In one embodiment, a HDD creates a segment table to associate an address of user data in a flash memory with an LBA in a magnetic disk. The HDD updates the segment table in a DRAM and saves it to the flash memory at a specific timing. The HDD creates journals indicating the update of the segment table and saves it to the flash memory. The latest segment table can be restored using the segment table and the journals in the flash memory.
|
14. A data management method in a data storage device comprising a disk memory area for storing user data and a non-volatile semiconductor memory area for storing user data, the method comprising:
storing a segment table in which an address in the disk memory area of user data stored in the non-volatile semiconductor memory area is registered, to a volatile memory area;
saving the segment table in a first non-volatile memory area;
saving log data indicating update history of the segment table in the volatile memory area to a second non-volatile memory area;
creating log data associated with a plurality of write commands to a continuous address area in the disk memory area while omitting a part of log data associated with each of the plurality of write commands; and
saving the created log data associated with the plurality of write commands to the second non-volatile memory area.
1. A data storage device comprising:
a disk memory area configured to store user data;
a non-volatile semiconductor memory area configured to store user data;
a volatile memory area configured to store a segment table in which an address in the disk memory area of user data stored in the non-volatile semiconductor memory area is registered;
a first non-volatile memory area in which the segment table is saved;
a second non-volatile memory area in which log data indicating update history of the segment table in the volatile memory area is saved; and
a controller configured to create log data associated with a plurality of write commands to a continuous address area in the disk memory area while omitting a part of log data associated with each of the plurality of write commands, and, for saving the created log data associated with the plurality of write commands to the second non-volatile memory area.
2. The data storage device according to
3. The data storage device according to
4. The data storage device according to
log data associated with a single write command includes a prologue before update and an epilogue after update in the segment table in the volatile memory area; and
the controller saves a prologue of the first write command and an epilogue of the last write command to the second non-volatile memory area and omits log data between the prologue of a first write command and the epilogue of a last write command.
5. The data storage device according to
a prologue and an epilogue associated with the single write command each include a start address and an address length specified by the single write command; and
the epilogue of the last write command includes a start address included in the prologue of the first write command.
6. The data storage device according to
7. The data storage device according to
8. The data storage device according to
9. The data storage device according to
10. The data storage device according to
11. The data storage device according to
12. The data storage device according to
log data associated with a single write command includes a prologue before update and an epilogue after update in the segment table in the volatile memory area; and
the controller is configured to omit prologues associated with write commands other than the first write command.
13. The data storage device according to
log data associated with the plurality of write commands specifying discontinuous addresses comprises a prologue and an epilogue of the first write command and epilogues of write commands other than the first write command; and
the controller is configured to save the prologue of the first write command and then to save other log data simultaneously.
15. The method according to
16. The method according to
|
The instant nonprovisional patent application claims priority to Japanese Patent Application No. 2008-040128 filed Feb. 21, 2008 and which is incorporated by reference in its entirety herein for all purposes.
Data storage devices using various kinds of media, such as optical disks, magneto-optical disks, flexible magnetic disks, and the like have been known in the art. In particular, hard disk drives (HDDs) have been widely used as storage devices of computers and have been one of the indispensable storage devices for current computer systems. Moreover, HDDs have found widespread application to moving image recording/reproducing apparatuses, car navigation systems, cellular phones, and the like in addition to the computers, due to their outstanding characteristics.
A HDD spins a magnetic disk and moves a head slider to a target data sector to access (read or write) the magnetic disk. Therefore, the HDD may consume more electric power compared with a semiconductor memory and may have slower access speed to the magnetic disk than a semiconductor memory. Particularly, spinning up a spindle motor requires more time than other operations. Accordingly, when the HDD starts up or returns from a power saving mode to reduce power consumption, it requires long process time.
In order to overcome this problem, it has been proposed that a flash memory, a kind of non-volatile semiconductor memory, is implemented in a HDD (refer to Japanese Patent Publication No. 2006-114206, for example). Since the flash memory is a semiconductor memory, it has faster access speed and consumes less power than a magnetic disk. Further, since the flash memory is a non-volatile memory, it can keep data in itself even if the HDD is in a powered-off state.
The capacity of a flash memory to be implemented in an HDD is limited in light of the cost, for example. Therefore, the HDD stores specific user data in the flash memory and other user data on a magnetic disk. For example, storing data which are necessary in starting up a host or are to be frequently accessed by the host in the flash memory achieves reduction in time for starting up the host, improvement in performance of the HDD, and reduction in power consumption during a power saving mode which reduces the rpm of the spindle motor.
The host instructs the HDD to write or retrieve data, specifying a logical block address (LBA), which is an address on a magnetic disk. Therefore, it is necessary that the HDD associate the LBA of user data stored in the flash memory with an address in the flash memory. Specifically, the HDD creates a table to correlate the above two kinds of addresses and refers to the table to access the flash memory. Hereinafter, the table is called a segment table.
The segment table is used after powered off and then powered on again. Accordingly, the HDD stores the segment table on a magnetic disk or in a flash memory; the both of them are non-volatile memories. Typically, the segment table is stored in a flash memory. However, since the flash memory requires a delete and a write operations to rewrite data, frequent updates of the segment table cause degradation in performance.
In response, an idea has been proposed that loads the segment table into a RAM and updates the segment table in the RAM. In addition, it creates log data indicating the updated contents of the segment table and saves the log data to a flash memory. An example of the use of the log data in writing data to a recording medium is disclosed in Japanese Patent Publication No. 2005-134125. The saved log data enables the latest segment table to be restored by using the segment table and the log data in a flash memory even if the latest segment table in the RAM has been deleted by a power shutdown.
From the view point of the performance, it may be preferable to reduce the number of times of saving the segment table. As a result, however, the number of entries in the log data to be saved may become greater. A typical technique to restore data by log data saves log data at every write command accompanied by a write-out operation into the flash memory. Therefore, the number of entries in the log data to be saved increases with the number of write-out operations into the flash memory. Besides, the area for saving the log data has a limit. Accordingly, a technique is demanded to reduce the number of entries in the log data indicating an update of the segment table.
In addition, it may be important to consider the process time in saving the log data. In particular, since a NAND flash memory, which is suitable for storing user data, writes data in a unit of page, a process to save the log data associating with a single write command to a NAND flash memory requires almost the same process time as the process for one data sector. Accordingly, a technique is demanded to reduce the process time in saving the log data indicating an update of the segment table.
Embodiments of the present invention help to improve efficiency in saving log data for an HDD equipped with a magnetic disk and a flash memory. According to the embodiment of
Embodiments of the present invention relate to data storage devices and data management methods in data storage devices, and more particularly, relate to the saving of log data indicating updates of tables in a data storage device equipped with a disk and a non-volatile semiconductor memory for saving user data.
A data storage device according to an aspect of embodiments of the present invention comprises a disk memory area for storing user data, a non-volatile semiconductor memory area for storing user data, a volatile memory area for storing a segment table in which the address in the disk memory area of user data stored in the non-volatile semiconductor memory area is registered, a first non-volatile memory area in which the segment table is saved, a second non-volatile memory area in which log data indicating update history of the segment table in the volatile memory area, and a controller. The controller creates log data associated with a plurality of write commands to a continuous address area in the disk memory area while omitting a part of log data associated with each of the plurality of write commands, and saves the created log data associated with the plurality of write commands to the second non-volatile memory area. Thereby, efficient saving of log data is achieved.
The first non-volatile memory area, the second non-volatile memory area, and the non-volatile semiconductor memory area may be provided in the same non-volatile semiconductor memory. Thereby, reduction in the number of components is achieved.
If the plurality of write commands are three or more write commands, the controller omits log data of all the write commands between the first write command and the last write command. Thereby, more efficient saving of log data is achieved.
In one example, log data associated with a single write command includes a prologue before update and an epilogue after update in the segment table in the volatile memory area, and the controller saves a prologue of the first write command and an epilogue of the last write command to the second non-volatile memory area and omits log data between the prologue of the first write command and the epilogue of the last write command. Thereby, more efficient saving of log data is achieved. Moreover, a prologue and an epilogue associated with a single write command each include a start address and an address length specified by the single write command, and the epilogue of the last write command includes a start address included in the prologue of the first write command. Thereby, accurate information can be indicated only by the epilogue.
In one example, the controller processes write commands in the order that the write commands were cached, and if an address specified by a current write command is continuous with an address specified by a preceding write command, adds the current write command to the plurality of write commands. Thereby, a group of plurality of write commands can be formed as needed. The controller may save current log data associated with the plurality of write commands to the second non-volatile memory area, if the number of write commands constituting the plurality of write commands has reached a threshold. Besides, if a length of an address specified by a write command has reached a threshold, the controller saves log data associated with the write command to the second non-volatile memory area independently. Otherwise, if an address area specified by a write command constituting the plurality of write commands has reached a threshold, the controller saves current log data associated with the plurality of write commands to the second non-volatile memory area. These prevent the time until saving the log data from getting too long.
Furthermore, if a power shutdown interrupts saving log data associated with the plurality of write commands, the controller started-up after the power shutdown may delete a non-use area following an address associated with the first write command of the plurality of write commands in the non-volatile semiconductor memory area. Thereby, the non-volatile memory in need of deletion for data writing can be appropriately handled.
In one example, the controller further saves log data associated with write commands other than the first write command among the plurality of write commands which specify discontinuous addresses to the second non-volatile memory area simultaneously. Thereby, more efficient saving of log data is achieved. In another example, the log data associated with a single write command includes a prologue before update and an epilogue after update in the segment table in the volatile memory area, and the controller omits prologues associated with write commands other than the first command. Thereby, more efficient saving of log data is achieved. Log data associated with the plurality of write commands specifying discontinuous addresses may comprise a prologue and an epilogue of the first write command and epilogues of write commands other than the first write command and that the controller may save the prologue of the first write command and then saves other log data simultaneously. Thereby, if a power shutdown occurs before saving all log data, appropriate handling can be achieved.
Another aspect of embodiments of the present invention is a data management method in a data storage device comprising a disk memory area for storing user data and a non-volatile semiconductor memory area for storing user data. In an embodiment, the method stores a segment table in which the address in the disk memory area of user data stored in the non-volatile semiconductor memory area is registered to a volatile memory area. The method saves the segment table in a first non-volatile memory area. The method saves log data indicating update history of the segment table in the volatile memory area to a second non-volatile memory area. The method creates log data associated with a plurality of write commands to a continuous address area in the disk memory area while omitting a part of log data associated with each of the plurality of write commands. The method saves the created log data associated with the plurality of write commands to the second non-volatile memory area. Thereby, more efficient saving of log data is achieved.
Embodiments of the present invention accomplish efficient saving of log data indicating an update of a segment table.
Hereinafter, embodiments to which the present invention is applicable will be described. For clarity of explanation, the following descriptions and accompanying drawings may have omissions and simplifications as appropriate. Throughout the drawings, like components are denoted by like reference numerals and repetitive descriptions are omitted if not necessary. Hereinbelow, hard disk drives (HDDs) will be described as an example of disk drive devices.
An HDD according to one embodiment is equipped with a flash memory in addition to a magnetic disk as non-volatile memories for storing user data. The flash memory is a non-volatile semiconductor memory. To manage user data to be saved in the flash memory, the HDD creates a table to register the address (LBA) on the magnetic disk of the user data stored in the flash memory. The table will be referred to as a segment table hereinafter.
The HDD of one embodiment updates the segment table in a RAM and saves it to the flash memory at a specific timing. The HDD of the present embodiment further creates log data indicating an update in the RAM and saves them to the flash memory. The log data will be referred to as a journal hereinafter. When an accident such as an unexpected power shutdown occurs, the HDD restores the latest segment table using the segment table and the journals in the flash memory.
The HDD of one embodiment has a feature in a method for saving journals which are log data. The HDD of the present embodiment saves journals associated with a single write command or journals associated with a group of write commands according to conditions. In saving journals associated with a group of write commands, the HDD omits a part of the journals associated with the write commands in the group. Accordingly, the number of journals associated with a group is less than the total number of the journals associated with the write commands in the group. Thus, the number of entries in the journals indicating an update of the segment table can be reduced and the process time to register the journals into the table can be shortened.
In the present embodiment, examples of the method to make a group of write commands will be explained. One method makes a group with a plurality of write commands to a continuous area of a magnetic disk. The HDD regards a plurality of write commands specifying a continuous address area on the magnetic disk as a group and saves the journals associated with the group to a table.
The other method makes a group with a plurality of write commands specifying discrete and discontinuous areas on the magnetic disk. The journals to be saved in association with each of these two different groups are different. In this way, saving different journals depending on whether the group of write commands specifies a continuous area or to discontinuous areas accomplishes more efficient processing while saving necessary information to restore the segment table.
First, a configuration of an HDD according to one embodiment will be outlined referring to the block diagram of
Head sliders 12 each comprises a slider flying over the magnetic disk and a head element portion fixed to the slider for converting magnetic signals to and from electric signals (writing and reading data). Each head slider 12 is fixed at the tip end of an actuator 16. The actuator 16, which is coupled to a voice coil motor (VCM) 15, pivots about a pivotal shaft to move the head slider 12 above the spinning magnetic disk 11 in its radial direction. The motor driver unit 22 drives the SPM 14 and the VCM 15 according to control data from the HDC/MPU 23. An arm electronics (AE) 13 selects a head slider 12 to access (read or write) the magnetic disk 11 from multiple head sliders 12 according to control data from the HDC/MPU 23 and amplifies read/write signals.
The RW channel 21, in a read operation, extracts servo data and user data from read signals obtained from the AE 13 to decode them. The decoded data are supplied to the HDC/MPU 23. In a write operation, the RW channel 21 code-modulates write data supplied from the HDC/MPU 23 and further converts the code-demodulated data into write signals to supply them to the AE 13.
In the HDC/MPU 23, the HDC is a logic circuit and the MPU operates according to firmware loaded in the DRAM 24. With start-up of the HDD 1, data required for control and data processing are loaded into the DRAM 24 from the magnetic disk 11 or a ROM (not shown). The HDC/MPU 23 is an example of a controller and performs entire control of the HDD 1 as well as processes required for data processing such as head positioning control, interface control, and defect management, and the like.
The HDC/MPU 23 saves a part of user data from a host 51 to a flash memory 25. Namely, the HDC/MPU 23 saves user data to the flash memory 25 in response to a write command of a write-out operation to the flash memory 25 among the write commands received from the host 51. Whether or not to save the user data in the flash memory 25 to the magnetic disk 11 as well can be decided depending on design. Data to be saved to the flash memory 25 can be identified by the LBA on the magnetic disk 11. When the HDC/MPU 23 receives a write command to the predetermined LBA, it saves the user data to the flash memory 25. The HDC/MPU 23 can decide the LBA of the user data to be saved to the flash memory 25 by itself and also saves the user data at the LBA specified by the host 51 to the flash memory 25.
The HDC/MPU 23 loads the PIN/UNPIN table 254 saved in the flash memory 25 into the DRAM 24. The HDC/MPU 23 performs processes referring to the PIN/UNPIN table 242 in the DRAM 24 in a write operation. If the HDC/MPU 23 changes the PIN/UNPIN table 242 in the DRAM 24, it reflects the change into the PIN/UNPIN table 254 in the flash memory 25.
Specific user data U_DATA transferred from the host 51 are stored into a sector buffer in the DRAM 24 and then are saved to the flash memory 25. A user data area 251 has been allocated in the flash memory 25 and user data are saved there. As described above, data to be saved to the flash memory 25 are PIN data and UNPIN data which are saved in a PIN area 255 and an UNPIN area 256 in the user data area 251, respectively.
The HDC/MPU 23 loads the saved segment table 253 in the flash memory 25 into the DRAM 24. A temporary segment table 243 which is a segment table in the DRAM 24 is referred by the HDC/MPU 23 in read and write operations of user data. The segment tables 243 and 253 locate the addresses for the user data saved in the flash memory 25. Specifically, the segment tables 243 and 253 associate flash memory addresses of the user data in the flash memory 25 with magnetic disk addresses. The host 51 instructs a data write specifying the LBA, which is an address on the magnetic disk 11. The segment tables 243 and 253 store the LBA and the address in the flash memory 25 correlating them.
The HDC/MPU 23 updates the temporary segment table 243 in response to an access (write) to the flash memory 25. The HDC/MPU 23 does not immediately reflect the updated contents to the segment data table 253 in the flash memory 25, but creates a journal, which is log data indicating the updated contents. The HDC/MPU 23 includes an SRAM 231 and stores the created journal in the SRAM 231. The created journal is saved to an area 252 in the flash memory 25. Use of the SRAM 231 for storing the journal before saving speeds up the process than use of a DRAM. Saving the journals from the SRAM 231 into the flash memory 25 can be carried out faster than from a DRAM, too.
Now referring to
The HDC/MPU 23 creates a prologue journal 232 and saves it to a journal area 252 in the flash memory 25 [4]. Next, the HDC/MPU 23 saves the user data U_DATA in the sector buffer 241 to a user data area 251 in the flash memory 25 [5]. Then, the HDC/MPU 23 updates a temporary segment table 243 [6]. Finally, the HDC/MPU 23 creates an epilogue journal 233 and saves it to the journal area 252 in the flash memory 25 [7].
Next, an example of restoration of the segment table using journals after an accidental power shutdown will be described referring to
Upon recovery of the power, a restoration process shown in
Saving journals in the above-described manner reduces the operating time than saving the segment table every time and enables the segment table to be restored even if an accident such as an unexpected power shutdown has occurred. In particular, a flash memory requires a write of new data after a deletion of data in a unit of block to rewrite data. Namely, to update the saved segment table 253, the flash memory 25 deletes the block including the area storing the table and then writes a new saved segment table 253 to the deleted block.
Generally, the saved segment table has a binary tree data structure, a linear list, or a hash table for high-speed search; it requires an entire rewrite even in adding a part of data. On the other hand, the flash memory 25 writes new journals into its journal area 252 as needed. This write operation does not require a delete operation so that the operating time is extremely shortened.
It is, however, possible to reserve journals without saving the updated segment table to the flash memory 25 to reduce the process time of updating the segment table, but the journal area 252 in the flash memory 25 to store journals is limited. Besides, even if deletion is not needed to save journals, process time to write journals is needed. Then, the HDC/MPU 23 of the present embodiment regards a plurality of write commands as a group to save the journals associated with the group to the journal area 252 in the flash memory 25. This improves the efficiency in saving journals and reduces the number of entries in the journals to be saved and the process time of saving.
First, referring to the flowchart of
The HDC/MPU 23 repeats the same process with respect to a write command [2] and a write command [3]. Accordingly, as shown in
Next, the saving of journals associated with a group made of three write commands [1] to [3] will be described. The addresses specified by the three write commands [1] to [3] are a continuous address area (LBA 100h to 1AFh) on the magnetic disk 11. The HDC/MPU 23 groups together such a plurality of write commands to a continuous address area and saves the journals associated with the group which is made of a plurality of write commands.
Since the address area specified by the plurality of write commands is continuous, the area can be indicated by journals associated with a single write command. The important matter is that the data included in the epilogue [3] associated with the last write command [3] are different from the one in the journal which is created only for the write command [3]. As illustrated in
When journals are saved for grouped plurality of write commands, however, the epilogue is required to indicate the all address areas specified by the plurality of write commands. Accordingly, the HDC/MPU 23 determines the start LBA and the data length from the start LBA of the prologue [1] of the first write command [1] and the end LBA of the last write command [3] and stores the value to the epilogue [3]. In the example of
Making a unit with a plurality of write commands specifying a continuous area and saving the journals thereof can reduce the number of entries of journals to be saved and the process time for saving the journals. As understood from the above explanation, the HDC/MPU 23 performs only two write operations to save the journals of three write commands. Compared with saving journals of respective write commands independently, the process time of four write operations can be reduced.
Next, referring to the flowchart of
The HDC/MPU 23 obtains a cached write command (S21), refers to the address specified by the write command, and determines whether the specified address is continuous with the address of the preceding write command (S22). Since the first write command [1] is not a command to write the continuous area (N in S22), the HDC/MPU 23 writes a prologue [1] in the journal area 252 (S23). The HDC/MPU 23 further saves the user data of the write command [1] to the flash memory 25 (S25) and updates the temporary segment table 243 in the DRAM 24 (S25).
Next, the HDC/MPU 23 checks whether a subsequent write command has been cached or not (S26), and if the subsequent write command is present (Y in S26), it obtains the write command (S21). In the present example, the HDC/MPU 23 obtains a write command [2]. The HDC/MPU 23 refers to the address specified by the write command [2] and determines whether the address is continuous with the address specified by the preceding write command [1] (S22). In the present example, these specified addresses are a continuous area (Y in S22), so that the HDC/MPU 23 omits a write operation of a prologue (S23) to save the user data of the write command [2] to the flash memory 25 (S24), and updates the temporary segment table 243 in the DRAM 24 (S25).
Then, the HDC/MPU 23 checks whether another subsequent write command has been cached or not (S26), and if the subsequent write command is present (Y in S26), it obtains the write command (S21). In the present example, the HDC/MPU 23 obtains a write command [3]. The HDC/MPU 23 refers to the address specified by the write command [3] and determines whether the address is continuous with the address specified by the preceding write command [2] (S22). In the present example, these specified addresses are a continuous area (Y in S22).
Accordingly, the HDC/MPU 23 omits a write operation of a prologue (S23) to save the user data of the write command [3] to the flash memory 25 (S24), and further updates the temporary segment table 243 in the DRAM 24 (S25). If no cached command is present (N in S26), the HDC/MPU 23 saves an epilogue (S27). In the present example, the write command [3] is the last write command and the HDC/MPU 23 writes the epilogue [3] shown in
According to the present embodiment of a method, if two write commands specify a continuous address area, the HDC/MPU 23 omits the epilogue associated with the first write command and the prologue associated with the last write command. Besides, if three or more succeeding write commands specify a continuous address area, the HDC/MPU 23 omits to save the epilogue associated with the first write command, the prologue associated with the last write command, and all of the journals associated with the intermediate write command or commands.
The HDC/MPU 23 can include all of the write commands to write a continuous area within a single group. Namely, if the address area specified by the obtained write command is continuous with the address area of the preceding write command, the HDC/MPU 23 unconditionally includes the write command into the group. However, including the command into the group may delay saving of journals and too long process time in saving may sometimes be undesirable.
Then, in one example, when the number of the write commands constituting a group reaches a preset threshold, the HDC/MPU 23 saves the journals associated with the group to the flash memory 25, or when the address area specified by the write commands constituting a group reaches a preset threshold, the HDC/MPU 23 saves the journals associated with the group to the flash memory 25.
The HDC/MPU 23 may determine whether or not to include a write command within a group depending on the address area specified by each write command. Specifically, when the length of the address specified by write commands has already reached a preset threshold, the HDC/MPU 23 saves the journals of the independent write command, or the prologue and epilogue associated with the write command, to the flash memory 25.
If the prologue and the epilogue associated with a group have been saved in the flash memory 25, the HDC/MPU 23 can restore the segment table using the prologue and the epilogue after an accidental power shutdown. The power shutdown, however, may occur after saving the prologue and before saving the epilogue. If the epilogue has not been saved, the HDC/MPU 23 cannot know the write data length of the group which has been stored in the user data area 251 of the flash memory 25. On the other hand, the HDC/MPU 23 cannot overwrite data in the flash memory 25 and needs to delete existing data.
Then, if a power shutdown occurs before the epilogue associated with the group is saved, the HDC/MPU 23 deletes the area in the user data area 251 where the user data associated with the group may have been saved. Specifically, the HDC/MPU 23 deletes the non-use area following the address in the user data area 251 which the prologue of the group indicates. The non-use area is the area up to the area where the saved segment table 253 indicates that other user data has been saved. If the user data area 251 functions as a ring buffer, the area other than the area where other user data have been saved is deleted. This accomplishes succeeding smooth saving operations of the user data to the user data area 251.
Next, another embodiment of a method of grouping write commands will be described. This method regards a plurality of write commands specifying discontinuous (discrete) address areas as a group, and saves a part of the journals of the group to the flash memory 25 simultaneously. The HDC/MPU 23 omits a part of the journals to save them. Referring to
The write cache function has been enabled. In the process of a cached write command [1], the HDC/MPU 23 stores the prologue [1] and the epilogue [1] in the SRAM 231. Moreover, the HDC/MPU 23 saves the prologue [1] to the journal area 252 in the flash memory 25. Then, the HDC/MPU 23 processes the cached write command [2] through write command [N] sequentially and stores the prologue [2] through prologue [N] and the epilogue [2] through epilogue [N] associated with the respective write commands into the SRAM 231.
When cached write commands end or when the number of journals stored in the SRAM 231 reaches a threshold, the HDC/MPU 23 saves the journals stored in the SRAM 213 to the journal area 252 in the flash memory 25 simultaneously. On this occasion, the HDC/MPU 23 omits the prologue [2] to prologue [N] of the write commands and saves the epilogue [2] to epilogue [N] to the journal area 252. Only epilogues are necessary enough to update the saved segment table 253, so that the HDC/MPU 23 can reduce the number of entries by omitting journals to be saved. Besides, simultaneous saving of the journals associated with a plurality of write commands can reduce the process time thereof. The process when a power shutdown occurs after saving only the first prologue and before saving the following journals is the same as the one in the above-described case where write commands to a continuous area constitute a group.
As set forth above, the present invention has been described by way of particular embodiments, but is not limited to the above embodiments and can of course be modified in various ways within the scope of the substance of the present invention. For example, in one embodiment, a HDD has been described by way of example but embodiments of the present invention can be applied to disk storage devices using other types of disks such as optical disks and magneto-optical disks.
As described above, the segment table may be saved to a non-volatile semiconductor memory, but may also be saved to a magnetic disk of a non-volatile memory. As the non-volatile semiconductor memory, a memory other than the flash memory may be used. Alternately, a non-volatile semiconductor memory area may be created by use of a plurality of ICs. The memory area is not limited by the number of elements such as ICs and disks. The data format of the segment table and the journals and the number of log data associated with a single write command may be changed depending on design.
Imoto, Katsuhiro, Kakihara, Toshio, Yamada, Shuhji, Mouri, Akihiko
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5576303, | Mar 16 1993 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Energy-supplementing saccharide source and its uses |
20060080501, | |||
20060161731, | |||
JP2005134125, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 23 2009 | Hitachi Global Storage Technologies, Netherlands B.V. | (assignment on the face of the patent) | / | |||
Feb 23 2009 | MOURI, AKIHIKO | HITACHI SOFTWARE ENGINEERING CO LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022881 | /0906 | |
Feb 23 2009 | IMOTO, KATSUHIRO | HITACHI SOFTWARE ENGINEERING CO LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022881 | /0906 | |
Feb 23 2009 | KAKIHARA, TOSHIO | HITACHI SOFTWARE ENGINEERING CO LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022881 | /0906 | |
Feb 23 2009 | YAMADA, SHUHJI | HITACHI SOFTWARE ENGINEERING CO LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022881 | /0906 | |
Feb 23 2009 | MOURI, AKIHIKO | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022881 | /0906 | |
Feb 23 2009 | IMOTO, KATSUHIRO | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022881 | /0906 | |
Feb 23 2009 | KAKIHARA, TOSHIO | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022881 | /0906 | |
Feb 23 2009 | YAMADA, SHUHJI | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022881 | /0906 | |
Jul 23 2012 | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | HGST NETHERLANDS B V | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 029341 | /0777 | |
Aug 31 2016 | HGST NETHERLANDS B V | Western Digital Technologies, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040826 | /0821 | |
Jan 13 2020 | Western Digital Technologies, INC | JPMORGAN CHASE BANK, N A , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 052915 | /0566 | |
Feb 03 2022 | JPMORGAN CHASE BANK, N A | Western Digital Technologies, INC | RELEASE OF SECURITY INTEREST AT REEL 052915 FRAME 0566 | 059127 | /0001 | |
Aug 18 2023 | Western Digital Technologies, INC | JPMORGAN CHASE BANK, N A | PATENT COLLATERAL AGREEMENT - A&R LOAN AGREEMENT | 064715 | /0001 | |
Aug 18 2023 | Western Digital Technologies, INC | JPMORGAN CHASE BANK, N A | PATENT COLLATERAL AGREEMENT - DDTL LOAN AGREEMENT | 067045 | /0156 |
Date | Maintenance Fee Events |
Nov 23 2011 | ASPN: Payor Number Assigned. |
Jun 15 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 06 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 07 2023 | REM: Maintenance Fee Reminder Mailed. |
Jan 22 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 20 2014 | 4 years fee payment window open |
Jun 20 2015 | 6 months grace period start (w surcharge) |
Dec 20 2015 | patent expiry (for year 4) |
Dec 20 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 20 2018 | 8 years fee payment window open |
Jun 20 2019 | 6 months grace period start (w surcharge) |
Dec 20 2019 | patent expiry (for year 8) |
Dec 20 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 20 2022 | 12 years fee payment window open |
Jun 20 2023 | 6 months grace period start (w surcharge) |
Dec 20 2023 | patent expiry (for year 12) |
Dec 20 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |