A finger sensor may include a finger sensing integrated circuit (ic) having a finger sensing area and at least one bond pad adjacent thereto, and a flexible circuit coupled to the ic finger sensor. More particularly, the flexible circuit may include a flexible layer, and at least one conductive trace carried thereby and coupled to the at least one bond pad. The sensor may also include at least one Electrostatic Discharge (ESD) electrode carried by the flexible layer. The ESD electrode may be positioned adjacent a beveled edge, for example, of an ic carrier and thereby exposed through a small gap between an adjacent portion of a frame.
|
17. A method for making a finger sensor comprising:
providing a finger sensing integrated circuit (ic) comprising a finger sensing area and at least one bond pad adjacent thereto;
positioning a flexible circuit adjacent the ic finger sensor, the flexible circuit comprising a flexible layer, at least one Electrostatic Discharge (ESD) electrode carried by the flexible layer, and at least one conductive trace carried by the flexible layer; and
coupling the at least one conductive trace to the at least one bond pad.
1. A finger sensor comprising:
a finger sensing integrated circuit (ic) comprising a finger sensing area and at least one bond pad adjacent thereto;
a flexible circuit comprising a flexible layer covering said finger sensing area, and at least one conductive trace carried by said flexible layer and coupled to said at least one bond pad;
a fill material between said finger sensing ic and said flexible circuit and covering said finger sensing area;
said flexible layer permitting finger sensing therethrough; and
at least one Electrostatic Discharge (ESD) electrode carried by said flexible layer.
26. A finger sensor comprising:
a finger sensing integrated circuit (ic) comprising a finger sensing area and at least one bond pad adjacent thereto;
a flexible circuit comprising a flexible layer covering said finger sensing area and having at least one connector portion extending beyond said finger sensing area and said at least one bond pad, and at least one conductive trace carried by said flexible layer and coupled to said at least one bond pad;
said flexible layer permitting finger sensing therethrough;
at least one electronic component carried by said connector portion extending beyond said finger sensing area and said at least one bond pad; and
at least one Electrostatic Discharge (ESD) electrode carried by said flexible layer.
12. A finger sensor comprising:
a finger sensing integrated circuit (ic) comprising a finger sensing area and a plurality of bond pads adjacent thereto;
a flexible circuit comprising a flexible layer, and a plurality of conductive traces carried thereby and coupled to said plurality of bond pads;
a fill material between said finger sensing ic and said flexible circuit and covering said finger sensing area;
at least one Electrostatic Discharge (ESD) electrode carried by said flexible layer;
an ic carrier having a cavity receiving said finger sensing ic therein, said ic carrier having at least one beveled edge adjacent said at least one ESD electrode; and
a frame surrounding at least a portion of an upper perimeter of said flexible layer and defining therewith at least one ESD passage to said at least one ESD electrode.
2. A finger sensor according to
3. A finger sensor according to
4. A finger sensor according to
5. A finger sensor according to
6. A finger sensor according to
7. A finger sensor according to
8. A finger sensor according to
9. A finger sensor according to
10. A finger sensor according to
11. A finger sensor according to
13. A finger sensor according to
14. A finger sensor according to
15. A finger sensor according to
16. A finger sensor according to
18. A method according to
19. A method according to
20. A method according to
21. A method according to
22. A method according to
23. A method according to
24. A method according to
25. A method according to
27. A finger sensor according to
28. A finger sensor according to
29. A finger sensor according to
30. A finger sensor according to
|
The present invention relates to the field of electronics, and, more particularly, to the field of finger sensors including finger sensing integrated circuits, and associated manufacturing methods.
Sensors including integrated circuits (ICs) that directly sense the physical properties of objects in the sensor's environment have come into widespread use in electronic equipment. These ICs are desirably in close proximity to the external environments they measure, but they should not be damaged by the mechanical and/or electrical events that an external environment can apply.
One type of such sensing is finger sensing and associated matching that have become a reliable and widely used technique for personal identification or verification. In particular, a common approach to fingerprint identification involves scanning a sample fingerprint or an image thereof and storing the image and/or unique characteristics of the fingerprint image. The characteristics of a sample fingerprint may be compared to information for reference fingerprints already in a database to determine proper identification of a person, such as for verification purposes.
A particularly advantageous approach to fingerprint sensing is disclosed in U.S. Pat. Nos. 5,963,679 and 6,259,804, assigned to the assignee of the present invention, the entire contents of which are incorporated herein by reference. The fingerprint sensor is an integrated circuit sensor that drives the user's finger with an electric field signal and senses the electric field with an array of electric field sensing pixels on the integrated circuit substrate. Additional finger sensing integrated circuits and methods are disclosed in U.S. Published U.S. Patent Application No. 2005/0089202 entitled “Multi-biometric finger sensor including electric field sensing pixels and associated methods”, also assigned to the assignee of the present invention, and the entire contents of which are incorporated herein by reference.
A number of prior art references disclose various types of packaging of IC sensors. For example, U.S. Pat. No. 6,646,316 to Wu et al. discloses an optical sensor including a sensing die with bond pads on an upper surface thereof. A flexible circuit board is coupled to the bond pads, and has an opening over the sensing surface. A transparent glass layer covers the opening in the flexible circuit board. U.S. Pat. No. 6,924,496 to Manansala discloses a similar flexible circuit attachment to a fingerprint sensor, but leaves the area above the surface open.
U.S. Pat. No. 7,090,139 to Kasuga et al. discloses a smart card including a fingerprint sensor having bond pads attached to wiring film, and also including a window or opening above the sensing surface. U.S. Published Patent Application No. 2005/0139685 to Kozlay discloses a similar arrangement for a fingerprint sensor.
Some fingerprint sensors are based on thin film technology, such as disclosed in U.S. Published Application No. 2006/0050935 A1 to Bustgens et al. Other fingerprint sensors may include sensing elements on a flexible substrate, such as disclosed in U.S. Pat. No. 7,099,496 to Benkley, III. These sensors may be slightly more rugged that integrated circuit based sensors, but may have performance shortcomings.
U.S. Published Patent Application No. 2005/0031174 A1 to Ryhanen et al. discloses a flexible circuit board covering an ASIC for capacitive electrode fingerprint sensing, and wherein the sensing electrodes are on the surface of the flexible substrate and covered with a thin protective polymer layer. In some embodiments, the sensor may wrap the flexible circuit around to the back side of the ASIC for attachment to a circuit board in a ball grid form.
U.S. Pat. No. 5,887,343, assigned to the assignee of the present invention, discloses an embodiment of a fingerprint sensor package that includes a transparent layer over the finger sensing area of a finger sensing IC. A chip carrier, having an opening for the sensing area, is coupled, either capacitively or electrically, to the bond pads on the IC via peripheral regions of the transparent layer.
Finger sensing ICs are currently used on some cellular telephone handsets to capture fingerprints for user identification and to capture finger motions for menu navigation. Standard IC packaging methods that completely enclose the silicon chip are not used with these sensors because the sensing fields the sensors use to measure the fingerprint (e.g., electric fields, thermal fields, etc.) do not pass effectively through the package. For these sensors in today's systems, the IC or chip is typically packaged such that the finger can directly contact the passivation layer on the chip surface during the reading operation. For protection from physical damage during storage and transport (in a pocket or purse) the handsets are typically designed to fold closed when not in operation, protecting the sensor assembly which is mounted on an inside surface of the folding device.
There are many situations, however, where it may be preferable to be able to mount the sensor on an unprotected external surface of the handset. This would allow the sensor to be used without opening the clamshell handset, and would allow IC sensors to be used on handsets that do not fold closed, such as the so-called “candy bar” phones.
Unfortunately, the use of a finger sensing IC exposed on a device's external surface will likely subject the sensor to mechanical and/or electrical stresses not seen by a sensor that has a folding cover over it during storage. For example, a device in a pocket or purse will be subject to scratching, abrasion, point impact, continuous point pressure, and shear impact forces. The packaging technologies used for sensors in closeable cases are unlikely to provide adequate protection for the silicon chip.
In view of the foregoing background, it is therefore an object of the present invention to provide a finger sensor with enhanced packaging and ESD features and related methods.
This and other objects, features and advantages in accordance with the present invention are provided by a finger sensor comprising a finger sensing integrated circuit (IC) including a finger sensing area and at least one bond pad adjacent thereto, and a flexible circuit coupled to the IC finger sensor. More particularly, the flexible circuit may comprise a flexible layer, and at least one conductive trace carried thereby and coupled to the at least one bond pad. In addition, the sensor may also include at least one Electrostatic Discharge (ESD) electrode carried by the flexible layer. Accordingly, a cost effective package may be provided while additionally providing enhanced ESD protection.
In some embodiments, the finger sensor may further comprise an IC carrier having a cavity receiving the IC finger sensor therein, and wherein the IC carrier has at least one beveled edge adjacent the at least one ESD electrode. In addition, a frame may surround at least a portion of an upper perimeter of the flexible layer and define therewith at least one ESD passage to the at least one ESD electrode. In other words, this packaging configuration will effectively drain off ESD through a small gap between the frame and flexible layer.
A fill material may be between the IC finger sensor and the flexible circuit. In addition, the flexible circuit may comprise at least one connector portion extending beyond the finger sensing area and the plurality of bond pads. The connector portion may comprise a tab connector portion and/or a ball grid array connector portion. At least one drive electrode may also be carried by the flexible layer.
The finger sensor may also include at least one electronic component carried by the flexible layer, such as a discrete component, a light source, a light detector, and another IC. The another IC may comprise at least one other finger sensing IC, for example.
The IC finger sensor may comprise a semiconductor substrate having an upper surface. The finger sensing area may comprise an array of sensing electrodes carried by the upper surface of the semiconductor substrate, such as for electric field finger sensing, for example.
A method aspect is for making a finger sensor. The method may include providing a finger sensing integrated circuit (IC) comprising a finger sensing area and at least one bond pad adjacent thereto, and positioning a flexible circuit adjacent the IC finger sensor. The flexible circuit may include a flexible layer, at least one Electrostatic Discharge (ESD) electrode carried by the flexible layer, and at least one conductive trace carried by the flexible layer. The method may further include coupling at least one conductive trace to the at least one bond pad.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout and prime notation is used to indicate similar elements in alternative embodiments.
Referring initially to
The cellular phone 20 includes a housing 21, a display 22 carried by the housing, and processor/drive circuitry 23 also carried by the housing and connected to the display and to the finger sensor 30. An array of input keys 24 are also illustrated provided and used for conventional cellphone dialing and other applications as will be appreciated by those skilled in the art. The processor/drive circuitry 23 also illustratively includes a micro step-up transformer 25 that may be used in certain embodiments to increase the drive voltage for the finger sensor 30 as explained in greater detail below.
The finger sensor 30 may of the slide type where the user's finger 26 slides over the sensing area to generate a sequence of finger images. Alternatively, the finger sensor 30 could be of the static placement type, where the user simply places his finger 26 onto the sensing surface to generate a finger image. Of course, the finger sensor 30 may also include circuitry embedded therein and/or in cooperation with the processor/drive circuit 23 to provide menu navigation and selection functions as will be appreciated by those skilled in the art.
As shown perhaps best in
The finger sensor 30 also includes a flexible circuit 35 coupled to the IC finger sensor. More particularly, the flexible circuit 35 includes a flexible layer 36 covering both the finger sensing area 33 and the bond pads 34 of the IC finger sensor 32. The flexible circuit 32 also includes conductive traces 37 carried by the flexible layer 36 and coupled to the bond pads 34. Of course, the flexible layer 36 preferably comprises a material or combination of materials to permit finger sensing therethrough. Kapton is one such suitable material, although those of skill in the art will readily recognize other suitable materials. Kapton is also hydrophobic providing an advantage that it may permit reading of partially wet or sweating fingers more readily, as any moisture may tend to resist smearing across the image as will be appreciated by those skilled in the art.
As shown perhaps best in
In the illustrated embodiment, the finger sensor 30 further includes an IC carrier 45 having a cavity receiving the finger sensing IC 32 therein (
The sensor 30 also includes a pair of drive electrodes 50 carried on an outer and/or inner surface of the flexible layer 36 as seen perhaps best in
The finger sensor 30 also includes one or more electrostatic discharge (ESD) electrodes 53 illustratively carried on the outer surface of the flexible layer 36 of the flexible circuit 35. Again the ESD electrodes 53 may be formed of a conductive material applied or deposited onto the flexible layer 36 similar to the conductive traces 37 as will be appreciated by those skilled in the art. The ESD electrodes 53 may be connected to a device ground, not shown, via one or more of the conductive traces 37.
As shown in the illustrated embodiment, the IC carrier 45 has a generally rectangular shape with four beveled upper edges 55 as perhaps best shown in
Referring now briefly to
Referring now additionally to
The finger sensor 30 may further include at least one electronic component 64 carried by the flexible layer as also explained with reference to
The mounting arrangement of
A slightly different mounting arrangement for the finger sensor 30′ is explained with additional reference to
Yet another embodiment of a finger sensor 30″ is now described with reference to
The left hand portion of
Referring now additionally to
The epoxy or glue 46 may be Z-axis conductive glue, and/or it may incorporate resilient energy absorbing properties. The use of an anisotropic conductive material may physically extend the pixel's effective electrical interface away from the die. The conductive material may contact the finger interface itself or it may terminate on the underside of a top protective layer of material over the sensing array. The same anisotropic conductive material may be used to electrically bond the chip's external interface bond pads 34 to conductive traces 37 on the flexible layer 36.
The IC carrier 45 may be a plastic molding or other protective material, that may have resilient energy absorbing properties. It may incorporate multiple layers of different materials, or graded materials having a gradient in one or more physical properties such as stiffness. A stiff (non-stretching) but flexible material layer 36 (like Kapton) over a softer resilient material 46, all on top of the chip's surface 32, spreads the energy of a point impact across a larger area of the chip surface. The resilient material to connect the chip to the circuit board allows the chip—when under force—to move slightly with respect to the circuit board, reducing the stress on the chip. The beveled mechanical interface between the IC carrier 45 and the frame 21 allows movement in both the normal and shear directions with respect to relieve stress. The flexible circuit 35 may also include conductive patterns or traces, not shown, in the area over the sensing array to enhance the RE imaging capability.
The epoxy or glue 46 is a soft resilient layer between the stiffer flexible layer 36 and the very stiff silicon chip surface. This allows the flexible layer 36 to bend inward to reduce scratching from sharp points, and also reduce the transfer of sharp point forces to the silicon.
The IC carrier 45 and any biasing member 62 provide mechanical support to the silicon chip to prevent it from cracking when under stress, and may seal the finger sensing IC 32 and its edges from the environment. The biasing member 62 between the IC carrier 45 and the circuit board 60 can absorb shock energy in both the vertical and shear directions.
The top surface of a semiconductor chip is typically made of multiple layers of brittle silicon oxides and soft aluminum. This type of structure may be easily scratched, cracked, and otherwise damaged when force is applied to a small point on that surface. Damage typically occurs when the pressure applied to the insulating surface oxide propagates through to the aluminum interconnect material directly beneath it. The aluminum deforms removing support from under the oxide, which then bends and cracks. If sufficient force is applied this process may continue through several alternating layers of silicon oxide and aluminum, short-circuiting the aluminum interconnects and degrading the chip's functionality.
In the package embodiments described herein, a sharp object approaching the sensor first contacts the substrate layer (typically Kapton tape). The substrate material deforms and presses into the resilient glue material, spreading the force over a larger area and reducing the maximum force per area transmitted. The spread and diluted force transmitted through the resilient glue now causes the chip to move downward away from the impacting object and into the resilient backing material. Some of the impact energy is converting into motion of the chip and ultimately into compression of the resilient backing material. Finally, when the as chip is forced downward into the resilient backing, the chip will often tilt—encouraging the sharp object to deflect off the sensor. The stiffness of the various layers of resilient material are selected to protect the aluminum interconnects in the silicon chip against the most force possible.
The packaging concepts discussed above make a package that is: durable enough for use on the external surfaces of portable electronic equipment; and maintains good sensing signal propagation, resulting in good quality sensor data. The embodiments are relatively inexpensive and straightforward to manufacture in high volume.
Now reviewing a number of the possible advantages and features of the finger sensors disclosed herein, significant improvements in scratch resistance can be achieved by combining a surface material like Kapton that is relatively stiff and difficult to tear, with a softer glue material underneath. With this structure, when a sharply pointed object comes into contact, the surface material can indent, reducing the initial impact, spreading the force across a larger area, and preventing the point from penetrating the surface. When the object is removed, the resilient materials return to their original shapes.
A flexible substrate with a smooth surface and a low coefficient of friction (such as a Kapton tape) will help resist abrasion. The resilient structure described above can also improve abrasion resistance by preventing the abrasive particles from cutting into the surface. The resilient structure described above also provides several levels of protection against impacts of various intensities.
When a portable device like a cellphone is dropped, a shearing force is applied to any structure that interconnects the case with the internal circuit boards. In a sensor that is soldered to the internal circuit board and projects through a hole in the case, the full shearing force is applied to the sensor and its circuit board interconnects. In the package described above, the shear force is absorbed by the resilient material that may mechanically connect the sensor to the circuit board. If the shear force is extreme, the beveled sensor will slip under the case, converting the shear force into normal compression of the resilient backing material. When the impact event is over the sensor will return to its normal position.
The package described can also provide protection against continuous pressure. When pressure is applied, the resilient backing compresses, allowing the sensor to retract from the surface a small distance. In many situations this will allow the case to carry more of the force, reducing the force on the sensor.
In the packaging described here, the flexible substrate material also acts as an ESD (electrostatic discharge) barrier between the chip and its environment, preventing ESD from reaching the sensitive electronic devices on the chip. Accordingly, leakage current tingle may be significantly reduced or eliminated. A 1 mil Kapton layer provides an 8.6 Kv withstand capability. The ESD electrodes can capture discharges at higher voltages. The maximum voltage over the drive electrodes prior to air breakdown to the ESD electrode is 7.5 Kv. The distance from the farthest point of the drive electrode to the ESD capture electrodes is 2.5 mm, and the dry air dielectric breakdown is 3 Kv/mm. Accordingly, even with a clean surface (worst case) the ESD would discharged to the ESD capture electrode before penetrating the Kapton dielectric layer. In addition, over the array is provided 1 mil of Kaptom, plus 1 mil of epoxy, plus 2.5 microns of SiN. This may provide about 14.1 Kv dielectric withstand over the pixel array. This may eliminate a requirement for outboard ESD suppressors and associated circuitry.
Some mechanical durability data is provided below in TABLE 1. In particular, three devices are compared: a model 1510 small slide IC with a nitride coating and no adhesive, a 1510 IC with a polyimide coating and no adhesive, and a model 2501 large slide IC with a Kapton layer and acrylic adhesive/filler. The drill rod scratch and pencil scratch tests are ANSI tests. The other three tests are self-explanatory, and it can be seen that the Kapton/filler device enjoys a considerable advantage in terms of mechanical robustness.
TABLE 1
Bare
7 μm
25 μm
Substrate
Nitride
Polyimide
Kapton
Adhesive
N/A
N/A
Acrylic
Test Die
1510
1510
2501 Ni
Drill Rod Scratch (grams)
<50
225
350
Pencil Scratch (hardness) (5)
N/A
HB
6H
6.5 mm Ball Impact (gr cm)
234
234
488
1.0 mm Ball Impact (gr cm)
<75
<13
195
Rock Tumbler (hrs)
N/A
<8
67
All or part of the desired circuitry may be included and mounted on the flexible circuit. The customer interface cold then be a simple standard interface, such as a USB connector interface. LEDs can be included on the flexible circuit, or electroluminescent sources can be added as printed films. Organic LEDs can be printed as films on the underside of the flexible circuit.
Other features and advantages in accordance with the invention may be understood with reference to copending applications entitled: FINGER SENSOR INCLUDING FLEXIBLE CIRCUIT AND ASSOCIATED METHODS, Ser. No. 11/550,669, and FINGER SENSING WITH ENHANCED MOUNTING AND ASSOCIATED METHODS, Ser. No. 11/550,693 filed concurrently herewith and the entire disclosures of which are incorporated herein by reference. Accordingly, many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that other modifications and embodiments are intended to be included within the scope of the appended claims.
Salatino, Matthew M., Setlak, Dale R., Spletter, Philip J., Rao, Yang
Patent | Priority | Assignee | Title |
10061963, | Sep 30 2014 | Apple Inc. | Active sensing element for acoustic imaging systems |
10133904, | Sep 30 2014 | Apple Inc. | Fully-addressable sensor array for acoustic imaging systems |
10198610, | Sep 29 2015 | Apple Inc.; Apple Inc | Acoustic pulse coding for imaging of input surfaces |
10268865, | Sep 05 2016 | NANCHANG O-FILM BIO-IDENTIFICATION TECHNOLOGY CO , LTD | Ultrasonic fingerprint sensor and manufacturing method of the same |
10275633, | Sep 29 2015 | Apple Inc.; Apple Inc | Acoustic imaging system for spatial demodulation of acoustic waves |
10275638, | Sep 29 2015 | Apple Inc.; Apple Inc | Methods of biometric imaging of input surfaces |
10325136, | Sep 29 2015 | Apple Inc.; Apple Inc | Acoustic imaging of user input surfaces |
10510097, | Oct 19 2011 | FIRSTFACE CO., LTD. | Activating display and performing additional function in mobile terminal with one-time user input |
10802651, | Jan 30 2018 | Apple Inc. | Ultrasonic touch detection through display |
10896442, | Oct 19 2011 | FIRSTFACE CO., LTD. | Activating display and performing additional function in mobile terminal with one-time user input |
11009390, | Sep 29 2014 | Apple Inc. | Methods and systems for modulation and demodulation of optical signals |
11048902, | Aug 20 2015 | Apple Inc | Acoustic imaging system architecture |
11551263, | Oct 19 2011 | FIRSTFACE CO., LTD. | Activating display and performing additional function in mobile terminal with one-time user input |
9607203, | Sep 30 2014 | Apple Inc. | Biometric sensing device with discrete ultrasonic transducers |
9613246, | Sep 16 2014 | Apple Inc. | Multiple scan element array ultrasonic biometric scanner |
9747488, | Sep 30 2014 | Apple Inc. | Active sensing element for acoustic imaging systems |
9824254, | Sep 30 2014 | Apple Inc. | Biometric sensing device with discrete ultrasonic transducers |
9904836, | Sep 30 2014 | Apple Inc | Reducing edge effects within segmented acoustic imaging systems |
9946915, | Oct 14 2016 | NEXT BIOMETRICS GROUP ASA | Fingerprint sensors with ESD protection |
9952095, | Sep 29 2014 | Apple Inc | Methods and systems for modulation and demodulation of optical signals |
9979955, | Sep 30 2014 | Apple Inc. | Calibration methods for near-field acoustic imaging systems |
9984271, | Sep 30 2014 | Apple Inc. | Ultrasonic fingerprint sensor in display bezel |
Patent | Priority | Assignee | Title |
5887343, | May 16 1997 | Apple Inc | Direct chip attachment method |
5963679, | Jan 26 1996 | Apple Inc | Electric field fingerprint sensor apparatus and related methods |
6064753, | Jun 10 1997 | PENDRAGON NETWORKS LLC | System and method for distortion control in live-scan inkless fingerprint images |
6234031, | Nov 27 1997 | NEC Corporaion | Fingerprint detection apparatus |
6259804, | May 16 1997 | Apple Inc | Fingerprint sensor with gain control features and associated methods |
6333989, | Mar 29 1999 | Activcard Ireland Limited | Contact imaging device |
6347040, | May 19 1998 | Infineon Technologies AG | Sensor device for sensing biometric characteristics, in particular finger minutiae |
6392143, | Jan 18 1999 | TOSHIBA MEMORY CORPORATION | Flexible package having very thin semiconductor chip, module and multi chip module (MCM) assembled by the package, and method for manufacturing the same |
6399994, | Jan 24 2000 | Sony Corporation | Semiconductor device for surface-shape recognition |
6628812, | May 11 1999 | Apple Inc | Fingerprint sensor package having enhanced electrostatic discharge protection and associated methods |
6646316, | Jan 24 2001 | Kingpak Technology, Inc. | Package structure of an image sensor and packaging |
6713677, | Mar 31 2000 | Infineon Technologies AG | Housing assembly for an electronic device and method of packaging an electronic device |
6906407, | Jul 09 2002 | Alcatel-Lucent USA Inc | Field programmable gate array assembly |
6912299, | Feb 18 1998 | NEC Corporation | Device for detecting a fingerprint, electric apparatus and doorkeeper apparatus |
6924496, | May 31 2002 | SOCIONEXT INC | Fingerprint sensor and interconnect |
6950541, | May 11 1999 | Apple Inc | Fingerprint sensor package including flexible circuit substrate and associated methods |
7049166, | Aug 17 2000 | Apple Inc | Methods and apparatus for making integrated circuit package including opening exposing portion of the IC |
7076089, | May 17 2002 | Apple Inc | Fingerprint sensor having enhanced ESD protection and associated methods |
7084474, | Dec 31 2003 | Siliconware Precision Industries Co., Ltd. | Photosensitive semiconductor package and method for fabricating the same |
7090139, | Mar 27 2002 | Seiko Epson Corporation | IC card and method of manufacturing the same |
7099496, | Dec 05 2000 | Synaptics Incorporated | Swiped aperture capacitive fingerprint sensing systems and methods |
20020089044, | |||
20020096731, | |||
20030048256, | |||
20030048597, | |||
20030224553, | |||
20050031174, | |||
20050073507, | |||
20050089202, | |||
20050139685, | |||
20050146054, | |||
20060050935, | |||
20060083411, | |||
20060097059, | |||
DE19921231, | |||
EP941696, | |||
WO68874, | |||
WO247018, | |||
WO2004066194, | |||
WO2006041780, | |||
WO9830967, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 18 2006 | Authentec, Inc. | (assignment on the face of the patent) | / | |||
Nov 01 2006 | SETLAK, DALE R | AUTHENTEC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018634 | /0443 | |
Nov 01 2006 | SALATINO, MATTHEW M | AUTHENTEC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018634 | /0443 | |
Nov 01 2006 | SPLETTER, PHILIP J | AUTHENTEC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018634 | /0443 | |
Nov 01 2006 | RAO, YANG | AUTHENTEC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018634 | /0443 | |
Feb 10 2013 | AUTHENTEC, INC | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035552 | /0286 |
Date | Maintenance Fee Events |
Jun 10 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 19 2019 | REM: Maintenance Fee Reminder Mailed. |
Feb 03 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 27 2014 | 4 years fee payment window open |
Jun 27 2015 | 6 months grace period start (w surcharge) |
Dec 27 2015 | patent expiry (for year 4) |
Dec 27 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 27 2018 | 8 years fee payment window open |
Jun 27 2019 | 6 months grace period start (w surcharge) |
Dec 27 2019 | patent expiry (for year 8) |
Dec 27 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 27 2022 | 12 years fee payment window open |
Jun 27 2023 | 6 months grace period start (w surcharge) |
Dec 27 2023 | patent expiry (for year 12) |
Dec 27 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |