insertion is both difficult and fraught with the possibility of error, times four. Further, because the conventional pedicle screws 11, 13, 15 and 17 have relative large diameter compared to the pedicle, the room for error which would still allow a successful insertion is reduced.
Referring to
It is understood that the use of external threads 47 to rotationally engage a pedicle dart (to be discussed) by threadable rotation to achieve attachment and axial movement, is but one of many ways this can be accomplished. Other ways include a quick key insertion, an external snap detent, or magnetic attraction or any other structure. The remainder of the structure will reveal that the external threads 47 will not undergo a static turning force and therefore no rotational pressure will be exerted on the external threads 47.
An optional friction washer 55 is seen for eliminating component wear and its need will depend upon the materials chosen for the pedicle dart system. Next is seen the indexed sleeve 61. Indexed sleeve 61 includes a main cylindrical barrel 63 having a terminal end 65 with a pair of fingers 67 extending beyond the terminal end 65. The indexed sleeve 61 has a central bore 69 through which the main barrel 45 of the pedicle dart fastener 41 may freely pass and rotate. A pair of handles 71 and 73 extend away from the end of the indexed sleeve 61 to facilitate manual rotation of the indexed sleeve 61 with some level of manual force.
To the right of the indexed sleeve 61, a pedicle dart 77 is shown in cross section. As will be seen, although the pedicle dart 77 can have a variety of functional structures, the pedicle dart 77 shown in
Beginning at the left, the pedicle dart 77 has a pair of fingers 79, only one of which is seen due to the cross sectional nature of the drawing. The fingers 79 of the pedicle dart 77 interlock with the fingers 67 of the indexed sleeve 41 and will ideally extend all the way to the terminal end of the indexed sleeve. An end 81 of the pedicle dart 77 defines the point that the pedicle dart 77 fingers 79 extend rearwardly of it. The ends 81 accommodate the terminal ends of the fingers 67 of the indexed sleeve 41 extending toward the pedicle dart 77 to rotationally engage it.
Pedicle dart 77 has a bore 83 having an internal threaded surface 85 which is complementary to the threaded surface 57 of the pedicle dart fastener 41. Beyond the internal threaded surface 85, the pedicle dart 77 has a guide pin bore 89 which extends through the pedicle dart 77 and opens at a tip end 91 of the pedicle dart 77. As can be seen, when the pedicle dart 77 is brought close to the end 65 of the indexed sleeve 61 such that the fingers 67 of the indexed sleeve slide past the fingers 79 of the pedicle dart 77, any rotational force applied to the indexed sleeve will be transmitted to the pedicle dart 77. Pedicle dart 77 is also seen as having an externally threaded surface 93 for boring into bone tissue. A spiral cutting thread can be used, but also other non-spiral cutting surfaces, such as a ribbed cone with tapered radiating relatively angled members for an even bore, or a conical rasp.
So long as the pedicle dart 77 is in close relationship with the indexed sleeve 61, the fingers 67 and 79 will directly transfer any turning or movement of the indexed sleeve 61 through to the pedicle dart 77. In essence, the indexed sleeve 61 becomes a long device which can have its tip member selectively attached or removed. The pedicle dart fastener 41 serves several. First it can engage or disengage the pedicle dart 77. Secondly, it can pull the pedicle dart 77 closer enough to the indexed sleeve 61 that the fingers 67 and 79 will engage each other. Third, it keeps the pedicle dart 77 and index sleeve centered to insure that the engagement of the fingers 67 and 79 are even and both rotate fully engaged around a common axis.
Once the pedicle dart 77 is fully inserted, the surgical practitioner can manually turn the enlarged control knob 49 in a direction that will back the set of external threads 47 of the main barrel 45 out of the threaded surface 85 of the pedicle dart 77. This action enables the pedicle dart 77 to begin to move forward with respect to the indexed sleeve 61 to enable the fingers 67 of the main cylindrical barrel 63 to disengaged from the pair of fingers 79 of the pedicle dart 77. Further turning of the enlarged control knob 49 enables the pedicle dart fastener 41 to become completely disengaged from the pedicle dart 77.
The same process can be followed in reverse to re-engage the pedicle dart 77. The combination of the indexed sleeve 61 and main cylindrical barrel 63 assembled as a unit with the indexed sleeve 61 urged forward will cause the set of external threads 47 of the indexed sleeve 61 to protrude forward of the fingers 67 and in a position to find and engage the internal threaded surface 85 of a pedicle dart 77. Turning the enlarged control knob 49 in a direction that will begin to engage the set of external threads 47 of the pedicle dart fastener 41 into threaded surface 85 of the pedicle dart 77 will begin to draw the pedicle dart 77 toward the indexed sleeve 61. Slight turning of the indexed sleeve 61 will cause the fingers 67 to assume a complementary position with respect to the fingers 79 of the pedicle dart 77, with fingers 67 and 79 sliding past each other to enable rotational re-engagement of the indexed sleeve 61 with the pedicle dart 77. This same procedure is used for both loading a new pedicle dart 77 by hand and for re-engaging a pedicle dart 77 which may have previously been implaced in bony tissue. In the latter case, once re-engaged, the indexed sleeve 61 can be used to extract the pedicle dart 77. The technique of extraction will depend upon the type of pedicle dart 77, as will be shown. Where the externally threaded surface 93 is present, turning to loosen the threads of the externally threaded surface 93 sufficient to disengage such externally threaded surface 93 will precede simple extraction.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
First, it can be noted that the pedicle dart 77 is smaller and shorter than the conventional pedicle screw 11. The pedicle dart 77 is shown in a location where it has been only half way inserted into the pedicle. It can be inserted further in or less further in. Conventional pedicle screw 11 is seen as having a proud high appearance. With the conventional pedicle screw 11 the surgical view is obstructed in terms of height. The pedicle dart 77 however can go deeper into the bony mass to have a low profile appearance which interferes less with other surgical instrumentation and structures and yet still marks the angle and location. Further, the internal threaded surface 85 of the pedicle dart 77 (not seen in
However, one of the main purposes for the pedicle dart is to more easily “start” the path into the bone tissue, for both angle and location. In many operations the pedicle darts 77 may be implaced for only 30 minutes before either being removed or supplemented by other different sized structures threadably or otherwise inserted into the bone tissue, especially where greater depth, greater diameter, or other characteristics are desired. Other different sized structures may be expected to be inserted and removed by virtue of their compatibility with the pedicle dart system 31 of the invention.
Referring to
Referring to
Referring to
It is clear that the pedicle dart system of the invention can be modified to handle a wide variety of Procedures. The material used for all components of the pedicle dart system should be capable of withstanding sterilization and impact. Different materials may be employed based upon the forces and interconnection forces expected to be encountered. Although the pedicle dart system 31 can be used in many different types of surgical procedures, an example involving minimally invasive surgery transforaminal lumbar interbody fusion (MIS TLIF) will be described as one of those examples.
MIS TLIF Procedure
While the present system has been described in terms of a system which includes instrumentation, procedures and wide range of purposes to facilitate a difficult surgical task, one skilled in the art will realize that the structure and techniques of the present system can be applied to many instruments, including any instrument which has the ability to transmit high torque, selective attachment and detachment, and which accentuates the location and angle of approach of an entry into any point in the human body.
Although the system of the invention has been derived with reference to particular illustrative embodiments thereof, many changes and modifications of the systems shown may become apparent to those skilled in the art without departing from the spirit and scope of the inventive system. Therefore, included within the patent warranted hereon are all such changes and modifications as may reasonably and properly be included within the scope of this contribution to the art.
Patent | Priority | Assignee | Title |
10973558, | Jun 12 2017 | K2M, INC | Screw insertion instrument and methods of use |
11026736, | Feb 19 2018 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
11116559, | Feb 19 2018 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
11678914, | Jun 12 2017 | K2M, Inc. | Screw insertion instrument and methods of use |
9480520, | Jan 23 2014 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
D802681, | Oct 14 2016 | Hasbro, Inc | Dart projectile |
D846030, | Oct 03 2017 | Hasbro, Inc. | Dart projectile |
D858655, | Jun 29 2018 | Hasbro, Inc. | Dart projectile |
Patent | Priority | Assignee | Title |
5171279, | Mar 17 1992 | SDGI Holdings, Inc | Method for subcutaneous suprafascial pedicular internal fixation |
6175758, | Jul 15 1997 | ZIMMER SPINE, INC | Method for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebrae |
7494489, | May 07 2004 | STRYKER EUROPEAN HOLDINGS III, LLC | Systems and methods that facilitate minimally invasive spine surgery |
20050251139, | |||
20060079903, | |||
20070016219, | |||
20080086140, | |||
20090254131, | |||
WO2009091616, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 17 2008 | LIFE SPINE, INC. | (assignment on the face of the patent) | / | |||
Jul 02 2010 | HAMADA, JAMES S , MD, DR | Life Spine, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024949 | /0192 | |
Feb 08 2011 | Life Spine, Inc | Silicon Valley Bank | SECURITY AGREEMENT | 025846 | /0010 | |
Sep 20 2011 | Silicon Valley Bank | Life Spine, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026944 | /0931 | |
Jun 26 2014 | Life Spine, Inc | BMO HARRIS BANK N A | SECURITY INTEREST | 033276 | /0408 | |
Oct 25 2016 | GIZMO MEDIACL, LLC | ST CLOUD CAPITAL PARTNERS III SBIC, LP | CORRECTIVE ASSIGNMENT TO CORRECT THE LEGAL DOCUMENT ATTACHED TO THE FILING PREVIOUSLY RECORDED AT REEL: 040497 FRAME: 0926 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 042084 | /0917 | |
Oct 25 2016 | Life Spine, Inc | ST CLOUD CAPITAL PARTNERS III SBIC, LP | CORRECTIVE ASSIGNMENT TO CORRECT THE LEGAL DOCUMENT ATTACHED TO THE FILING PREVIOUSLY RECORDED AT REEL: 040497 FRAME: 0926 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 042084 | /0917 | |
Oct 25 2016 | GIZMO MEDICAL, LLC | ST CLOUD CAPITAL PARTNERS III SBIC, LP | CORRECTIVE ASSIGNMENT TO CORRECT THE LEGAL DOCUMENT PREVIOUSLY RECORDED AT REEL: 040497 FRAME: 0926 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 042243 | /0607 | |
Oct 25 2016 | Life Spine, Inc | ST CLOUD CAPITAL PARTNERS III SBIC, LP | CORRECTIVE ASSIGNMENT TO CORRECT THE LEGAL DOCUMENT PREVIOUSLY RECORDED AT REEL: 040497 FRAME: 0926 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 042243 | /0607 | |
Oct 25 2016 | Life Spine, Inc | ST CLOUD CAPITAL PARTNERS III SBIC, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040497 | /0926 | |
Oct 25 2016 | GIZMO MEDICAL, LLC | ST CLOUD CAPITAL PARTNERS III SBIC, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040497 | /0926 | |
Oct 25 2016 | GIZMO MEDICAL, LLC | MB FINANCIAL BANK, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040491 | /0791 | |
Oct 25 2016 | Life Spine, Inc | MB FINANCIAL BANK, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040491 | /0791 | |
Oct 28 2016 | BMO HARRIS BANK N A | Life Spine, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 040511 | /0788 | |
Dec 18 2020 | FIFTH THIRD BANK, NATIONAL ASSOCIATION | GIZMO MEDICAL, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054843 | /0755 | |
Dec 18 2020 | FIFTH THIRD BANK, NATIONAL ASSOCIATION | Life Spine, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054843 | /0755 | |
Dec 18 2020 | GIZMO MEDICAL, LLC | ST CLOUD CAPITAL PARTNERS III SBIC, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 054844 | /0239 | |
Dec 18 2020 | Life Spine, Inc | ST CLOUD CAPITAL PARTNERS III SBIC, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 054844 | /0239 | |
Jun 30 2021 | Life Spine, Inc | ASSOCIATED BANK, NATIONAL ASSOCIATION, AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 056728 | /0438 | |
May 26 2023 | ASSOCIATED BANK, NATIONAL ASSOCIATION | Life Spine, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 064275 | /0446 |
Date | Maintenance Fee Events |
Nov 07 2012 | ASPN: Payor Number Assigned. |
May 27 2015 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 05 2019 | REM: Maintenance Fee Reminder Mailed. |
Nov 19 2019 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Nov 19 2019 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Jul 31 2023 | REM: Maintenance Fee Reminder Mailed. |
Dec 06 2023 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Dec 06 2023 | M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Date | Maintenance Schedule |
Dec 13 2014 | 4 years fee payment window open |
Jun 13 2015 | 6 months grace period start (w surcharge) |
Dec 13 2015 | patent expiry (for year 4) |
Dec 13 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 13 2018 | 8 years fee payment window open |
Jun 13 2019 | 6 months grace period start (w surcharge) |
Dec 13 2019 | patent expiry (for year 8) |
Dec 13 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 13 2022 | 12 years fee payment window open |
Jun 13 2023 | 6 months grace period start (w surcharge) |
Dec 13 2023 | patent expiry (for year 12) |
Dec 13 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |