systems, methods, and ultrasound transceivers equipped and configured to execute analysis and extract ultrasound information related to an abdominal aortic aneurysm of a subject are described. The methods utilize algorithms to establish improved targeting of the abdominal aortic aneurysm within a region-of-interest. The targeting algorithms may be optimally applied to provide the user with real-time feedback and orientation guidance for positioning the transceiver. Additional methods utilize diameter conversion algorithms to establish the diameter of the abdominal aortic aneurysm based on conversion of the volume measurement and limited segmentation within a targeted region-of-interest of the aorta.
|
6. A method to detect and measure an abdominal aortic aneurysm comprising:
transmitting ultrasound energy to a section of an abdominal aorta;
collecting ultrasound echoes returning from the section;
generating signals from the ultrasound echoes;
identifying fundamental signals from the generated signals;
processing the fundamental signals using algorithms designed for fundamental signals;
calculating the volume of the section;
calculating the diameter of the section from the calculated volume of the section;
detecting from the ultrasound echoes an abdominal aortic aneurysm;
calculating a percentage of availability associated with the fundamental signals;
presenting a visual depiction of the percentage of availability; and
indicating to the user a position for an ultrasound transmitting device wherein the percentage of availability is maximized.
8. A non-transitory computer-readable medium having instructions to execute a method to detect and measure an abdominal aortic aneurysm, comprising the steps of:
transmitting ultrasound energy to a section of an abdominal aorta;
collecting ultrasound echoes returning from the section;
generating signals from the ultrasound echoes;
identifying fundamental signals from the generated signals;
processing the fundamental using algorithms designed for fundamental signals;
calculating measurements of the volume of the section; and
calculating measurements of the diameter of the section from the calculated volume of the section;
detecting from the ultrasound echoes an abdominal aortic aneurysm;
calculating a percentage of availability associated with the fundamental signals;
presenting a visual depiction of the percentage of availability; and
indicating to the user a position for an ultrasound transmitting device wherein the percentage of availability is maximized.
1. A system to detect an abdominal aortic aneurysm in a region of interest comprising:
an ultrasound transceiver configured to deliver ultrasound energy and receive echoes of the ultrasound energy across a plurality of scan planes from the region of interest within which an abdominal aortic aneurysm potentially exists;
a processing device configured to signal process the received echoes, characterize the signal-processed echoes across the plurality of scan planes, and detect from the signal-processed echoes an abdominal aortic aneurysm, wherein a percentage of availability of scan planes is calculated based on echoes received from scan planes, the processing device further configured to calculate positioning information of the ultrasound transceiver from the percentage availability; and
at least one display configured to present a visual depiction of the percentage of availability of the region of interest contained in a plurality of scan planes,
the at least one display configured to present the positioning information of the ultrasound transceiver.
4. A system for abdominal aortic aneurysm evaluation and monitoring in a region of interest of an abdominal aorta, comprising:
at least one ultrasound transceiver configured to deliver ultrasound energy and receive echoes of the ultrasound energy across a plurality of scan planes from the region of interest within which an abdominal aortic aneurysm potentially exists for obtaining three-dimensional ultrasound scan information;
a processor configured to signal process the received echoes and characterize the signal-processed echoes across the plurality of scan planes, wherein a percentage of availability of scan planes is calculated based on echoes received from scan planes, the processing device further configured to calculate positioning information of the ultrasound transceiver from the percentage availability, determine aorta volume information from the scan plane information and detect from the signal-processed echoes an abdominal aortic aneurysm,
at least one display configured to indicate positioning information received from the ultrasound transceiver, wherein the display is a visual depiction of the calculated percentage availability;
a guide configured to guide a user to position the ultrasound transceiver over a region of interest of the aorta based on the calculated percentage availability; and
a calculation circuit configured to calculate the diameter of the aorta at the region of interest from the aorta volume information.
2. The system of
3. The system of
5. The system of
7. The method of
|
This application claims priority to, and incorporates by reference in their entireties, U.S. provisional patent application Ser. No. 61/087,152 filed Aug. 7, 2008 and U.S. provisional patent application Ser. No. 61/094,003 filed Sep. 3, 2008.
This application is also a continuation-in-part of, claims priority to, and incorporates by reference in its entirety U.S. patent application Ser. No. 12/121,721 filed May 15, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/968,027 filed Dec. 31, 2007, U.S. patent application Ser. No. 11/926,522 filed Oct. 27, 2007, U.S. patent application Ser. No. 11/925,887 filed Oct. 27, 2007, U.S. patent application Ser. No. 11/925,896 filed Oct. 27, 2007, U.S. patent application Ser. No. 11/925,900 filed Oct. 27, 2007, U.S. patent application Ser. No. 11/925,850 filed Oct. 27, 2007, U.S. patent application Ser. No. 11/925,843 filed Oct. 27, 2007, U.S. patent application Ser. No. 11/925,654 filed Oct. 26, 2007, and U.S. Provisional Patent Application Nos. 60/938,359 filed May 16, 2007; 60/938,371 filed May 16, 2007; and 60/938,446 filed May 16, 2007.
All of the foregoing named applications are incorporated by reference in their entireties as if fully set forth herein.
This disclosure is protected under United States and International Copyright Laws. ©2009 Verathon® Incorporated. All Rights Reserved. A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The aorta artery in the abdomen carries blood from the heart to the abdominal region. One disorder of the abdominal aorta is known as an abdominal aortic aneurysm, which is a permanent localized dilation of the arterial wall of the abdominal aorta. When dilation of the arterial wall is greater than 1.5 times the typical, i.e. nominal, diameter, it is referred to as an aneurysm. A normal abdominal aorta is shown in
Abdominal aortic aneurysms, depending upon their size, result in pressure on adjacent tissue structure and organs, causing potential embolization and/or thrombosis in those tissues/organs. Rupture of the aneurysm typically results in death, and comprises approximately 2% of all deaths in men over 60 years of age.
Accurate diagnosis of an abdominal aortic aneurysm is important in preventing rupture, as well as in controlling the expansion of the aneurysm. Conventional two-dimension B-mode ultrasound scan devices are currently used to produce measurements of aortic aneurysms, both axially (longitudinally) along the aorta and laterally (radially) across the aorta. Typically, the accuracy is within three millimeters of the actual size of the aneurysm, using conventional CT or MRI processing. These conventional systems, however, are very expensive, both to purchase/lease and to maintain. Further, a trained sonographer is necessary to interpret the results of the scans. As a result, many aneurysms go undetected and/or are not consistently monitored after discovery, until rupture resulting in death of the patient.
A recent prospective study by Vidakovic, et al. (2006) sought to evaluate the diagnostic potential and accuracy in Abdominal Aortic Aneurysm (AAA) screening using an automatic bladder volume indicator (BVI) instrument. The BVI was originally designed for the estimation of post-void residual volumes. The device is inexpensive and can effectively be used after a short training. A measurement method of bladder volume is different between BVI and US, however several reports have found that BVI is as reliable as US to measure post-void residual urine. (Yucel, et al., 2005; Byun, et al., 2003)
In the Vidakovic et al. study AAA volumes were measured in 94 patients, and compared with 2D ultrasound and CT measurement to see if these comparisons can provide a method of screening AAA within certain volume thresholds. The reported results indicated there was an 89% agreement of the diameter measurements by ultrasound (US) as compared with those made with the bladder volume indicator (BVI). Using a cut-off value for the presence of AAA of 50 ml by BVI, the BVI technique predicted AAA with a sensitivity of 94%, a specificity of 82%, a positive predictive value of 88%, and a negative predictive value of 92%. The agreement between standard US and BVI in detecting an AAA was 89%.
This study showed the potential of using the BVI volume. Compared to other portable US devices used to screen patients, the BVI is simpler for use, requires a shorter training period, and is significantly cheaper. One barrier to its adoption is that the current device does not provide automatic conversion values and/or accurate values of AAA diameter. Moreover certain impediments exist to accurate readings of the region of interest that must be overcome for accurate predictive measurements.
Hence, it would be useful to a primary care physician or emergency personnel to have a low-cost device which provides accurate information concerning aortic aneurysms by providing AAA diameter measurements, without the necessity of a trained technician to interpret the scan results. Specifically, the art fails to provide a low cost system, method, and apparatus to automatically and accurately obtain and utilize data derived from an automatic bladder volume instrument (BVI) to provide values of abdominal aortic aneurysm (AAA) diameters.
An ultrasound transceiver device, system, and method to obtain, analyze, and interpret ultrasonic information from a vascular region of interest to measure the diameter of a suspected blood vessel aneurysm.
Examples of particular embodiments of the present invention are described in detail below with reference to the following drawings:
Embodiments of the invention may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computer processors or other devices, computer-readable media on which such instructions are stored, and/or the processors/devices themselves. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.
Embodiments of the invention may include or otherwise utilize at least some form of computer readable media, which may be associated with one or more processors and/or memory devices. Computer readable media can be any available media that can be accessed by one or more components of such operating environment. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by one or more components of such operating environment. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media.
Particular embodiments are described for devices, systems, and corresponding methods encompassing ultrasound detection and the measurement of suspected abdominal aortic aneurysms. The devices, systems, and methods employ transceivers equipped to convey fundamental ultrasound frequencies, and analysis of fundamental echoes returning from a vascular region of interest (ROI). Signal processing algorithms executable by computer systems, described below, are developed to optimally extract information from fundamental ultrasound echoes delivered under A-mode, B-mode, and/or C-mode ultrasound configurations.
Disclosure below includes systems and methods to detect and measure an AAA involving transmitting ultrasound energy having at least one of a fundamental frequency to the AAA, collecting ultrasound echoes returning from the AAA and generating signals from the ultrasound echoes, and identifying within the ultrasound signals those attributable to fundamental ultrasound frequencies. Thereafter, the fundamental-frequency-derived signals undergo signal processing via computer executable program instructions to present an image of the AAA on a display, and calculate the volume and diameter of the AAA.
The signal processing applied to the transceiver echoic fundamental ultrasound signals include an algorithm having computer readable instructions for ascertaining the certainty that a given scan line traverses a AAA, a shadow region, or both a AAA and a shadow region using a grading algorithm for predicting the scan line's AAA or shadow classification.
The ultrasound transceivers or distal collection devices (DCD) are capable of collecting in vivo three-dimensional (3-D) cone-shaped ultrasound images of a patient. During the data collection process initiated by the DCD, a radio frequency pulsed ultrasound field is transmitted into the body, and the back-scattered “echoes” may be transducer-detected and presented as a one-dimensional (1-D) voltage trace, which may be also referred to as a radio frequency (RF) line. After detection of RF signal pulse envelopes, a set of 1-D data samples is interpolated to form a two-dimensional (2-D) image. A plurality of 2-D images can be assembled to form a 3-D ultrasound image.
Particular embodiments described below include a system to detect an abdominal aortic aneurysm. The system includes an ultrasound transceiver positioned to deliver ultrasound energy and receive echoes of the ultrasound energy across a plurality of scan planes; an algorithm configured to signal process the received echoes and characterize detected signals across a plurality of scan planes, wherein a “percentage of availability” measurement may be made. Percentage of availability (POA) may be based on whether relevant information is contained within the scanplane as compared with shadows or other regions not of interest. The system includes a display for presenting a visual depiction of availability contained in a plurality of scan planes; and display for indicating positioning information of the ultrasound transceiver based on the visual depiction of availability.
The BVI9600 Transceiver and Principal of Operation:
FIGS. 2-1-2-4 depict a partial schematic and a partial isometric view of a transceiver, a scan cone comprising a rotational array of scan planes, and a scan plane of the array of various ultrasound systems capable of collecting RF line analysis.
The handle 33 includes a trigger 37 that allows the user to initiate an ultrasound scan of a selected anatomical portion. The transceiver 10A also includes a transceiver dome 34 that contacts a surface portion of the patient when the selected anatomical portion is scanned (See
In one embodiment of the transceiver 10A, a directional indicator panel or aiming guide panel 32 includes a plurality of arrows that can be illuminated for initial targeting and guiding a user to access the targeting of an organ or structure within a region of interest (ROI).
In the BVI 9600 system 70 described in
In particular embodiments, if the AAA structure is centered (as indicated by reference numeral 77C), and there are no impediments to the scanlines, e.g., shadows caused by air pockets (see discussion below) from placement of the transceiver 10A or 10C acoustically placed against the dermal surface at a first location of the subject, the directional arrows will be not illuminated. If the AAA is off-center or a shadow appears in the field of interest, an arrow or set of arrows can be illuminated to direct the user to reposition the transceiver 10A, 10C acoustically at a second or subsequent dermal location of the subject. The acoustic coupling can be achieved by liquid sonic gel applied to the skin of the patient or by sonic gel pads against which the transceiver dome 34 is placed. The directional indicator panel 32 can also be presented on the display 54 of computer 52 in imaging subsystems described in
Turning back to
The transceiver 10A shown in
In operation, to scan a selected anatomical portion of a patient, the transceiver dome 34 of the transceiver 10A can be positioned against a surface portion of a patient that is proximal to the anatomical portion to be scanned. See for example
In one embodiment, the transceiver 10A can be operably coupled to an ultrasound system that can be configured to generate ultrasound energy at a predetermined frequency and/or pulse repetition rate and to transfer the ultrasound energy to the transceiver 10A. The system also includes a processor that can be configured to process reflected ultrasound energy that is received by the transceiver 10A to produce an image of the scanned anatomical region. As discussed, the system generally includes a viewing device, such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display device, or other similar display device, that can be used to view the generated image. The system can also include one or more peripheral devices that cooperatively assist the processor to control the operation of the transceiver 10A, such a keyboard, a pointing device, or other similar devices. In still another particular embodiment, the transceiver 10A can be a self-contained device that includes a microprocessor positioned within the housing 35 and software associated with the microprocessor to operably control the transceiver 10A, and to process the reflected ultrasound energy to generate the ultrasound image. Accordingly, the display 36 can be used to display the generated image and/or to view other information associated with the operation of the transceiver 10A. For example, the information can include alphanumeric data that indicates a preferred position of the transceiver 10A prior to performing a series of scans.
In yet another particular embodiment, the transceiver 10A can be operably coupled to a general-purpose computer (see
As described above, the angular movement of the transducer can be mechanically effected and/or it can be electronically or otherwise generated. In either case, the number of lines 48 and the length of the lines can vary, so that the tilt angle φ sweeps through angles approximately between −60° and +60° for a total arc of approximately 120°. In one particular embodiment, the transceiver 10A can be configured to generate approximately seventy-seven scan lines between the first limiting scan line 44 and a second limiting scan line 46. In another particular embodiment, each of the scan lines has a length of approximately 18 to 20 centimeters (cm). The angular separation between adjacent scan lines 48 (
The locations of the internal and peripheral scan lines can be further defined by an angular spacing from the center scan line 39B and between internal and peripheral scan lines. The angular spacing between scan line 39B and peripheral or internal scan lines can be designated by angle Φ and angular spacings between internal or peripheral scan lines can be designated by angle Ø. The angles Φ1, Φ2, and Φ3 respectively define the angular spacings from scan line 39B to scan lines 39A, 39C, and 31D. Similarly, angles Ø1, Ø2, and Ø3 respectively define the angular spacings between scan line 31B and 31C, 31C and 39A, and 31D and 31E.
With continued reference to
In one embodiment, the transceiver 10B can be configured to generate a plurality of 3D-distributed scan lines within the scan cone 45 having a length r, in one embodiment for example, of approximately 20 to 40 centimeters (cm).
The transceiver 10D can have a transceiver display 36, housing 35 and dome 34 design similar to transceivers 10A and 10B, and may be in signal communication to console 74 via signal cable 89. The console 74 can be pivoted from console base 72. The console 74 includes a display 76, detection and operation function panel 78, and select panel 80. The detection and operation function provide for targeting the abdominal aorta, allow user voice annotation recording, retrieval and playback of previously recorded voice annotation files, and current and previously stored 3D and 2D scans.
As illustrated in
As illustrated in
An Internet system 114 can be coupled or otherwise in communication with the ultrasound sub-systems 94A-94D.
Scanning and Placement of Transceiver and Determination of “Availability”:
During the field evaluation of AAA scan-mode, a 2D real time ultrasound instrument was determined to be preferably equipped to find optimal scan locations by searching the interested area with realtime B-mode image feedback. The BVI9600 model has been optimized to inform a user whether a 3D data set is valid or not, prior to collection of useful data. This was not a capability of the previous BVI6500 AAA mode, where only one B-mode image (cross section of an aorta) was provided for a user review after the 3D scan was completed. The BVI6500 B-mode image did not represent the 3D data set condition.
In contrast, the BVI9600 of the present invention investigates each scanline to determine whether the scanline contains any object information relevant to the region of interest or is just shadow blocked by air pocket. In the case that the scanline has any object information, it may be called “Available”. By plotting these availabilities in the aiming screen in real-time and guiding a user with aiming arrow, the user can avoid the air blocked scan.
Referring now to
When the scan is done, the aiming result and B-mode image may be displayed, for example as shown in an exemplary screen shot
In AAA ultrasound scanning, a subject is required to fast overnight to have less gas in their intestines so that the images are more shadow-free due to air block. Air blocks not only degrade the B-mode image quality, but also mislead the delineation of abdominal aorta which is an advantageous factor for volume estimation accuracy. Specifically, the acoustic energy can be blocked by a layer which has high acoustic impedance difference as between two media. Examples can include a fat layer under skin or air pockets in the intestines. The presence of fat and/or air pockets prevent information relevant to the region of interest (ROI), such as an AAA wall or lumen location, to be reflected to the transducer resulting in dark or black region underneath (See
FIGS. 7-1-7-12 and 8 illustrate how the aorta aiming guide can determine “availability” and may be used to help the user correct the position of the transceiver to scan AAA.
In order to guide a user to the best scanhead position and orientation, the guidelines are used. A threshold may be established, which can vary from patient to patient, but in this example the threshold is 40 (as above), and may be related to the intensity number, for example, out of 256 levels after A-law compression. A searching range, in this non-limiting example is between 42% of A-mode length to 100% of A-mode length, the length of which may be related to experimental testing of optimal scan depths. Given these parameters, once set, if any A mode point within the searching range is above the established threshold but below an acoustic block, the A mode line may be determined as “Available”. Based on the established threshold, “non-available” scanlines can be differentiated from “available” scanlines, for example, “non-available” are shadowed. In FIGS. 7-1-7-12 A-mode lines are marked non-available by colored markings/dots underneath the B-mode image indicating the non-availability of that area. In
The available and non-available regions from all 12 planes of this example of the B-mode display may be then plotted in C-mode representing the pseudo-horizontal cross section of the 3D scan cone composed by the 12 sectors as shown in
The above calculation may be used to automatically determine whether the 3D full scan is appropriate for segmentation and display and without shadow within the region of interest.
In
Turning again to
Condition 1: Current Position=>75% available at BLOCK 110=good scan at BLOCK 112=no movement is indicated=start AAA detection algorithm (See
Condition 2: Any inner fan=>75% at BLOCK 118=re-position transceiver to aim towards greatest availability=Solid arrow direction indication at BLOCK 121 (See solid arrow 122 indicated in direction)=back to Condition 1 at BLOCK 110.
Condition 3: All Inner fans=≦25% available within inner fans=query inner+outer fans=flashing arrow direction indication at BLOCK 124 (See flashing arrow 126 indicated in direction of maximal inner+outer fan availability)=back to Condition 1 at BLOCK 110.
Using the above positioning method, the user moves the instrument around on the abdomen to measure the abdominal aorta, which may be calculated from full three-dimensional scan cone or, can be a single two dimensional plane.
The use of the three-dimensional scan cone removes orientation requirements, permitting the user to position the device in any orientation. The user takes several three-dimensional image scans, moving along the patient's abdomen. After each scan, the volume/diameter of the section of the aorta covered by that scan may be displayed and the image may be stored if the diameter from the new scan is larger than any previous diameter. The image produced in this embodiment, whether it be form two dimensional planes or three dimension scan cone, can be optimally transmitted via the internet for remote enhance processing and rendering as is illustrated in
Volume Measurement Algorithms:
A. Front and Back Walls. Once an optimal position for AAA measurement is achieved based on the “availability” calculation 105 of compared scanlines, as described above and illustrated in
The fundamental AAA detection algorithm 120 used in the BVI 9600 device begins with process block Find Initial Wall 122 using A-mode ultrasound data that incorporates data-smoothing. Find Initial Wall 122 looks for the front and back walls of the abdominal aorta illustrated and described in
where, V is a volume and D is a diameter, and
where the diameter can be derived if the volume is know by manipulation of the above relationship:
The mathematical functions can be calculated automatically from a look-up table of diameter values such that the diameter calculations need not be performed for each volume under consideration. For example, the above relationship can be expressed as a look-up table, where once the volume (at BLOCK 134) is determined by the limited segmentation procedure, the diameter may be automatically correlated (at a BLOCK 137) with a pre-calculated diameter according to the above relationship.
B. AAA Detection Algorithm, Finding Front and Back Abdominal Aorta Walls and Centroid:
The standard central difference formula is given in Equation 4:
dxi=xi+1/2−xi−1/2 (4)
This formula assumes that the function is defined at the half-index, which is usually not the case. The solution is to widen the step between the samples to 2 and arrive at the equation in 5.
The normalization factor is simply the distance between the two points. In Eq. 4 the distance separating the two means in the calculation was 1, and in Eq. 5 the step between the two means is 2. The normalization of the gradient by the step size, while mathematically correct, incurs a cost in terms of operation. This operation may be neglected in the gradient calculation for the aortic wall detection algorithm with minimal effect: since the same calculation is performed for every data sample, every data sample can have the same error and thus the relative gradient values between different samples remain unchanged.
To further amplify wall locations, the gradient calculation may be expanded to three neighboring points to each side of the sample in question. This calculation is shown in Eq. 6. This calculation is simply the sum of three gradient approximations and thus the end result can be 12 times its normal value. This deviation from the true mathematical value has minimal effect since the calculation may be the same at each point and thus all the gradient values can be 12 times their usual value. An advantage to using the three neighboring points is that more information about the edge is included in the calculation, which can amplify the strong edges of the aorta and weaken the false-edges caused by the noise process in the image.
dxi=
The full calculation is written in Eq. 7. The first line shows the summation calculation to obtain the means, and the difference operations to obtain the gradient. The entire sum is normalized by 15, the number of points included in each local mean. The second line of the operation shows the result when the summations are simplified, and represents the maximal implementation of the calculation. This calculation incurs a cost of 23 additions or subtractions, 2 floating-point multiplications, 1 floating point division, and at least 1 temporary variable. This operation cost is incurred for 91% of the data samples.
The cost of the calculation can be reduced by not simplifying the summations and using a running sum operation. In that manner, only one mean may need to be calculated for each point, but that mean needs to be for the i+3 point. The running sum calculation uses the previous sum, and then corrects the sum by subtracting the old “left hand” end point and adding the new “right hand” end point. The operation is shown in Eq. 8. This running sum operation incurs a cost of 5 additions and subtractions.
Since the running sum was calculated for the i+3 point, all average values are available for the gradient calculation. This calculation is shown in Equation 9:
This equation has the same form as the one in Eq. 6 except for the normalization factor of 16. This normalization factor is not a result of the gradient operation, but rather it is the normalization factor mean calculation. The factor of 16 is used instead of the standard value of 15 that one would expect in a 15-point average for this simple reason: using a factor of 16 eliminates floating-point division. If the means are normalized by 16, then the division operation can be replaced by a “right”-shift by 4 at a significantly lower cost to the embedded system. Therefore the gradient operation has eleven additions and subtractions and one shift by 4.
Adding the operational cost of the running sum calculation gives an overall cost of 16 additions and subtractions and the shift. A clear advantage in this simplification is the elimination of multiplication and division from the operation.
Returning to
The loop limit processing begins with loop limit block 144 that receives pixel values for each sample in the detection region and subjects the pixel intensity values to determine whether the gradient is minimum at decision diamond 146. If affirmative, then the pixel values may be ascertained whether it's the best front wall-back wall (FW/BW) candidate combination at decision diamond 147. If affirmative, the FW/BW candidate pair may be saved and loop limit processing returns to limit block 144. If negative, at process block 152, the Front Wall pixel value may be saved and another back wall candidate may be sought with a subsequent return to loop limit block 152.
Returning to decision diamond 146, if the answer is negative for “Is gradient Minimum?”, sub-algorithm 122 continues to decision diamond 156 to determine whether the back wall and the gradient is maximum. If affirmative, at process block 154, a candidate BW/FW pair is established and sub-algorithm re-routes to loop limit block 144. If negative, the end of analysis for a particular FW/BW candidate occurs at loop limit block 158 either routes back to the limit loop block 144 or exits to find Centroid 124.
Formulations relating to Find Centroid 124 may be based on coordinate geometries described in equations 10 and 11 utilizing coordinate conversions. The coordinate conversions are shown in Eq. 10 where 38 is the index of the broadside beam (the ultrasound ray when φ=0), φ is the index of the line, θ is the angle of the plane. The plane angle is shifted by π to ensure that the sign of the x and y coordinates match the true location in space.
x=(38−φ)cos(π−θ)
y=(38−φ)sin(π−θ) (10)
The trigonometric functions can be calculated for a table of θ values such that the cosine and sine calculations need not be performed for each of the points under consideration. The closest plane can be found by finding the shortest vector from each plane to the centroid. The shortest vector from a plane to a point can be the perpendicular to the projection of the centroid on the plane. The projection of the centroid on the plane is defined as the dot product of the centroid vector, c, with the plane definition vector, a, divided by the length of the plane definition vector. If the plane definition vector is a unit vector, then the division operation is unnecessary. To find the perpendicular to the projection, it is sufficient to subtract the projection vector from the centroid vector as shown in Eq. 11:
The length of these projections can be found by calculating the Euclidean norm for each line. The Euclidean norm may be more commonly known as the length or magnitude of the vector. To find the plane closest to the centroid, calculate the lengths for the perpendicular to the projection of the centroid on each plane, and take the plane with the shortest of these lengths.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. For example, it should be understood that various changes, modifications, and substitutions can be incorporated in the apparatus embodiment to achieve the ultrasonic, volumetric determination of the abdominal aorta to thus apply that to the aortic diameter reading. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment.
McMorrow, Gerald, Yuk, Jongtae
Patent | Priority | Assignee | Title |
10638970, | Mar 08 2017 | STRIVE ORTHOPEDICS, INC | Method for identifying human joint characteristics |
11172874, | Mar 08 2017 | STRIVE ORTHOPEDICS, INC | Sensors and a method for evaluation of characteristics of human joints and for diagnosis of joint ailments |
11259743, | Mar 08 2017 | STRIVE ORTHOPEDICS, INC | Method for identifying human joint characteristics |
11278259, | Feb 23 2018 | Verathon Inc. | Thrombus detection during scanning |
11298096, | Jul 17 2017 | KONINKLIJKE PHILIPS N V | Imaging method, controller and imaging system, for monitoring a patient post EVAR |
11684344, | Jan 17 2019 | Verathon Inc. | Systems and methods for quantitative abdominal aortic aneurysm analysis using 3D ultrasound imaging |
9091628, | Dec 21 2012 | L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS, INC | 3D mapping with two orthogonal imaging views |
9220477, | Dec 18 2009 | KONICA MINOLTA, INC | Ultrasonic diagnostic device, and region-to-be-detected image display method and measurement method using same |
9367965, | Oct 05 2012 | Volcano Corporation | Systems and methods for generating images of tissue |
9585638, | Mar 06 2010 | System for classifying palpable soft tissue masses using A-mode echographs |
Patent | Priority | Assignee | Title |
3613069, | |||
4431007, | Feb 04 1981 | General Electric Company | Referenced real-time ultrasonic image display |
4556066, | Nov 04 1983 | The Kendall Company | Ultrasound acoustical coupling pad |
4757821, | Nov 12 1986 | Corazonix Corporation | Omnidirectional ultrasonic probe |
4771205, | Aug 31 1983 | U S PHILIPS CORPORATION, A CORP OF DE | Ultrasound transducer |
4821210, | Apr 02 1987 | General Electric Co. | Fast display of three-dimensional images |
4844080, | Feb 19 1987 | Ultrasound contact medium dispenser | |
4926871, | May 08 1985 | International Biomedics, Inc. | Apparatus and method for non-invasively and automatically measuring the volume of urine in a human bladder |
5058591, | Nov 13 1986 | The United States of America as represented by the Administrator of the | Rapidly quantifying the relative distention of a human bladder |
5060515, | Mar 01 1989 | Kabushiki Kaisha Toshiba | Image signal processing circuit for ultrasonic imaging apparatus |
5078149, | Sep 29 1989 | Terumo Kabushiki Kaisha | Ultrasonic coupler and method for production thereof |
5125410, | Oct 13 1989 | OLYMPUS OPTICAL CO , LTD | Integrated ultrasonic diagnosis device utilizing intra-blood-vessel probe |
5148809, | Feb 28 1990 | Asgard Medical Systems, Inc. | Method and apparatus for detecting blood vessels and displaying an enhanced video image from an ultrasound scan |
5151856, | Aug 30 1989 | Technion R & D Found. Ltd. | Method of displaying coronary function |
5159931, | Nov 25 1988 | TOMTEC IMAGING SYSTEM, GMBH | Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images |
5197019, | Jul 20 1989 | Asulab S.A. | Method of measuring distance using ultrasonic waves |
5235985, | Apr 30 1992 | VERATHON INC | Automatic bladder scanning apparatus |
5265614, | Aug 30 1988 | FUKUDA DENSHI CO , LTD | Acoustic coupler |
5299577, | Apr 20 1989 | National Fertility Institute | Apparatus and method for image processing including one-dimensional clean approximation |
5381794, | Jan 21 1993 | Hitachi Aloka Medical, Ltd | Ultrasonic probe apparatus |
5432310, | Jul 22 1992 | Fluid pressure operated switch with piston actuator | |
5435310, | Jun 23 1993 | University of Washington | Determining cardiac wall thickness and motion by imaging and three-dimensional modeling |
5465721, | Apr 22 1994 | Hitachi Medical Corporation | Ultrasonic diagnostic apparatus and ultrasonic diagnosis method |
5473555, | Aug 18 1988 | Agilent Technologies Inc | Method and apparatus for enhancing frequency domain analysis |
5487388, | Nov 01 1994 | Interspec. Inc. | Three dimensional ultrasonic scanning devices and techniques |
5503152, | Sep 28 1994 | Hoechst AG | Ultrasonic transducer assembly and method for three-dimensional imaging |
5503153, | Jun 30 1995 | Siemens Medical Solutions USA, Inc | Noise suppression method utilizing motion compensation for ultrasound images |
5526816, | Sep 22 1994 | BRACCO SUISSE S A | Ultrasonic spectral contrast imaging |
5553618, | Mar 12 1993 | Kabushiki Kaisha Toshiba | Method and apparatus for ultrasound medical treatment |
5575286, | Mar 31 1995 | Siemens Medical Solutions USA, Inc | Method and apparatus for generating large compound ultrasound image |
5575291, | Nov 17 1993 | FUKUDA DENSHI CO , LTD | Ultrasonic coupler |
5577506, | Aug 10 1994 | Hewlett Packard Company | Catheter probe having a fixed acoustic reflector for full-circle imaging |
5588435, | Nov 22 1995 | Siemens Medical Solutions USA, Inc | System and method for automatic measurement of body structures |
5601084, | Jun 23 1993 | University of Washington | Determining cardiac wall thickness and motion by imaging and three-dimensional modeling |
5605155, | Mar 29 1996 | Washington, University of | Ultrasound system for automatically measuring fetal head size |
5615680, | Jul 22 1994 | Kabushiki Kaisha Toshiba | Method of imaging in ultrasound diagnosis and diagnostic ultrasound system |
5644513, | Dec 22 1989 | System incorporating feature-oriented signal enhancement using shock filters | |
5645077, | Jun 16 1994 | Massachusetts Institute of Technology | Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body |
5697525, | Feb 10 1993 | FUJIFILM Corporation | Bag for dispensing fluid material and a dispenser having the bag |
5698549, | May 12 1994 | UVA Patent Foundation | Method of treating hyperactive voiding with calcium channel blockers |
5724101, | Apr 09 1987 | Prevail, Inc. | System for conversion of non standard video signals to standard formats for transmission and presentation |
5735282, | May 30 1996 | Acuson Corporation | Flexible ultrasonic transducers and related systems |
5738097, | Nov 08 1996 | VERATHON INC | Vector Doppler system for stroke screening |
5776063, | Sep 30 1996 | MOLECULAR BIOSYSTEMS, INC | Analysis of ultrasound images in the presence of contrast agent |
5782767, | Dec 31 1996 | VERATHON INC | Coupling pad for use with medical ultrasound devices |
5806521, | Mar 26 1996 | Sandia Corporation | Composite ultrasound imaging apparatus and method |
5841889, | Dec 29 1995 | General Electric Company | Ultrasound image texture control using adaptive speckle control algorithm |
5846202, | Jul 30 1996 | Siemens Medical Solutions USA, Inc | Ultrasound method and system for imaging |
5851186, | Feb 27 1996 | ATL ULTRASOUND, INC | Ultrasonic diagnostic imaging system with universal access to diagnostic information and images |
5873829, | Jan 29 1996 | Toshiba Medical Systems Corporation | Diagnostic ultrasound system using harmonic echo imaging |
5892843, | Jan 21 1997 | Matsushita Electric Industrial Co., Ltd. | Title, caption and photo extraction from scanned document images |
5898793, | Apr 13 1993 | New York University | System and method for surface rendering of internal structures within the interior of a solid object |
5903664, | Nov 01 1996 | General Electric Company | Fast segmentation of cardiac images |
5908390, | May 10 1994 | FUKUDA DENSHI CO , LTD | Ultrasonic diagnostic apparatus |
5913823, | Jul 15 1997 | Siemens Medical Solutions USA, Inc | Ultrasound imaging method and system for transmit signal generation for an ultrasonic imaging system capable of harmonic imaging |
5928151, | Aug 22 1997 | Siemens Medical Solutions USA, Inc | Ultrasonic system and method for harmonic imaging in three dimensions |
5945770, | Aug 20 1997 | Siemens Medical Solutions USA, Inc | Multilayer ultrasound transducer and the method of manufacture thereof |
5964710, | Mar 13 1998 | SRS MEDICAL, INC | System for estimating bladder volume |
5971923, | Dec 31 1997 | Siemens Medical Solutions USA, Inc | Ultrasound system and method for interfacing with peripherals |
5972023, | Aug 15 1994 | E V A CORPORATION | Implantation device for an aortic graft method of treating aortic aneurysm |
5980459, | Mar 31 1998 | General Electric Company | Ultrasound imaging using coded excitation on transmit and selective filtering of fundamental and (sub)harmonic signals on receive |
5993390, | Sep 18 1998 | Koninklijke Philips Electronics N V | Segmented 3-D cardiac ultrasound imaging method and apparatus |
6008813, | Aug 01 1997 | Terarecon, INC | Real-time PC based volume rendering system |
6030344, | Dec 04 1996 | Siemens Medical Solutions USA, Inc | Methods and apparatus for ultrasound image quantification |
6042545, | Nov 25 1998 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for transform ultrasound processing |
6048312, | Apr 23 1998 | General Electric Company | Method and apparatus for three-dimensional ultrasound imaging of biopsy needle |
6063033, | May 28 1999 | General Electric Company | Ultrasound imaging with higher-order nonlinearities |
6064906, | Mar 14 1997 | Emory University | Method, system and apparatus for determining prognosis in atrial fibrillation |
6071242, | Jun 30 1998 | Diasonics Ultrasound, Inc. | Method and apparatus for cross-sectional color doppler volume flow measurement |
6102858, | Apr 23 1998 | General Electric Company | Method and apparatus for three-dimensional ultrasound imaging using contrast agents and harmonic echoes |
6106465, | Aug 22 1997 | Siemens Medical Solutions USA, Inc | Ultrasonic method and system for boundary detection of an object of interest in an ultrasound image |
6110111, | May 26 1999 | VERATHON INC | System for quantizing bladder distension due to pressure using normalized surface area of the bladder |
6117080, | Jun 04 1997 | ATL Ultrasound | Ultrasonic imaging apparatus and method for breast cancer diagnosis with the use of volume rendering |
6122538, | Jan 16 1997 | Siemens Medical Solutions USA, Inc | Motion--Monitoring method and system for medical devices |
6123669, | May 13 1998 | Toshiba Medical Systems Corporation | 3D ultrasound imaging using 2D array |
6126598, | Oct 01 1998 | ATL Ultrasound, Inc. | Ultrasonic diagnostic imaging system with adaptive spatial compounding |
6142942, | Mar 22 1999 | Koninklijke Philips Electronics N V | Ultrasound imaging system and method employing an adaptive filter |
6146330, | Apr 10 1998 | Toshiba Medical Systems Corporation | Ultrasound diagnosis apparatus for generating an image based on extracted harmonics component |
6148095, | Sep 08 1997 | IOWA RESEARCH FOUNDATION, UNIVERSITY OF | Apparatus and method for determining three-dimensional representations of tortuous vessels |
6151404, | Jun 01 1995 | Medical Media Systems | Anatomical visualization system |
6159150, | Nov 20 1998 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasonic imaging system with auxiliary processor |
6171248, | Feb 27 1997 | Acuson Corporation | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
6193657, | Dec 31 1998 | G E MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC | Image based probe position and orientation detection |
6200266, | Mar 31 1998 | Case Western Reserve University | Method and apparatus for ultrasound imaging using acoustic impedance reconstruction |
6210327, | Apr 28 1999 | General Electric Company | Method and apparatus for sending ultrasound image data to remotely located device |
6213949, | May 10 1999 | SRS Medical Systems, Inc. | System for estimating bladder volume |
6213951, | Feb 19 1999 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound method and system for contrast specific frequency imaging |
6222948, | Feb 29 1996 | Acuson Corporation | Multiple ultrasound image registration system, method and transducer |
6233480, | Aug 10 1990 | University of Washington | Methods and apparatus for optically imaging neuronal tissue and activity |
6238344, | Mar 30 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound imaging system with a wirelessly-controlled peripheral |
6248070, | Nov 12 1998 | Toshiba Medical Systems Corporation | Ultrasonic diagnostic device |
6254539, | Aug 26 1999 | Siemens Medical Solutions USA, Inc | Transducer motion compensation in medical diagnostic ultrasound 3-D imaging |
6264609, | Sep 15 1999 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Ultrasound apparatus and method for tissue characterization |
6272469, | Nov 25 1998 | General Electric Company | Imaging system protocol handling method and apparatus |
6277073, | Sep 23 1999 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound imaging method and system using simultaneously transmitted ultrasound beams |
6286513, | Oct 22 1998 | AU, JESSIE L ; WIENTJES, M GUILL | Methods for treating superficial bladder carcinoma |
6302845, | Mar 20 1998 | Thomas Jefferson University | Method and system for pressure estimation using subharmonic signals from microbubble-based ultrasound contrast agents |
6309353, | Oct 27 1998 | Mitani Sangyo Co., Ltd. | Methods and apparatus for tumor diagnosis |
6325758, | Oct 27 1997 | Best Medical International, Inc | Method and apparatus for target position verification |
6338716, | Nov 24 1999 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasonic transducer probe and imaging system for use with a position and orientation sensor |
6343936, | Sep 16 1996 | The Research Foundation of State University of New York | System and method for performing a three-dimensional virtual examination, navigation and visualization |
6346124, | Aug 25 1998 | University of Florida | Autonomous boundary detection system for echocardiographic images |
6350239, | Dec 28 1999 | GE Medical Systems Global Technology Company, LLC | Method and apparatus for distributed software architecture for medical diagnostic systems |
6359190, | Jun 29 1998 | The Procter & Gamble Company; Procter & Gamble Company, The | Device for measuring the volume of a body cavity |
6360027, | Feb 29 1996 | Acuson Corporation | Multiple ultrasound image registration system, method and transducer |
6375616, | Nov 10 2000 | SAMSUNG ELECTRONICS CO , LTD | Automatic fetal weight determination |
6400848, | Mar 30 1999 | Apple Inc | Method for modifying the perspective of a digital image |
6402762, | Oct 28 1999 | Surgical Navigation Technologies, Inc. | System for translation of electromagnetic and optical localization systems |
6406431, | Feb 17 2000 | VERATHON INC | System for imaging the bladder during voiding |
6409665, | Jun 01 2000 | Apparatus for applying impedence matching fluid for ultrasonic imaging | |
6440071, | Oct 18 1999 | Ardent Sound, Inc | Peripheral ultrasound imaging system |
6440072, | Mar 30 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound imaging system and method for transferring ultrasound examination data to a portable computing device |
6443894, | Sep 29 1999 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging |
6468218, | Aug 31 2001 | Siemens Medical Systems, Inc. | 3-D ultrasound imaging system and method |
6485423, | Jan 31 2000 | Correction of phasefront aberrations and pulse reverberations in medical ultrasound imaging | |
6491631, | Jan 11 2001 | General Electric Company | Harmonic golay-coded excitation with differential pulsing for diagnostic ultrasound imaging |
6494841, | Feb 29 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system using contrast pulse sequence imaging |
6503204, | Mar 31 2000 | Siemens Medical Solutions USA, Inc | Two-dimensional ultrasonic transducer array having transducer elements in a non-rectangular or hexagonal grid for medical diagnostic ultrasonic imaging and ultrasound imaging system using same |
6511325, | May 04 1998 | Advanced Research & Technology Institute | Aortic stent-graft calibration and training model |
6511426, | Jun 02 1998 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for versatile processing |
6511427, | Mar 10 2000 | Siemens Medical Solutions USA, Inc | System and method for assessing body-tissue properties using a medical ultrasound transducer probe with a body-tissue parameter measurement mechanism |
6515657, | Feb 11 2000 | Ultrasonic imager | |
6524249, | Nov 11 1998 | Spentech, Inc. | Doppler ultrasound method and apparatus for monitoring blood flow and detecting emboli |
6535759, | Apr 30 1999 | BLUE TORCH MEDICAL TECHNOLOGIES, INC | Method and device for locating and mapping nerves |
6540679, | Dec 28 2000 | Guided Therapy Systems, LLC | Visual imaging system for ultrasonic probe |
6544179, | Dec 14 2001 | Koninklijke Philips Electronics, NV | Ultrasound imaging system and method having automatically selected transmit focal positions |
6545678, | Nov 05 1998 | KONINKLIJKE PHILIPS N V | Methods, systems, and computer program products for generating tissue surfaces from volumetric data thereof using boundary traces |
6551246, | Mar 06 2000 | Siemens Medical Solutions USA, Inc | Method and apparatus for forming medical ultrasound images |
6565512, | Mar 13 1998 | SRS Medical Systems, Inc. | System for estimating bladder volume |
6569097, | Jul 21 2000 | VERATHON INC | System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device |
6569101, | Apr 19 2001 | FUJIFILM SONOSITE, INC | Medical diagnostic ultrasound instrument with ECG module, authorization mechanism and methods of use |
6575907, | Jul 12 1999 | SAMSUNG ELECTRONICS CO , LTD | Determination of fetal weight in utero |
6585647, | Jul 21 1998 | WINDER, ALAN A | Method and means for synthetic structural imaging and volume estimation of biological tissue organs |
6610013, | Oct 01 1999 | London Health Sciences Centre | 3D ultrasound-guided intraoperative prostate brachytherapy |
6611141, | Dec 23 1998 | Stryker Corporation | Hybrid 3-D probe tracked by multiple sensors |
6622560, | Jun 17 2000 | Medison Co., Ltd. | Ultrasound imaging method and apparatus based on pulse compression technique using a spread spectrum signal |
6628743, | Nov 26 2002 | GE Medical Systems Global Technology Company, LLC | Method and apparatus for acquiring and analyzing cardiac data from a patient |
6643533, | Nov 28 2000 | GE Medical Systems Global Technology Company, LLC | Method and apparatus for displaying images of tubular structures |
6650927, | Aug 18 2000 | Biosense, Inc | Rendering of diagnostic imaging data on a three-dimensional map |
6676605, | Jun 07 2002 | VERATHON INC | Bladder wall thickness measurement system and methods |
6682473, | Apr 14 2000 | SOLACE THERAPEUTICS, INC | Devices and methods for attenuation of pressure waves in the body |
6688177, | Jun 06 2000 | GE Medical Systems Kretztechnik GmbH & Co oHG | Method for examining objects using ultrasound |
6695780, | Oct 17 2002 | Methods, systems, and computer program products for estimating fetal weight at birth and risk of macrosomia | |
6705993, | May 10 2002 | MINNESOTA, REGENTS OF THE UNIVERSITY OF | Ultrasound imaging system and method using non-linear post-beamforming filter |
6716175, | Aug 25 1998 | University of Florida | Autonomous boundary detection system for echocardiographic images |
6752762, | Jan 21 1999 | Siemens Medical Solutions USA, Inc | Method and apparatus for ultrasound contrast imaging |
6755787, | Jun 02 1998 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for versatile processing |
6768811, | Nov 20 2001 | MANON BUSINESS INITIATION LTD | System and method for analysis of imagery data |
6780152, | Jun 26 2002 | Siemens Medical Solutions USA, Inc | Method and apparatus for ultrasound imaging of the heart |
6788620, | May 15 2002 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Acoustic matching member, ultrasound transducer, ultrasonic flowmeter and method for manufacturing the same |
6801643, | Jun 01 1995 | Medical Media Systems | Anatomical visualization system |
6822374, | Nov 15 2000 | General Electric Company | Multilayer piezoelectric structure with uniform electric field |
6825838, | Oct 11 2002 | SONOCINE, INC | 3D modeling system |
6831394, | Dec 11 2002 | General Electric Company | Backing material for micromachined ultrasonic transducer devices |
6868594, | Jan 05 2001 | Guardian Industries Corp | Method for making a transducer |
6884217, | Jun 27 2003 | VERATHON INC | System for aiming ultrasonic bladder instruments |
6903813, | Feb 21 2002 | VITA ZAHNFABRIK H RAUTER GMBH & CO KG | Miniaturized system and method for measuring optical characteristics |
6905467, | Aug 15 1997 | Acuson Corporation | Ultrasonic harmonic imaging system and method using waveform pre-distortion |
6905468, | Sep 18 2002 | VERATHON INC | Three-dimensional system for abdominal aortic aneurysm evaluation |
6911912, | Nov 08 2001 | The Procter & Gamble Company; Procter & Gamble Company, The | Method of urinary continence training based on an objective measurement of the bladder |
6936009, | Feb 27 2001 | General Electric Company | Matching layer having gradient in impedance for ultrasound transducers |
6939301, | Mar 16 2001 | Automatic volume measurements: an application for 3D ultrasound | |
6951540, | May 10 2002 | Regents of the University of Minnesota | Ultrasound imaging system and method using non-linear post-beamforming filter |
6954406, | Mar 04 2003 | Acoustical source and transducer having, and method for, optimally matched acoustical impedance | |
6961405, | Oct 07 2002 | Best Medical International, Inc | Method and apparatus for target position verification |
6962566, | Apr 19 2001 | FUJIFILM SONOSITE, INC | Medical diagnostic ultrasound instrument with ECG module, authorization mechanism and methods of use |
6970091, | Nov 08 2001 | The Procter & Gamble Company | Method of urinary continence training based on an objective measurement of the bladder |
7004904, | Aug 02 2002 | VERATHON INC | Image enhancement and segmentation of structures in 3D ultrasound images for volume measurements |
7025725, | Mar 28 2002 | Ultrasound Detection Systems, LLC | Three-dimensional ultrasound computed tomography imaging system |
7041059, | Aug 02 2002 | VERATHON INC | 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume |
7042386, | Dec 11 2001 | Northrop Grumman Systems Corporation | Sub-aperture sidelobe and alias mitigation techniques |
7087022, | Jun 07 2002 | VERATHON INC | 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume |
7090640, | Nov 12 2003 | Q-Vision | System and method for automatic determination of a region of interest within an image |
7141020, | Feb 20 2002 | Koninklijke Philips Electronics N.V. | Portable 3D ultrasound system |
7142905, | Dec 28 2000 | Guided Therapy Systems, LLC | Visual imaging system for ultrasonic probe |
7177677, | Nov 24 1999 | NuVasive, Inc. | Nerve proximity and status detection system and method |
7189205, | Jul 21 2000 | Diagnostic Ultrasound Corp. | System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device |
7215277, | Dec 11 2001 | Northrop Grumman Systems Corporation | Sub-aperture sidelobe and alias mitigation techniques |
7255678, | Oct 10 2002 | FUJIFILM SONOSITE, INC | High frequency, high frame-rate ultrasound imaging system |
7301636, | Feb 21 2002 | VITA ZAHNFABRIK H RAUTER GMBH & CO KG | Miniaturized system and method for measuring optical characteristics |
7382907, | Nov 22 2004 | CARESTREAM HEALTH, INC | Segmenting occluded anatomical structures in medical images |
7450746, | Jun 07 2002 | VERATHON INC | System and method for cardiac imaging |
7520857, | Jun 07 2002 | VERATHON INC | 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume |
7611466, | Jun 07 2002 | VERATHON INC | Ultrasound system and method for measuring bladder wall thickness and mass |
20010031920, | |||
20020005071, | |||
20020016545, | |||
20020072671, | |||
20020102023, | |||
20020133075, | |||
20020147399, | |||
20020165448, | |||
20030055336, | |||
20030142587, | |||
20030174872, | |||
20030181806, | |||
20030216646, | |||
20030229281, | |||
20040006266, | |||
20040024302, | |||
20040034305, | |||
20040054280, | |||
20040076317, | |||
20040106869, | |||
20040127796, | |||
20040127797, | |||
20040267123, | |||
20050135707, | |||
20050174324, | |||
20050193820, | |||
20050212757, | |||
20050215896, | |||
20050228276, | |||
20050240126, | |||
20050253806, | |||
20060025689, | |||
20060056672, | |||
20060064010, | |||
20060078501, | |||
20060079775, | |||
20060111633, | |||
20060235301, | |||
20070004983, | |||
20070232908, | |||
20070276247, | |||
20070276254, | |||
20080139938, | |||
20080146932, | |||
20080242985, | |||
20080249414, | |||
20080262356, | |||
20090062644, | |||
20090088660, | |||
20090105585, | |||
20090112089, | |||
20090264757, | |||
EP271214, | |||
EP1030187, | |||
EP1076318, | |||
GB2391625, | |||
JP2000126178, | |||
JP2000126181, | |||
JP2000126182, | |||
JP2000210286, | |||
JP7171149, | |||
WO135339, | |||
WO2009032778, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 07 2009 | Verathon Inc. | (assignment on the face of the patent) | / | |||
Oct 19 2009 | YUK, JONGTAE | VERATHON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023405 | /0402 | |
Oct 20 2009 | MCMORROW, GERALD | VERATHON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023405 | /0402 |
Date | Maintenance Fee Events |
Aug 26 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 26 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 22 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 13 2015 | 4 years fee payment window open |
Sep 13 2015 | 6 months grace period start (w surcharge) |
Mar 13 2016 | patent expiry (for year 4) |
Mar 13 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 13 2019 | 8 years fee payment window open |
Sep 13 2019 | 6 months grace period start (w surcharge) |
Mar 13 2020 | patent expiry (for year 8) |
Mar 13 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 13 2023 | 12 years fee payment window open |
Sep 13 2023 | 6 months grace period start (w surcharge) |
Mar 13 2024 | patent expiry (for year 12) |
Mar 13 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |